小学鸡兔同笼问题的几种解题方法

合集下载

鸡兔同笼解题方法

鸡兔同笼解题方法

一.笼子里有若干只鸡和兔,从上面数,有8个头,从下面数,有26只脚。

鸡和兔各有几只?解题方法:1.猜测,列表法2.假设法3.解方程法1.列表法2.假设法假设笼子里全是鸡,则共有2×8=16(只)脚,比实际少了26-16=10(只)脚,因为我们把兔子都看成了鸡,每只兔子少算了2只脚,共少了10只脚,说明兔子应该有10÷2=5(只)同理:假设笼子里的全是兔子,则一共有4×8=32(只)脚,比实际多了32-26=6(只)脚。

把鸡的脚当兔子的脚计算时,每只兔子比鸡多算了2只脚,所以鸡有6÷2=3(只)3.解方程法兔的脚数+鸡的脚数=鸡兔总脚数=26(只)设鸡有x 只,那么兔就有8-x 只,就有方程:2x+4(8-x)=26;解出x 是鸡的只数,再求兔的只数。

鸡8 7 6 5 4 3 2 1 0兔 0 1 2 3 4 5 6 7 8 脚 16 1820 22 24 26 28 30 32鸡兔同笼问题“鸡兔同笼,共有45个头,146只脚。

笼中鸡兔各有多少只?”这就是著名的“鸡兔同笼问题”。

鸡免同笼问题的特点是:题目中有两个或两个以上未知数,求出各未知数的单量。

解题时,首先要根据题目中所给出的两个未知数的关系,用一个未知数代替另一个未知数,从而将两个未知数转换成一个未知数,从而解出答案。

例题与方法例1.鸡兔同笼,共有45个头,146只脚,笼中鸡兔各有多少只?例2.一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。

这个集邮爱好者买这两种邮票各多少张?例3.学校买来3个排球和2个足球,共花去111元。

每个足球比每个排球贵3元。

每个排球的每个足球各多少元?例4.买2支钢笔的价钱等于买8支圆珠笔的价钱。

如果买3支钢笔的5支圆珠笔共花了17元,问两种笑每支各多少元?练习与思考1.一个饲养组养鸡、兔共80只,共有脚220只。

那么,饲养组养鸡和兔各多少只?2.鸡兔共100只,鸡的脚比兔的脚一共少70只。

鸡兔同笼的13种解法

鸡兔同笼的13种解法

例、现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿按照上面的表格,我们可以看出,鸡为9只,兔子为5只.我们在列表的时刻不要按次序列,不然做题的速度会很慢,比方说列完鸡为0只,兔子为14只,创造腿的数目56条,和实际38条相差较大,那么下一个你可以跳过鸡的数目为2只这种情况,直接列鸡的数目为3只,这样做速度会快一些!(方法二:最快乐的方法“画图法”)阐发:画图法也是低年级小同伙很好吸收的一个方法,呵呵,画图还可以让数学变得形象化,并且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好.这样就有14×2=28条,差38-28=10条,而每一只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡.(方法三:最酷的方法“金鸡自力法”)阐发:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是本来的一半,即19只脚.鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,是以从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只.(方法四:最逗的方法“吹哨法”)阐发:假设及和兔吸收过特种部队演习,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着.这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只.(方法五:最经常运用的方法“假设法”)阐发:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只.(方法六:最经常运用的方法“假设法”)阐发:假设全部是兔子,则有14×4=56条腿,比实际多56-38=18只,一只兔子变成一只鸡腿削减2条,18÷2=9只,所以需要9只鸡9兔子变成鸡,即鸡为9只,兔子为14-9=5只.(方法七:最牛的方法“特异成师法”)阐发:鸡有2条腿,比兔子少2条腿,这不公平,但是鸡有2只翅膀,兔子却没有.假设鸡有特级成效,把两只翅膀变成2条腿,那么鸡也有4条腿,此时腿的总数是14×4=56条,但实际上只有38条,为什么呢?因为我们把鸡的翅膀当作腿来算,所以鸡的翅膀有56-38=18只,鸡有18÷2=9只,兔就是14-9=5只.(方法八:最牛的方法“特异成师法”)阐发:假设每只鸡兔都具有“特异成效”,鸡飞起来,兔立起来,这时立在地上的脚全是兔的,它的脚数就是38-14×2=10条,是以兔的只数有10÷2=5只,进而知道鸡有14-5=9只.鸡兔具有“特异成效”,这个方法想得太棒了!呵呵,小同伙也要阐扬本身的想象喔!(方法九:最牛的方法“特异成师法”)假设孙悟空变成兔子,说“变”,每只兔子又长出一个头来,然后对妖精说“将它劈开”,变成“一头两脚”的两只“半兔”,半兔与鸡都是两只脚,因而共有28÷2=19只鸡兔,19-14=5只,这就是兔子的数目,当然鸡就有14-5=9只.呵呵,小同伙把兔“劈开”成“半兔”,想得奇吧!(方法十:最陈旧的方法“砍足法”)阐发:假如把每只砍掉落1只脚、每只兔砍掉落3只脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由38只变成了19只;假如笼子里有一只兔子,则脚的总数就比头的总数多1.是以,脚的总数19与总头数14的差,就是兔子的只数,即19-14。

鸡兔同笼的13种解法(教育材料)

鸡兔同笼的13种解法(教育材料)

根据上面的表格,我们可以看出,鸡为9只,兔子为5只。

我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些!(方法二:最快乐的方法“画图法”)分析:画图法也是低年级小朋友很好接受的一个方法,呵呵,画图还可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。

这样就有14×2=28条,差38-28=10条,而每一只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡。

(方法三:最酷的方法“金鸡独立法”)分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。

鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。

(方法四:最逗的方法“吹哨法”)分析:假设及和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。

这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。

(方法五:最常用的方法“假设法”)分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。

(方法六:最常用的方法“假设法”)分析:假设全部是兔子,则有14×4=56条腿,比实际多56-38=18只,一只兔子变成一只鸡腿减少2条,18÷2=9只,所以需要9只鸡9兔子变成鸡,即鸡为9只,兔子为14-9=5只。

“鸡兔同笼”问题最常用的四种解题方法 练习题(含答案和解析)

“鸡兔同笼”问题最常用的四种解题方法 练习题(含答案和解析)

“鸡兔同笼”问题最常用的四种解题方法练习题(含答案和解析)鸡兔同笼问题早在1500年前,《孙子算经》中就记载了,小学奥数及小升初考试中经常出现,甚至公务员考试中也会出现。

现面我们就鸡兔同笼相关解法作一简单介绍。

题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头15个,腿40条,球鸡和兔子各有多少只?(请用尽量多的方法解答)1、金鸡独立法分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即20只脚。

鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从20里减去头数15,剩下来的就是兔的头数20-15=5只,鸡有20-5=15只。

2、吹哨法分析:假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有40-15=15只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。

这时还有25-15=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有15-5=10只。

3、假设法(1)分析:假设全部是鸡,则有15×2=30条腿,比实际少40-30=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为15-5=10只。

(2)分析:假设全部是兔子,则有15×4=60条腿,比实际多60-40=20只,一只兔子变成一只鸡腿减少2条,20÷2=10只,所以需要10只兔子变成鸡,即鸡为10只,兔子为15-10=5只。

4、方程法(1)分析:设鸡的数量为x只,则兔子有(15-x)只,有2x+4(15-x)=40,解出x=10,所以有鸡10只,兔子15-10=5只。

(2)分析:设兔子的数量为x只,则鸡有(15-x)只,有4x+2(15-x)=40.解得x=5,所以兔子有5只,鸡有15-5=10只。

试题答案:第1题:正确答案:B 答案解析:第2题:正确答案:C 答案解析:第3题:正确答案:D 答案解析:第4题:正确答案:D 答案解析:第5题:正确答案:A 答案解析:第6题:正确答案:C 答案解析:。

小学奥数“鸡兔同笼”例题13种讲解方法

小学奥数“鸡兔同笼”例题13种讲解方法

鸡兔同笼问题?看到这个题目,大概有宝宝会不屑地说:“小学生都会!”可是今天的问题,不是要解出答案,而是你会用多少种解法解出答案?不要小看这个“简单”的问题,早在1500年前,《孙子算经》中就记载了这个有趣的问题.WOW,还是个古董呢~好啦,废话少说,请听题……题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,球鸡和兔子各有多少只?(请用尽量多的方法解答)『方法一:人见人爱的列表法』如果二年级小朋友做这道题,可以用列表法!直观、易理解,还不容易出错~好啦,我们来看一下!鸡 0 3 5 79...兔1411 9 7 5...腿5650464238...根据上面的表格,我们可以看出,鸡为9只,兔子为5只.我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些哦!分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚.鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只.『方法四:最逗的吹哨法』分析:假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着.这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只.(惊现跑男中包贝尔的抬脚法有木有!)『方法五:最常用的假设法』分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只.『方法六:最常用的假设法』分析:假设全部是兔子,则有14×4=56条腿,比实际多56-38=18只,一只兔子变成一只鸡腿减少2条,18÷2=9只,所以需要9只兔子变成鸡,即鸡为9只,兔子为14 - 9=5只.『方法七:最牛的特异功能法』分析:鸡有2条腿,比兔子少2条腿,这不公平,但是鸡有2只翅膀,兔子却没有.假设鸡有特级功能,把两只翅膀变成2条腿,那么鸡也有4条腿,此时腿的总数是14×4=56条,但实际上只有38条,为什么呢?因为我们把鸡的翅膀当作腿来算,所以鸡的翅膀有56-38=18只,鸡有18÷2=9只,兔就是14-9=5只.『方法八:最牛的特异功能法2 』分析:假设每只鸡兔都具有“特异功能”,鸡飞起来,兔立起来,这时立在地上的脚全是兔的,它的脚数就是38-14×2=10条,因此兔的只数有10÷2=5只,进而知道鸡有14-5=9只.鸡兔具有“特异功能”,这个方法想得太棒了!『方法九:最牛的特异功能法3 』假设孙悟空变成兔子,说“变”,每只兔子又长出一个头来,然后对妖精说“将它劈开”,变成“一头两脚”的两只“半兔”,半兔与鸡都是两只脚,因而共有28÷2=19只鸡兔,19-14=5只,这就是兔子的数目,当然鸡就有14-5=9只.呵呵,小朋友把兔“劈开”成“半兔”,想得奇吧!『方法十:最古老的砍足法』分析:假如把每只砍掉1只脚、每只兔砍掉2只脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由38只变成了19只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总数19与总头数14的差,就是兔子的只数,即19-14=5(只).所以,鸡的只数就是14-5=9(只)了. 呵呵,这个方法是古人想出来的,但有点残忍!『方法十一:史上最坑的耍兔法』分析:假如刘老师喊口令:“兔子,耍酷!”此时兔子们都把两只前脚高高抬起,两只后脚着地,呈酷酷的姿态,此时鸡兔都是两只脚着地.在地上脚的总数是14×2=28只,而原来有38只脚,多出38-28=10只.为什么会多呢?因为兔子们把它们的2只前脚抬了起来,所以兔的只数是10÷2=5只,鸡则是14-5=9只.『方法十二:最万能的方程法』分析:设鸡的数量为x只,则兔子有(14-x)只,有2x+4(14-x)=38,解出x=9,所以有鸡9只,兔子14-9=5只.『方法十三:最万能的方程法』分析:设兔子的数量为x只,则鸡有(14-x)只,有4x+2(14-x)=38.解得x=5,所以兔子有5只,鸡有14-5=9只.鸡兔同笼的13种方法就给大家讲完了,最后我们来总结一下!•十三种方法•1、列表法2、画图法3、金鸡独立法4、吹哨法5、假设法6、假设法7、特异功能法8、特异功能法9、特异功能法10、砍足法11、耍兔法12、方程法13、方程法记忆方法:假设“列表”同学画完图以后,有了3大特异功能,摆了一个金鸡独立的pose,吹了一声哨,耍了一下兔,看足了,于是“方程”去了!。

鸡兔同笼问题解题策略

鸡兔同笼问题解题策略

鸡兔同笼问题解题策略“鸡兔同笼”是一个古老而有趣的数学问题,经常出现在小学数学教材中,也让不少同学感到头疼。

但其实,只要掌握了合适的解题策略,它并没有那么难。

接下来,咱们就一起来探讨一下鸡兔同笼问题的几种解题方法。

咱们先来看一个经典的鸡兔同笼问题:笼子里有若干只鸡和兔,从上面数,有 35 个头;从下面数,有 94 只脚。

问鸡和兔各有多少只?第一种解题策略是“假设法”。

咱们可以先假设笼子里全是鸡,那么35 只鸡应该有 35×2 = 70 只脚。

但实际上有 94 只脚,多出来的 94 70 = 24 只脚是因为把兔当成鸡来算了。

每只兔比每只鸡多 4 2 = 2 只脚,所以兔的数量就是 24÷2 = 12 只,鸡的数量就是 35 12 = 23 只。

咱们再假设笼子里全是兔,那么 35 只兔应该有 35×4 = 140 只脚。

实际有 94 只脚,少的 140 94 = 46 只脚是因为把鸡当成兔来算了。

每只鸡比每只兔少 4 2 = 2 只脚,所以鸡的数量就是 46÷2 = 23 只,兔的数量就是 35 23 = 12 只。

第二种解题策略是“方程法”。

设鸡的数量为 x 只,兔的数量为 y 只。

因为鸡和兔一共有 35 个头,所以 x + y = 35。

又因为鸡有 2 只脚,兔有 4 只脚,一共有 94 只脚,所以 2x + 4y = 94。

联立这两个方程,先由第一个方程得出 x = 35 y,将其代入第二个方程,得到 2×(35 y)+ 4y = 94,化简得到 70 2y + 4y = 94,2y = 24,y = 12。

再把 y= 12 代入 x = 35 y,得出 x = 23。

除了这两种常见的方法,还有一些有趣的思路。

比如“抬腿法”。

咱们让鸡和兔都抬起两只脚,那么一共抬起了 35×2 = 70 只脚。

此时地上剩下的脚都是兔的,而且每只兔还剩下 4 2 = 2 只脚,所以兔的数量就是(94 70)÷2 = 12 只,鸡就是 35 12 = 23 只。

鸡兔同笼的解题方法

鸡兔同笼的解题方法

鸡兔同笼的解题方法鸡兔同笼问题,是我国古代著名趣题之一,大约在 1500 年前的《孙子算经》中就有记载。

这个问题看似简单,却蕴含着丰富的数学思维和解题技巧。

接下来,咱们就一起探讨一下鸡兔同笼问题的各种解题方法。

咱们先来看一个经典的鸡兔同笼问题:笼子里有若干只鸡和兔,从上面数,有 35 个头,从下面数,有 94 只脚。

问鸡和兔各有多少只?方法一:假设法假设全是鸡,那么一共有脚 2×35 = 70 只。

但实际上有 94 只脚,多出来的脚就是因为把兔当成鸡来算少算的。

每把一只兔当成鸡,就会少算 4 2 = 2 只脚。

总共少算了 94 70 = 24 只脚,所以兔的数量就是 24÷2 = 12 只。

鸡的数量就是 35 12 = 23 只。

假设全是兔,那么一共有脚 4×35 = 140 只。

实际上只有 94 只脚,多出来的就是因为把鸡当成兔多算的。

每把一只鸡当成兔,就会多算 4 2 = 2 只脚。

总共多算了 140 94 = 46 只脚,所以鸡的数量就是 46÷2 = 23 只。

兔的数量就是 35 23 = 12 只。

方法二:方程法咱们设鸡有 x 只,兔有 y 只。

因为鸡和兔一共有 35 个头,所以 x + y = 35。

又因为鸡有 2 只脚,兔有 4 只脚,一共有 94 只脚,所以2x + 4y = 94。

由第一个方程可得 x = 35 y,把它代入第二个方程,得到 2×(35 y) + 4y = 94,70 2y + 4y = 94,2y = 24,y = 12。

再把 y = 12 代入 x = 35 y,得到 x = 23。

方法三:抬腿法让鸡和兔都抬起两只脚,此时笼子里一共少了 2×35 = 70 只脚。

剩下的脚都是兔的,而且每只兔还剩下 2 只脚,所以兔的数量就是(94 70)÷2 = 12 只,鸡的数量就是 35 12 = 23 只。

奥数鸡兔同笼问题五种解题思路

奥数鸡兔同笼问题五种解题思路

鸡兔同笼问题经典形式的解题思路1已知总头数和总脚数,求鸡、兔各多少:思路:假设全部都是鸡,总脚数减去鸡脚数后剩下的事兔子比鸡多的脚,ok 再除以脚的差,算出兔子数;总脚数-每只鸡的脚数×总头数÷每只兔的脚数-每只鸡的脚数=兔数;总头数-兔数=鸡数;或者是每只兔脚数×总头数-总脚数÷每只兔脚数-每只鸡脚数=鸡数;总头数-鸡数=兔数;例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只”解一100-2×36÷4-2=14只………兔;36-14=22只……………………………鸡;解二4×36-100÷4-2=22只………鸡;36-22=14只…………………………兔;答略2已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多,求鸡和兔的数量思路:根据鸡兔脚数的差数,折算成鸡的数量,总头数减去相应的折算数量后,剩下的鸡和兔的脚一样多,如果鸡和兔的脚一样多,他们的头数比肯定为2:1,根据比例算出兔的个数;总头数-脚数之差/一只鸡的脚数÷2+1=兔数;例:鸡兔同笼,鸡兔共40个头,鸡脚比兔脚共多32只,问鸡兔各多少只兔:40-32/2÷2+1=8 只;鸡:40-8=3只3已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多思路:和上题目一样,根据鸡兔脚数的差数,折算成兔的数量,总头数减去相应的折算数量后,剩下的鸡和兔的脚一样多,如果鸡和兔的脚一样多,他们的头数比肯定为2:1,根据比例算出兔的个数;4 已知鸡和兔的头数差以及脚数和例:鸡、兔共笼,鸡比兔多26只,足数共274只,问鸡、兔各几只思路:总脚数减去多的动物的脚数后,除以两种动物的单个脚数为兔子的个数;274-26×2÷2+4=37只兔5鸡兔互换问题已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题,思路:根据互换前后的脚数相加除以鸡的脚数加兔的脚数之和为头数,再根据1求解;例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只;鸡兔各是多少只”解〔52+44÷4+2=16只合计44-16×2÷4-2=6只兔16-6=10 面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学鸡兔同笼问题的几种解题方法
第一次和学生一起学习“鸡兔同笼”问题是三年前,教材内容是出现在实验教材六年级数学的上册。

当时,我是先要求学生自学课本的有关内容,学生在自学中了解到解决“鸡兔同笼”问题的三种方法:假设法、列方程和古人的抬腿法。

学生通过对比,认为假设法易理解、便当计算。

如今,“鸡兔同笼”问题被安排在四年级下册出现,在教材中先后呈现解决问题的过程是:猜测—列表法—假设法。

在学习中,孩子们觉得猜测的方法不靠谱,还必须得有猜测后的验证,才能找到正确答案。

列表法虽然渗透了有序思考的思想,但仍少不了每一次的验证过程。

最终,最受同学们喜欢的方法还是更具逻辑性和一般性的假设法,也正是解决“鸡兔同笼”问题的最常用的方法。

假设法是一种算术方法,可分为“假设——计算——推理——解答(调整、置换)”四个关键步骤,计算比较简易,但理解算理有一定难度(摘自人教社的相关介绍)。

因此,教学“鸡兔同笼”问题时的难点是,引导学生理解假设法算式中每一步计算的含义
而在做一做之后的阅读材料中,通过和学生一起学习古人解决“鸡兔同笼”问题的方法,有学生竟然也能给这种方法命名为“抬腿法”。

在利用如此的方法来解答“鸡兔同笼”问题时,虽然计算简单,但思考过程琐碎、推理过程不易理清,迫使我想起了在网上曾读过的被称为“鸡兔同笼”问题的土豪解法。

我试着问学生:
“如果让兔子和鸡都同时抬起两条腿,会怎么样呢?”
“鸡屁股坐在地上了”,学生随口而出。

“这时兔子就变成了几条腿”?
“兔子就变成了2条腿”。

“我们看见的全是谁的腿?”
“我们看见的全是兔子的腿”。

在经历了假设兔子和鸡都抬2条腿的思考过程后,学生对这种比较生动的“抬腿法”更易理解。

因此,“抬腿法”可以更进一步直观地理解为“鸡有2腿全都抬起来”。

在解决“鸡兔同笼”问题时,我们何不让假设再大胆些,也无需再像土豪辅导儿子数学作业那样,省去“吹一声哨、再吹一声哨”的麻烦,直接让兔子和鸡都同时都抬起两条腿。

那么,我们解决“鸡兔同笼”问题的方法,也可以更土豪。

用假设法解决“鸡兔同笼”问题时,如果假设能够更大胆,鸡屁股也能坐地上。

善于思考生成解决问题策略的多样化,谁还会再纠结于“鸡兔同笼”问题是奥数?解法应该有多少多少种?。

相关文档
最新文档