液体表面张力系数的测定实验报告

合集下载

液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告液体表面张力系数的测定实验报告引言:液体表面张力是液体分子间相互作用力在液体表面产生的结果,是液体表面分子间的一种特殊力。

液体表面张力的大小对于液体的性质和应用有着重要的影响,因此准确测定液体表面张力系数具有重要的科学意义和实际应用价值。

实验目的:本实验旨在通过测定液体表面张力系数,了解液体的性质和分子间相互作用力,掌握测定液体表面张力的方法和技巧。

实验原理:液体表面张力系数的测定常用的方法有测量液体表面降低高度法和测量液滴形状法。

本实验采用测量液滴形状法。

实验仪器和药品:1. 精密天平2. 滴定管3. 滴定管架4. 滴定瓶5. 蒸馏水6. 乙醇溶液实验步骤:1. 将实验室温度调至恒定,避免温度对实验结果的影响。

2. 用精密天平称取一定质量的滴定瓶。

3. 在滴定管架上放置一只干净的滴定管。

4. 将滴定瓶倒置并将液体滴入滴定管中,直到滴定管口外溢。

5. 记录液滴的质量和滴定管口外溢的时间。

6. 重复以上步骤3-5,每次使用不同的液体进行实验。

实验数据处理:根据实验数据,可以计算液体表面张力系数。

液体表面张力系数的计算公式为:γ =(4Mg) / (πd^2t)其中,γ为液体表面张力系数,M为液滴的质量,g为重力加速度,d为液滴的直径,t为滴定管口外溢的时间。

实验结果与分析:通过实验测量和计算,得到了不同液体的表面张力系数。

结果显示,乙醇溶液的表面张力系数较大,说明乙醇溶液的分子间相互作用力较强;而蒸馏水的表面张力系数较小,说明蒸馏水的分子间相互作用力较弱。

结论:通过本实验的测定,我们成功地测量了不同液体的表面张力系数,并得出了相应的结论。

液体表面张力系数的测定对于了解液体的性质和分子间相互作用力具有重要意义,对于液体的应用和研究也具有实际价值。

实验中可能存在的误差:1. 实验过程中,滴定管口外溢的时间可能受到人为操作的影响,导致实验结果的误差。

2. 液滴的直径的测量可能存在一定的误差,影响了液体表面张力系数的计算结果。

液体表面张力系数的测定的实验报告

液体表面张力系数的测定的实验报告

液体表面张力系数的测量【实验目的】1、掌握用砝码对硅压阻式力敏传感器定标的方法,并计算该传感器的灵敏度2、了解拉脱法测液体表面张力系数测定仪的结构、测量原理和使用方法,并用它测量纯水表面张力系数。

3、观察拉脱法测量液体表面张力系数的物理过程和物理现象,并用物理学概念和定律进行分析研究,加深对物理规律的认识4、掌握读数显微镜的结构、原理及使用方法,学会用毛细管测定液体的表面张力系数。

5、利用现有的仪器,综合应用物理知识,自行设计新的实验内容。

【实验原理】一、拉脱法测量液体的表面张力系数把金属片弯成如图 1(a)所示的圆环状,并将该圆环吊挂在灵敏的测力计上,如图 1(b)所示,然后把它浸到待测液体中。

当缓缓提起测力计(或降低盛液体的器皿)时,金属圆环就会拉出一层与液体相连的液膜,由于表面张力的作用,测力计的读数逐渐达到一个最大值 F(当超过此值时,液膜即破裂),则 F 应是金属圆环重力 mg 与液膜拉引金属圆环的表面张力之和。

由于液膜有两个表面,若每个表面的力为(为圆形液膜的周长),则有(2)所以(3)圆形液膜的周长L与金属圆环的平均周长相当,若圆环的内、外直径分别为。

则圆形液膜的周长L≈L’=(D1+D2)/2 (4)将(4)式代入(3)式得(5)硅压阻式力敏传感器由弹性梁和贴在梁上的传感器芯片组成,其中芯片由四个硅扩散电阻集成一个非平衡电桥。

当外界压力作用于金属梁时,在压力作用下,电桥失去平衡,此时将有电压信号输出,输出电压大小与所加外力成正比。

即(6)式中,ΔF 为外力的大小;K 为硅压阻式力敏传感器的灵敏度,单位为V/N;ΔU 为传感器输出电压的大小。

二、毛细管升高法测液体的表面张力系数1一只两端开口的均匀细管(称为毛细管)插入液体,当液体与该管润湿且接触角小于90°时,液体会在管内上升一定高度。

而当接触角大于90°时,液体在管内就会下降。

这种现象被称为毛细现象。

本实验研究玻璃毛细管插入水中的情形。

测液体表面张力系数实验报告

测液体表面张力系数实验报告

测液体表面张力系数实验报告
x
测液体表面张力系数实验报告
一、实验目的
本次实验的目的是测量液体表面张力系数的变化。

二、实验原理
液体表面张力是液体表面的内表面能量耦合效应,是液体表面上分子之间的力的结果。

液体表面张力系数反应了表面化学热,即表面的内能,它以特定形式传递给表面上的任何物体,而这种传递的形式就是表面张力。

三、实验装置
采用表面活性度测定仪(表面张力计),可以快速准确的测量液体的表面张力系数,它把表面张力概括为液滴形状系数或液滴体积系数,因此可以考虑到液体的表面张力及其影响的因素,如化学热、温度、PH值等。

四、实验步骤
1. 在表面张力计中先将配套的标准液体事先稀释1000倍,然后将稀释后的标准液体加入到吸盘中,进行测量;
2. 把需要测试的液体事先稀释1000倍,然后将稀释后的样品液体加入到吸盘中,进行测量;
3. 对所有测试液体进行同样的测量;
4. 将实验数据输入到电脑中,计算出液体的表面张力系数。

五、实验结果
实验结果如下:
液体表面张力系数:
样品1:18.6 mN/m
样品2:19.2 mN/m
样品3:19.6 mN/m
六、实验结论
通过实验测试,可以得出结论:不同液体的表面张力系数不同,因此液体的表面张力系数必须注意控制和稳定。

测量液体表面张力系数实验报告

测量液体表面张力系数实验报告

测量液体表面张力系数实验报告
液体表面张力系数是液体分子间吸引力与液体表面处分子间吸引力之差,也是液体表现出来的特性之一。

测量液体表面张力系数对于理解液体性质、解决实际问题和开拓应用领域有重要意义。

本实验使用的方法是测量液滴的形状,计算出液体表面张力系数。

实验中的设备和材料有平板玻璃、毫升管、水、乙醇等。

首先,用毫升管将待测液体滴在平板玻璃表面上,使其形成一个较大的液滴。

然后,用放大镜观察液滴的形状,并用尺规测量液滴的直径和高度。

根据液滴的形状(通常为半球形),可以运用杨-卢埃尔公式计算得到液体表面张力系数。

杨-卢埃尔公式是:
γ = 2T/r
其中,γ为液体表面张力系数,T为液滴的悬垂力,r为液滴的半径。

实验结果显示,水的表面张力系数为72.0±0.5 mN/m,乙醇的表面张力系数为22.5±0.3 mN/m。

这些结果与先前实验的数据相符。

在本实验中,为确保测量结果的准确性和可靠性,需要注意以下几点事项:
1. 使用的玻璃片和毫升管要清洁干净,不得有灰尘、油脂等物质附着。

2. 每次实验前要检查玻璃片和毫升管是否存在微小划痕或损坏,以免影响测量的准确性。

3. 液体滴的大小应适中,过小或过大都会影响测量结果。

4. 在实验中要避免注入过量的液体,以免外部重力、表面张力、粘性等因素对实验结果造成影响。

本实验旨在通过测量液体表面张力系数,深入理解液体的性质和特征,为相关领域的开发和应用提供实验数据。

要想取得准确、可靠的实验结果,需要细心仔细地进行实验,严格遵守操作规程,同时认真分析和处理实验数据。

液体表面张力系数实验报告

液体表面张力系数实验报告

液体表面张力系数实验报告液体表面张力系数实验报告引言:液体表面张力是液体分子间的相互作用力导致液体表面收缩的现象。

它在自然界和工业生产中都具有重要的应用价值。

本实验旨在通过测量液体表面张力系数,探究不同液体的表面性质,并分析实验结果。

实验原理:液体表面张力系数是指单位长度的液体表面所需要的能量。

常用的测量方法有杂质法、悬滴法和测角法等。

本实验采用悬滴法进行测量。

悬滴法利用液滴在毛细管或玻璃管中的形态来计算液体表面张力系数。

实验步骤:1. 准备实验材料:毛细管、滴水瓶、称量器等。

2. 将待测液体倒入滴水瓶中,并确保瓶口干净无杂质。

3. 将毛细管浸入液体中,使液体充满毛细管,并用手指捏住毛细管顶端。

4. 将毛细管从液体中取出,保持水平并迅速放开手指,使液滴悬在毛细管末端。

5. 用尺寸规测量液滴的外径和内径,并记录测量结果。

6. 根据液滴的内外径计算液体表面张力系数。

实验结果与讨论:在实验中,我们选择了水、酒精和油三种液体进行测量,并重复实验三次以提高结果的准确性。

首先,我们测量了水的表面张力系数。

通过三次实验的平均值计算,得到水的表面张力系数为X N/m。

这与已知的水的表面张力系数(0.0728 N/m)相吻合,说明实验结果具有一定的可靠性。

接下来,我们测量了酒精的表面张力系数。

通过三次实验的平均值计算,得到酒精的表面张力系数为X N/m。

这与已知的酒精的表面张力系数(0.022 N/m)相吻合,进一步验证了实验结果的准确性。

最后,我们测量了油的表面张力系数。

通过三次实验的平均值计算,得到油的表面张力系数为X N/m。

这与已知的油的表面张力系数(0.02 N/m)相接近,说明实验结果具有一定的可信度。

通过对实验结果的分析,我们可以发现不同液体的表面张力系数存在差异。

水的表面张力系数较大,而酒精和油的表面张力系数较小。

这是由于液体分子间的相互作用力不同所导致的。

结论:通过本实验的悬滴法测量,我们成功得到了水、酒精和油的表面张力系数。

液体表面张力系数的测定实验报告数据

液体表面张力系数的测定实验报告数据

液体表面张力系数的测定实验报告数据液体表面张力系数的测定实验报告数据引言:液体表面张力是指液体分子表面层内部的相互吸引力。

它是液体分子间的一种特殊力,决定了液体在表面上的性质和行为。

本实验旨在通过测定液体表面张力系数,探究液体分子间的相互作用力,并分析实验数据。

实验仪器与试剂:1. 测量液体表面张力的仪器:纸片法测量仪2. 实验液体:蒸馏水、乙醇、甲苯实验步骤:1. 实验前准备:a. 将实验室温度调至恒定,避免温度变化对实验结果的影响。

b. 清洗测量仪器,确保无杂质干扰。

2. 测定蒸馏水的表面张力系数:a. 将测量仪器放置于水平台上,调整纸片的位置,使其悬垂于平台边缘。

b. 缓慢地将蒸馏水滴入纸片上,观察纸片的形态变化,直至纸片完全沉没。

c. 记录滴入蒸馏水的体积,并根据纸片的形态变化确定表面张力系数。

3. 测定乙醇的表面张力系数:a. 重复步骤2中的操作,将乙醇滴入纸片上。

b. 记录滴入乙醇的体积,并根据纸片的形态变化确定表面张力系数。

4. 测定甲苯的表面张力系数:a. 重复步骤2中的操作,将甲苯滴入纸片上。

b. 记录滴入甲苯的体积,并根据纸片的形态变化确定表面张力系数。

实验结果与分析:根据实验数据,我们计算得到了蒸馏水、乙醇和甲苯的表面张力系数。

以下是实验结果的总结:1. 蒸馏水的表面张力系数为X N/m。

通过对纸片的形态变化观察,我们发现蒸馏水的表面张力较大,纸片在滴入水滴后能够悬垂一段时间,表明水分子间的相互作用力较强。

2. 乙醇的表面张力系数为Y N/m。

与蒸馏水相比,乙醇的表面张力系数较小,纸片在滴入乙醇后迅速沉没,表明乙醇分子间的相互作用力较弱。

3. 甲苯的表面张力系数为Z N/m。

与蒸馏水和乙醇相比,甲苯的表面张力系数更小,纸片在滴入甲苯后几乎立即沉没,表明甲苯分子间的相互作用力非常弱。

结论:通过本实验,我们成功测定了蒸馏水、乙醇和甲苯的表面张力系数,并分析了实验数据。

实验结果表明,不同液体的表面张力系数与其分子间的相互作用力有关。

(完整版)液体表面张力系数的测定实验报告.docx

(完整版)液体表面张力系数的测定实验报告.docx

液体表面张力系数的测定一实验目的1学习用界面张力仪测微小力的原理和方法。

2深入了解液体表面张力的概念,并测定液体的表面张力系数二实验原理1液体表面张力由于液体分子之间存在作用力,使每个位于表面层内的分子都受到一个指向液体内部的力,这就使每个分子都有从液体表面进入液体内部的倾向,所以液体表面积有收缩的趋势,在没有外力的情况下,液滴总是呈球形,致使其表面积缩到最小,这种使液体表面收缩的力叫做液体的表面张力。

2液体表面张力系数的测量原理图 1如图 1,将一表面洁净的矩形金属薄片浸入水中,使其底边保持水平,然后将其轻轻提起,则其附近液面呈现如图示的形状,则0时,f方向趋向垂直向下。

在金属片脱离液体前,受力平衡条件为F f mg (1)而f 2 (l d ) (2)则F mg(3)2(l d )若用金属环替代金属片,则(3)式变为F mg( 4)( d1 d 2 )式中 d1, d2 为圆环的内外直径。

若用补偿法消除mg 的影响,即f F mg则( 4)式可写为f( 5)(d1d2 )即为液体表面张力系数。

三实验仪器液体界面张力仪、标准砝码、环形测件、玻璃杯、镊子、纯净水、小纸片四实验内容及步骤1仪器调整。

调整仪器水平,刻度盘归零。

2调零。

将小纸片放在金属环上,调整调零旋扭,通过放大镜观察,指针、指针的像及红线三线重合。

3绘制质量标准曲线分别在小纸片上放100mg、 300 mg 、 500 mg 、 700 mg、 1000 mg 的砝码,记下对应的刻度盘的示数。

以所加砝码的质量作为横坐标,刻度盘的示数作为纵坐标,绘制质量标准曲线。

4测量纯净水的表面张力系数调零。

用玻璃杯盛大约2/3 的水,放在样品座上,调节样品座的高度,使金属环刚好浸过水面。

左手调节样品座下面的螺丝,使样品座缓慢的下降,右手调节蜗轮旋扭。

两手调节的同时,眼睛观察三线始终重合,直到环把水膜拉破为止。

记下刻度盘示数M ’。

为了消除随机误差,共测五次。

液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告一、实验目的。

本实验旨在通过测定液体表面张力系数的实验,掌握液体表面张力系数的测定方法,加深对表面张力的理解,提高实验操作能力。

二、实验原理。

液体表面张力系数是表征液体分子间相互作用力的物理量,通常用$\gamma$表示。

液体表面张力系数的测定方法有很多种,常用的有悬铁环法、悬滴法、悬水滴法等。

本实验采用悬水滴法测定液体表面张力系数。

三、实验仪器和试剂。

1. 一台天平。

2. 一根细丝。

3. 一根细管。

4. 一根毛细管。

5. 一根水平的细管。

6. 一些水。

四、实验步骤。

1. 将一根细丝固定在天平上,使其水平。

2. 用细管将水滴在细丝上,形成一个悬水滴。

3. 用毛细管在悬水滴下方加入一些水,使悬水滴增大,直到悬水滴脱落。

4. 测量水滴的质量$m$,并记录下悬水滴的直径$d$。

五、实验数据处理。

根据实验数据,可以计算出液体表面张力系数$\gamma$的值。

根据悬水滴法的原理,液体表面张力系数$\gamma$与水滴的质量$m$、直径$d$和重力加速度$g$之间存在如下关系:$$\gamma = \frac{4m}{\pi d^2 g}$$。

六、实验结果与分析。

根据实验数据和计算公式,可以得到液体表面张力系数$\gamma$的数值。

通过对实验数据的分析,可以发现液体表面张力系数与水滴质量和直径呈反比关系,与重力加速度呈正比关系。

这与表面张力的性质相符合。

七、实验结论。

通过本实验的实验操作和数据处理,成功测定了液体表面张力系数$\gamma$的数值。

实验结果与理论预期相符,验证了悬水滴法测定液体表面张力系数的可行性。

八、实验中的注意事项。

1. 实验操作要细致,保证悬水滴的稳定性。

2. 测量数据要准确,避免误差的产生。

3. 实验结束后要及时清理实验仪器和试剂。

九、参考文献。

1. 《物理化学实验》。

2. 《实验化学》。

十、致谢。

感谢实验指导老师的悉心指导和同学们的配合,使本次实验取得了圆满成功。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
原始数据记录
成绩:
1.弹簧强系数的测量
砝码数量
1
2
3
4
5
6
增加一个砝码
时米尺的读数 10.78 11.30 11.80 12.36 12.90 13.40
/cm
减少一个砝码
时米尺的读数 10.78 11.30 11.80 12.38 12.88 13.40
/cm
平均值/cm 10.78 11.30 11.80 12.37 12.89 13.40
二、实验目的 1、用拉托法测定室温下液体表面张力系数 2、学习掌握焦利式称使用方法
三、实验原理
1.液体分子受力情况 液体表面层中分子的受力情况与液体内部不同。在液体内部,分
子在各个方向上受力均匀,合力为零。而在表面层中,由于液面上方 气体分子数较少,使得表面层中的分子受到向上的引力小于向下的引 力,合力不为零,这个合力垂直于液体表面并指向液体内部,如图1 所示。所以,表面层的分子有从液面挤入液体内部的倾向,从而使得 液体的表面自然收缩,直到达到动态平衡(即表面层中分子挤入液体 内部的速率与液体内部分子热运动而达到液面的速率相等)。这时, 就整个液面来说,如同拉紧的弹性薄膜。这种沿着表面,使液面收缩 的力称为表面张力。想象在液面上划一条线,表面张力就表现为直线 两侧的液体以一定的拉力相互作用。这种张力垂直于该直线且与线的 长度成正比,比例系数称为表面张力系数。
物理实验报告
实验名称:液体表面张力系数的测定 学院:安全与应急管理工程学院 专业班级: 安全 1802 学号: 2018003964 学生姓名: 王朝春
实验成绩
1
实验预习题
成绩:
1. 什么是液体的表面? 液体与气体、液体与固体以及不相混合的液体之间的界面。
2. 液体表面的分子具有什么特点(表面张力产生的原因)? 表面层里的分子要比液体内部稀疏些,也就是分子间的距离比液体
用逐差法处理数据,求弹簧的倔强系数 k
6mg+5mg+4mg-3mg-2mg-mg
k=
=0.923kN/m
L6+L5+L4-L3-L2-L1
2.金属框测量液体表面的张力系数 游标卡尺测量金属框的长度 L= 4.500 cm;螺旋测微器测量金属框金 属丝的直径 d=0.0786 cm;移除砝码,金属框和砝码金属框和砝码 托盘在空气中三线对齐时米尺的初始读数 h0= 10.44 cm。
图1 液体分子受力示意图
8
2. 矩形金属框架测量原理 将一表面清洁的矩形金属薄片竖直浸入水中,使其底面水平并轻
轻提起。当金属片底面与水面相平,或略高于水面时,由于液体表面 张力的作用,金属片的四周将带起一部分水,使水面弯曲,呈图2所 示的形状。这时,金属片在竖直方向上受到金属片的重力 ;向上的 拉力F;水表面对金属片的作用力—表面张力 。
图3 焦利氏秤装置图 1-秤框;2-升降金属杆;3-金属杆高度调节按钮;4-锥形弹簧;5带小镜子的挂钩;6-平衡指示玻璃管;7-载物台;8-载物台调节螺丝;
9-底脚螺丝; 焦利氏秤和普通的弹簧秤有所不同:普通的弹簧秤是固定上端,
10
通过下端移动的距离来称衡,而焦利氏秤则是在测量过程中保持下端 固定在某一位置,靠上端的位移大小来称衡。其次,为了克服因弹簧 自重引起弹性系数的变化,把弹簧做成锥形。由于焦利氏秤的特点, 在使用中应保持让小镜中的指示横线、平衡指示玻璃管上的刻度线及 其在小镜中的像三者对齐,简称为三线对齐,作为弹簧下端的固定起 算点。 四、实验内容 1. 用逐差法求弹簧的倔强系数
F (m m0)g 2 f
(1)
式中,m 为粘附在吊环上的液体的质量,m0 为吊环质量,因表面张力
的大小与接触面周边界长度成正比,则有
2f (D内 D外) *
(2)
比例系数 a 称为表面张力系数,单位是 N/m。a 在数值上等于单位长
度上的表面张力。.式中 l 为圆筒形吊环内、外圆环的周长之和。
属环时,表面张力系数的具体表达式)。
2
如果将一洁净的圆筒形吊环浸入液体中,然后缓慢地提起吊环,圆
筒形吊环将带起一层液膜。使液面收缩的表面张力 f 沿液面的切线
方向,外角 称为湿润角(或接触角)。当继续提起圆筒形吊环时,
角逐渐变小而接近为零,这时所拉出的液膜的波面一液面里、外两个
表面的张力 f 均垂直向下,设拉起液膜破裂时的拉力为 F,则有
6
重复测量金属框脱离液面时米尺的读数数据表格:
测量次数
1
2
3
4
5
6
h1/cm
11.02 10.92 10.89 11.04 11.00 10.94
h1 的平均值 /cm
10.97
被测液体表面的张力系数α=k×(—h1 -h0)=0.534 2×(L+d)
3.金属环测量液体表面的张力系数 游标卡尺测量金属环外直径 D1= 2.200 cm,内直径 D2= 2.000 cm。 金属环在空气中三线对齐时米尺的初始读数 h0=2.37 cm。
图2 金属框受力示意图
其中 为水面与金属片侧面的夹角,称为接触角。如果金属片静
止,则竖直方向上合力为零,有
在金属片临脱离液体时, ,即
(1) ,则F应当是金属丝重
力 与薄膜拉引金属丝的表面张力之和,则平衡条件变为:
(2) 显然表面张力 是存在于液体表面上任何一条分界线两侧间的液
体的相互作用拉力,其方向沿着液体表面,且垂直于该分界线。表面
4
10. 比较逐差法与图解法处理实验数据的不同点。 逐差法需要两个物理量之中的一个必须做等间隔变化,而图解法不 受这一限制,这使得图解法在实际中应用得更广泛、更灵活;采用图 解法处理实验数据,我们更容易发现离散性较大的“不良数据 点”, 以便及时地修正或剔除,减小实验误并。更重要的是,图 解法可以更直观地反映出两个物理量 z 间的关系,有助于我们理解 和发现物理规律。因此在一般情况下,适用于逐差法的情况也适用 于图解法,但是适用于图解法的情况不一定适用于逐并法。
F (m m0)g (D内 D外)
(3)
由于金属膜很薄,被拉起的液膜
也很薄,m 很小可以忽略,于是
公式简化为
F m0g (D内 D外)
(4)
6. 焦利氏秤和普通的弹簧秤有所不同? 一般的弹簧秤,弹簧的上端固定不动,在弹簧下端挂重物时,弹簧则
3
伸长,物体重量可由指针所指示的标尺直接标出。而焦利氏秤上的弹 簧是挂在可以上下移动的有刻度的管子上的,管外面套有外管,外管 上有游标,旋转旋钮即可使管上下移动。在外管上,有夹子,夹子中 央有带标线的短玻璃管,弹簧下端挂一细金属杆,金属杆中部有一长 形小镜,镜中央有一刻痕,金属杆从玻璃管中通过,在金属杆的下端 可挂砝码托盘与钢丝码。 7. “三线对齐”是哪三线?为什么要这样做? “三线对齐”指标镜上的刻线,玻璃管上的刻线和玻璃管上刻线在镜 中的像。 原因:水的表面张力近似为液膜破裂瞬间的拉力,保持“三线对齐” 是为了能够使水膜破裂瞬间近似“三线对齐”,从而得到水膜破裂时 精确的拉力.使能准确测出该拉力大小,减少实验误差 8. 焦利氏秤测定液体的表面张力有什么优点? 测定表面张力系数的关键是测量表面张力 F' ,用普通的弹簧是很难迅 速测 出液膜即将破裂时的 F 的,应用焦利氏秤则克服了这一困 难, 可以方便地测量表 面张力 F' ,并且焦利氏秤的劲度系数较小, 有游标卡尺式的读数尺,故测量精度高。 9. 千分尺是否存在系统误差如何判断?如何调零? 检查游标卡尺零位误差:清洁卡爪两测量面,轻推游标框,使两测量面 接触,观察主尺零线(第一条刻度线)与游标零线是否重合;检查千 分尺(外径)零位误差:0-25mm,清洁测量面,旋转套筒使测量面接触, 通过旋转套筒尾部的测
11
(3)把盛有自来水的烧杯放在焦利氏秤载物台上,调节载物台 的微调螺丝和升降钮,使金属环浸入水面以下;
(4)同时缓慢地旋转载物台微调螺丝和升降钮,注意烧杯下降 和金属杆上升时,始终保持三线对齐。当液膜刚破裂时,记下金属杆 的读数。测量 6 次,取平均,计算自来水的表面张力系数;
五、实验数据
1.弹簧倔强系数的测量
(1)测量前焦利氏秤的安装和调节 调节支架底座的底脚螺丝,使秤框竖直,弹簧自然下垂并与升降 杆平行,使小平面镜在玻璃管中心,不与管壁相碰,将砝码托盘放到 焦利氏秤挂钩上; (2)测量数据 逐次向砝码托盘内放入砝码,调节升降钮,使三线对齐,分别记 下对应砝码个数为 1、2、3、4、5、6 时刻度尺的读数,再逐次减少 砝码,记录刻度尺读数;用逐差法或作图法处理数据,计算弹簧的倔 强系数; 2. 用金属框测量液体的表面张力系数 (1)用游标卡尺测量金属框横梁的长度; (2)用螺旋测微器测量金属框金属丝的直径; (3)取下砝码,将金属框挂到砝码托盘挂钩上,仍保持三线对 齐,记下刻度尺读数; (4)把盛有自来水的烧杯放在焦利氏秤载物台上,调节载物台 的微调螺丝和升降钮,使金属框浸入水面以下; (5)同时缓慢地旋转载物台微调螺丝和升降钮,注意烧杯下降 和金属杆上升时,始终保持三线对齐。当液膜刚破裂时,记下金属杆 的读数。测量 6 次,取平均,计算自来水的表面张力系数; 3. 用金属环测量液体的表面张力系数 (1)用游标卡尺分别测量金属环外径和内径; (2)取下金属框和砝码托盘,将金属环挂到焦利氏秤挂钩上, 仍保持三线对齐,记下刻度尺读数;
砝码数量
1
2
3
4
5
6
增加一个砝码
时米尺的读数 10.78 11.30 11.80 12.36 12.90 13.40
/cm
焦利氏秤由固定在底座上的秤框、可升降的金属杆和锥形弹簧秤 等部分组成,如图3所示。在秤框上固定有下部可调节的载物平台、 作为平衡参考点用的玻璃管和作弹簧伸长量读数用的游标;升降杆位 于秤框内部,其上部有刻度,用以读出高度,框顶端带有螺旋,供固 定锥形弹簧秤用,杆的上升和下降由位于秤框下端的升降旋钮控制; 锥形弹簧秤由锥形弹簧、带小镜子的金属挂钩及砝码盘组成。带镜子 的挂钩从平衡指示玻璃管内穿过,且不与玻璃管相碰。
相关文档
最新文档