高中基本不等式经典例题教案

合集下载

《基本不等式(一)》示范课教学设计【高中数学人教】

《基本不等式(一)》示范课教学设计【高中数学人教】

环节三 基本不等式(一)
1.理解基本不等式2b a ab +≤
(a >0,b >0),会利用不等式性质证明,发展逻辑推理素养;
2.了解基本不等式的几何解释,发展直观想象素养;
3.结合具体实例,形成用基本不等式解决简单的求最大值或最小值的问题的基本模型,发展数学运算核心素养. PPT 课件,及GEOGEBRA 制作的动画课件.
一、整体感知
问题1:请同学们阅读课本第44页,说一说今天我们将要学习的内容是什么?在不等式中起着怎样的作用?
师生活动:学生自主阅读课本,思考并回答,教师给予简单总结.
预设答案:类比代数式运算的研究,学习了一般运算之后,就要探索其特殊关系,这些特殊关系往往具有重要作用,比如乘法公式等等.那么学习了不等式的性质,我们就要尝试探索一些特殊的不等式——基本不等式.
它是一种重要而基本的不等式类型,与乘法公式在代数运算的地位一样,在解决不等式问题中有重要的作用,它之所以被称为“基本不等式”,主要是因为它可以作为不等式论的基本定理,成为支撑其他许多非常重要结果的基石.
设计意图:让学生从整体上把握本节内容,了解基本不等式在解决不等式问题有重要的作用.。

高考基本不等式求最值教案

高考基本不等式求最值教案

高考基本不等式求最值教案一、教学目标1.理解基本不等式的定义和性质。

2.熟练掌握常见的基本不等式及其证明方法。

3.学会灵活运用基本不等式求解最值的方法。

二、教学内容1.基本不等式的概念和性质。

2.常见的基本不等式及其证明方法。

3.利用基本不等式求解最值问题。

三、教学步骤第一步:导入新知1.通过举例子或是提问的方式,引发学生对不等式最值问题的思考。

2.提出问题:如何通过基础不等式求解最值问题?第二步:学习基本不等式的定义和性质1.讲解基本不等式的定义和性质。

2.写出常见的基本不等式的形式,并讲解其证明方法。

第三步:实例分析1.分析并讲解一些常见的基础不等式的实例。

2.引导学生思考如何通过基础不等式求解最值问题。

第四步:练习和巩固1.教师出示一些基础不等式的练习题,可以分组抢答或是个人作答。

2.针对不同的题型,提供不同的解题思路和方法。

第五步:拓展1.提供一些拓展题目,要求学生通过灵活运用基础不等式来求解最值问题。

2.鼓励学生多思考、多尝试,加强解题的技巧和策略。

第六步:总结与归纳1.和学生一起总结基本不等式的性质和求最值的方法。

2.强调对基础不等式的熟练掌握和灵活运用的重要性。

四、教学重难点1.教学重点:基本不等式的定义和性质。

2.教学难点:灵活运用基本不等式求解最值问题。

五、教学方法1.演示法:通过例子的演示,引导学生掌握基本不等式的性质和求解最值的方法。

2.提问法:通过提问的方式,激发学生的思考和解题的兴趣。

六、教学工具1.教学PPT。

2.黑板、粉笔。

七、教学评价1.教师可以通过观察学生的课堂表现和解题情况来进行评价。

2.学生可以通过课堂练习和作业完成情况来进行自我评价。

通过以上教学设计,学生可以在课堂上系统地学习和巩固基本不等式的概念、性质和求解最值的方法。

在教学过程中,充分发挥学生的主体性,通过提问和解题活动,激发学生的思考和兴趣,确保学生能够真正理解和掌握基本不等式的相关知识,并能够熟练运用解题技巧解决最值问题。

高中数学基本不等式教案设计(优秀3篇)

高中数学基本不等式教案设计(优秀3篇)

高中数学基本不等式教案设计(优秀3篇)篇一:高中数学教学设计篇一教学目标1、明确等差数列的定义。

2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题3、培养学生观察、归纳能力。

教学重点1、等差数列的概念;2、等差数列的通项公式教学难点等差数列“等差”特点的理解、把握和应用教具准备投影片1张教学过程(I)复习回顾师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。

这两个公式从不同的角度反映数列的特点,下面看一些例子。

(放投影片)(Ⅱ)讲授新课师:看这些数列有什么共同的特点?1,2,3,4,5,6;①10,8,6,4,2,…;②生:积极思考,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)对于数列②—2n(n≥1)(n≥2)对于数列③(n≥1)(n≥2)共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。

具有这种特点的数列,我们把它叫做等差数。

一、定义:等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,—2……二、等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得。

若一等差数列的首项是,公差是d,则据其定义可得:若将这n—1个等式相加,则可得:即:即:即:……由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

如数列①(1≤n≤6)数列②:(n≥1)数列③:(n≥1)由上述关系还可得:即:则:=如:三、例题讲解例1:(1)求等差数列8,5,2…的第20项(2)—401是不是等差数列—5,—9,—13…的项?如果是,是第几项?解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得—401=—5—4(n—1)成立解之得n=100,即—401是这个数列的第100项。

高中数学基本不等式(二)教案新课标人教A版必修5

高中数学基本不等式(二)教案新课标人教A版必修5
例1:例2:巩固练习:
小结:
通过例2及变式一、二阐明解决函数最值问题可以转化为二次函数解决,也可以通过基本不等式解决。例2构造和为定值而并非积为定值,强调如何构造定值要根据题设决定,从而使学生对不等式成立的条件有更深刻的认识。
小组讨论、合作交流促进学生积极地思考,体验构造定值的思维过程。
理清本节课的学习重点,养成归纳总结的学习习惯,为后续学习打下良好的基础。
教学难点
如何构造定值并保证利用基本不等式求最值时能满足三个条件.
教学过程
设计意图
一、情景引入:货物运输问题
进货结束后装车运回。所购大米需装3辆卡车,途径一座长为100米的大桥,假设卡车均以v(m/s)的速度匀速前进,并出于安全考虑规定每两辆卡车的间距不得小于 m(卡车长忽略不计),则全部卡车安全过桥最快需多少时间?
函数模型为:
二、例题讲解:
例1:
激发学生学习的积极性,在复习旧知识的基础上为新课教学做好必要的铺垫。
通过例1探索:
运用不等式“正值”的条件和“积为定值”的构造。
变式一、二引导学生完成,进一步理解一正二定的前提条件,通过学生反馈学生理解知识过程中出现的问题,强化学生对基本不等式成立条件的认识。

例2:
基本不等式(二)教案
课题
3.4基本不等式(二)
课型
习题课
授课教师
时间
教学目标
1、知识目标:进一步理解基本不等式成立的三个条件.
2、能力目标:熟练构造定值利用基本不等式求定值。.
3、德育目标:通过对基本不等式成立的条件的分析,养成严谨的科学态度,勇于提出问题。
教学重点
利用基本不等式求最值时必须满足三个条件:一正二定三相等.
三、练习巩固:

高中不等式的教案

高中不等式的教案

高中不等式的教案高中不等式的教案(通用11篇)高中不等式的教案篇1教学目标1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。

2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。

启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。

3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

教学重难点1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);2、利用基本不等式求解实际问题中的最大值和最小值。

教学过程一、创设情景,提出问题;设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实基于此,设置如下情境: 上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

[问]你能在这个图中找出一些相等关系或不等关系吗?本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式在此基础上,引导学生认识基本不等式。

三、理解升华:1、文字语言叙述:两个正数的算术平均数不小于它们的几何平均数。

2、联想数列的知识理解基本不等式已知a,b是正数,A是a,b的等差中项,G是a,b的正的等比中项,A与G有无确定的大小关系?两个正数的等差中项不小于它们正的等比中项。

3、符号语言叙述:4、探究基本不等式证明方法:[问]如何证明基本不等式?(意图在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。

高中不等式经典教案(含详解)

高中不等式经典教案(含详解)

高中不等式经典教案第一教时一、不等式的一个等价关系(充要条件)1.从实数与数轴上的点一一对应谈起0>-⇔>b a b a 0=-⇔=b a b a 0<-⇔<b a b a2.应用:例一 比较)5)(3(-+a a 与)4)(2(-+a a 的大小解:(取差))5)(3(-+a a - )4)(2(-+a a07)82()152(22<-=-----=a a a a∴)5)(3(-+a a <)4)(2(-+a a例二 已知x ≠0, 比较22)1(+x 与124++x x 的大小解:(取差)22)1(+x -)1(24++x x22424112x x x x x =---++=∵0≠x ∴02>x 从而22)1(+x >124++x x小结:步骤:作差—变形—判断—结论例三 比较大小1.231-和10 解:∵23231+=- ∵02524562)10()23(22<-=-=-+ ∴231-<102.a b 和ma mb ++ ),,(+∈R m b a 解:(取差)a b -m a m b ++)()(m a a a b m +-= ∵),,(+∈R m b a ∴当a b >时a b >m a m b ++;当a b =时a b =m a m b ++;当a b <时a b <ma mb ++ 3.设0>a 且1≠a ,0>t 比较t a log 21与21log +t a 的大小解:02)1(212≥-=-+t t t ∴t t ≥+21 当1>a 时t a log 21≤21log +t a ;当10<<a 时t a log 21≥21log +t a 四、不等式的性质1.性质1:如果b a >,那么a b <;如果a b <,那么b a >(对称性)证:∵b a > ∴0>-b a 由正数的相反数是负数0)(<--b a 0<-a b a b <2.性质2:如果b a >,c b > 那么c a >(传递性)证:∵b a >,c b > ∴0>-b a ,0>-c b∵两个正数的和仍是正数 ∴+-)(b a 0)(>-c b0>-c a ∴c a >对称性、性质2可以表示为如果b c <且a b <那么a c <补充题:1.若142=+y x ,比较22y x +与201的大小 解:241y x -= 22y x +-201=……=05)15(2≥-y ∴22y x +≥201 2.比较2sin θ与sin2θ的大小(0<θ<2π)略解:2sin θ-sin2θ=2sin θ(1-cos θ)当θ∈(0,π)时2sin θ(1-cos θ)≥0 2sin θ≥sin2θ当θ∈(π,2π)时2sin θ(1-cos θ)<0 2sin θ<sin2θ3.设0>a 且1≠a 比较)1(log 3+a a 与)1(log 2+a a 的大小解:)1()1()1(223-=+-+a a a a当10<<a 时1123+<+a a ∴)1(log 3+a a >)1(log 2+a a当1>a 时1123+>+a a ∴)1(log 3+a a >)1(log 2+a a∴总有)1(log 3+a a >)1(log 2+a a第二教时一、1.性质3:如果b a >,那么c b c a +>+ (加法单调性)反之亦然 证:∵0)()(>-=+-+b a c b c a ∴c b c a +>+从而可得移项法则:b c a b c b b a c b a ->⇒-+>-++⇒>+)()(推论:如果b a >且d c >,那么d b c a +>+ (相加法则)证:d b c a d b c b d c c b c a b a +>+⇒⎭⎬⎫+>+⇒>+>+⇒> 推论:如果b a >且d c <,那么d b c a ->- (相减法则)证:∵d c < ∴d c ->- d b c a d c b a ->-⇒⎩⎨⎧->-> 或证:)()()()(d c b a d b c a ---=---d c b a <> ⇒⎭⎬⎫<-∴>-∴00d c b a 上式>0 ……… 2.性质4:如果b a >且0>c , 那么bc ac >;如果b a >且0<c 那么bc ac < (乘法单调性)证:c b a bc ac )(-=- ∵b a > ∴0>-b a根据同号相乘得正,异号相乘得负,得:0>c 时0)(>-c b a 即:bc ac >0<c 时0)(<-c b a 即:bc ac <推论1 如果0>>b a 且0>>d c ,那么bd ac >(相乘法则)证:bd ac bd bc b d c bc ac c b a >⇒⎭⎬⎫>⇒>>>⇒>>0,0, 推论1’(补充)如果0>>b a 且d c <<0,那么d b c a >(相除法则) 证:∵0>>c d ∴⇒⎪⎭⎪⎬⎫>>>>0011b a d c d b c a > 推论2 如果0>>b a , 那么n n b a > )1(>∈n N n 且3.性质5:如果0>>b a ,那么n n b a > )1(>∈n N n 且证:(反证法)假设n n b a ≤ 则:若ba b a b a b a n n n n=⇒=<⇒<这都与b a >矛盾 ∴n n b a > 五、供选用的例题(或作业)1.已知0>>b a ,0<<d c ,0<e ,求证:db ec a e ->- 证:⇒⎪⎭⎪⎬⎫<-<-⇒>-<-⇒⎭⎬⎫<<>>011000e d b c a d b c a d c b a d b e c a e ->- 2.若R b a ∈,,求不等式ba b a 11,>>同时成立的条件 解:00011<⇒⎪⎭⎪⎬⎫<-⇒>>-=-ab a b b a ab a b b a 3.设R c b a ∈,,,0,0<=++abc c b a 求证0111>++cb a 证:∵0=++c b a ∴222c b a ++0222=+++bc ac ab又∵0≠abc ∴222c b a ++>0 ∴0<++bc ac ab ∵abcca bc ab c b a ++=++111 0<abc ∴0<++bc ac ab ∴0111>++cb a 4.||||,0b a ab >> 比较a 1与b1的大小 解:a 1-b 1aba b -= 当0,0>>b a 时∵||||b a >即b a > 0<-a b 0>ab ∴0<-ab a b ∴a 1<b 1 当0,0<<b a 时∵||||b a >即b a <0>-a b 0>ab ∴0>-ab a b ∴a 1>b 1 5.若0,>b a 求证:a b a b >⇔>1 解:01>-=-aa b a b ∵0>a ∴0>-a b ∴b a < 0>-⇒>a b a b ∵0>a ∴01>-=-ab a a b ∴1>a b6.若0,0<<>>d c b a 求证:db c a ->-ππααsin sin log log 证:∵1sin 0<<α π>1 ∴0log sin <πα又∵0,0>->->>d c b a ∴d b c a ->- ∴db c a -<-11 ∴原式成立第三教时一、定理:如果R b a ∈,,那么ab b a 222≥+(当且仅当b a =时取“=”) 证明:222)(2b a ab b a -=-+⇒⎭⎬⎫>-≠=-=0)(0)(22b a b a b a b a 时,当时,当ab b a 222≥+ 1.指出定理适用范围:R b a ∈,2.强调取“=”的条件b a =二、定理:如果b a ,是正数,那么ab b a ≥+2(当且仅当b a =时取“=”) 证明:∵ab b a 2)()(22≥+ ∴ab b a 2≥+ 即:ab b a ≥+2 当且仅当b a =时 ab b a =+2注意:1.这个定理适用的范围:+∈R a2.语言表述:两个正数的算术平均数不小于它们的几何平均数。

人教版高中数学必修5《基本不等式》教案

人教版高中数学必修5《基本不等式》教案

课题:基本不等式教材:《普通高中课程标准实验教科书数学必修5》3.4一、教学目标:1、探索并了解基本不等式的证明过程,了解这个基本不等式的几何意义,并掌握定理中的不等号“≥”或“≤”取等号的条件是:当且仅当这两个数相等;会用基本不等式解决简单的最大(小)值问题。

2、通过实例探究抽象基本不等式,体会特殊到一般的数学思想方法;3、通过本节的学习,体会数学来源于生活,提高学习数学的兴趣;4、培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。

二、教学重点和难点:重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式2a bab +≤的证明过程; 难点:注意基本不等式2a bab +≤等号成立条件以及应用于解决简单的最大(小)值问题。

三、教学方法:启发、探究式相结合 四、教学工具:多媒体课件五、教学过程:一、问题引入:如图是2002年在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。

你能在这个图案中找出一些相等关系或不等关系吗?这样,三角形的面积的和是2ab ,正方形的面积为22a b +。

由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥二、探究过程:1.问题探究——探究图形中的不等关系。

将图中的“风车”抽象成如图,在正方形ABCD 中有四个全等的直角三角形。

设直角三角形的两条直角边长为a,b 则正方形的边长为22a b +。

探究1:(1)正方形ABCD 的面积S=____ (2)四个直角三角形的面积和S ’=__ (3)S 及S ’有什么样的关系? ADB HFGE《几何画板》课件动画显示,当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。

问题:你能证明这个结论吗? 证明:(作差法) 因为 222)(2b a ab b a -=-+ 当b a ≠时,0)(2>-b a 当b a =时,0)(2=-b a所以,0)(2≥-b a ,即.2)(22ab b a ≥+总结结论1:一般的,如果文字叙述为:两数的平方和不小于积的2倍。

高中高一数学上册《不等式的基本性质》优秀教学案例

高中高一数学上册《不等式的基本性质》优秀教学案例
2.学会使用数轴、不等式的图像等方法直观地表示和解决不等式问题,提高数形结合的解题能力。
3.能够根据具体问题构建不等式模型,并运用所学知识求解,培养将实际问题转化为数学问题的能力。
4.熟练掌握不等式的求解方法,如移项、合并同类项、分解因式等,提高解题技巧。
(二)过程与方法
1.通过小组讨论、合作探究等形式,培养学生主动参与、积极思考的学习习惯,提高团队合作能力。
高中高一数学上册《不等式的基本性质》优秀教学案例
一、案例背景
在我国高中数学教育中,不等式作为一项基础而重要的内容,对于培养学生的逻辑思维和解决问题的能力具有重要意义。本教学案例以高中高一数学上册《不等式的基本性质》为载体,针对当前学生的认知水平,结合教材内容,旨在让学生在理解不等式基本性质的基础上,掌握不等式的求解与应用方法,提高学生的数学素养。
4.注重反思与评价,提高学生自我认知
本案例注重引导学生进行反思与评价,帮助学生总结经验、发现不足,从而提高自我认知。通过组织学生自评、互评和教师评价,全面了解学生的学习情况,及时给予指导和鼓励。这种评价方式关注学生的全面发展,有助于提高他们的自信心和自我调控能力。
5.知识与技能、过程与方法、情感态度与价值观的整合
(五)作业小结
为成教材上的练习题,巩固不等式的性质和求解方法。
2.结合生活中的实际例子,编写一道应用不等式解决的问题,并给出解题过程。
3.写一篇学习心得,总结自己在学习不等式过程中的收获和困惑。
五、案例亮点
1.生活情境的融入
本教学案例的一大亮点是将不等式的概念和性质与学生的生活实际紧密结合。通过设计丰富多样的生活情境,如购物优惠、比赛评分等,让学生在实际问题中感知不等式的存在和应用,提高数学知识的实用性和趣味性。这种贴近生活的教学方式有助于激发学生的学习兴趣,培养他们学以致用的意识。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全方位教学辅导教案
例1:(2)1
2,33
y x x x =+>-。

变式:已知5
4x <
,求函数14245
y x x =-+-的最大值 。

技巧二:凑系数
例1.当
时,求(82)y x x =-的最大值。

解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此
题为两个式子积的形式,但其和不是定值。

注意到2(82)8x x +-=为定值,故只需将
(82)y x x =-凑上一个系数即可。

评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。

变式:1、设2
3
0<
<x ,求函数)23(4x x y -=的最大值。

并求此时x 的值 2.已知01x <<,求函数(1)y x x =-的最大值.;
3.2
03
x <<,求函数(23)y x x =-的最大值.
技巧三:分离
例3.求2710
(1)1
x x y x x ++=
>-+的值域。

技巧四:换元
解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。


,即t=
时,4
259y t t
≥⨯
+=(当t=2即x =1时取“=”号)。

评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。

即化为()(0,0)()
A
y mg x B A B g x =++>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。

变式
(1)231
,(0)x x y x x
++=
> 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函
数()a
f x x x
=+的单调性。

例:求函数22
5
4
x y x +=+的值域。

解:令24(2)x t t +=≥,则2
254
x y x +=+221
1
4(2)4
x t t t x =++
=+≥+
因10,1t t t >⋅=,但1
t t
=解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调
性。

因为1
y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,
故52
y ≥。

TA-65。

相关文档
最新文档