小学数学应用题之鸡兔同笼问题

合集下载

鸡兔同笼问题训练与解答

鸡兔同笼问题训练与解答

鸡兔同笼问题训练与解答鸡兔同笼问题是中国古代著名的数学趣题之一,也是小学数学中常见的一类应用题。

它不仅能锻炼我们的逻辑思维能力,还能让我们学会运用数学方法解决实际问题。

接下来,让我们一起深入了解鸡兔同笼问题,并通过一些练习题来巩固所学的知识。

一、鸡兔同笼问题的基本概念鸡兔同笼问题通常是这样描述的:在一个笼子里,有若干只鸡和兔,从上面数有若干个头,从下面数有若干只脚,求鸡和兔各有多少只。

我们知道,鸡有 2 只脚,兔有 4 只脚。

设鸡的数量为 x 只,兔的数量为 y 只,那么头的总数就是 x + y,脚的总数就是 2x + 4y。

二、鸡兔同笼问题的解题方法1、假设法假设全是鸡,那么脚的总数就是 2×(鸡和兔的总数),与实际脚的总数相比,少的数量就是因为把兔当成鸡而少算的脚数。

每把一只兔当成鸡,就少算 2 只脚,所以用少的脚数除以 2 就是兔的数量,鸡的数量就等于总数减去兔的数量。

假设全是兔,那么脚的总数就是 4×(鸡和兔的总数),与实际脚的总数相比,多的数量就是因为把鸡当成兔而多算的脚数。

每把一只鸡当成兔,就多算 2 只脚,所以用多的脚数除以 2 就是鸡的数量,兔的数量就等于总数减去鸡的数量。

2、方程法设鸡的数量为 x 只,兔的数量为 y 只,根据头的总数和脚的总数可以列出方程组:x + y =总头数2x + 4y =总脚数然后通过解方程组求出 x 和 y 的值。

三、鸡兔同笼问题的训练题目1、笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有 94 只脚,鸡和兔各有多少只?假设全是鸡,脚的总数为 2×35 = 70(只),比实际少 94 70 = 24(只)。

每把一只兔当成鸡,少算 2 只脚,所以兔的数量为 24÷2 = 12(只),鸡的数量为 35 12 = 23(只)。

假设全是兔,脚的总数为 4×35 = 140(只),比实际多 140 94 =46(只)。

小学二年级鸡兔同笼应用题100道

小学二年级鸡兔同笼应用题100道

小学二年级鸡兔同笼应用题100道小学二年级鸡兔同笼应用题100道1. 一共有10只鸡兔,总共有28只脚,问有几只鸡,几只兔?2. 在一个鸡兔同笼里,有16只脚,问有几只鸡,几只兔?3. 一共有20只鸡兔,总共有60只脚,请问有几只鸡,几只兔?4. 在一个鸡兔同笼里,有24只脚,问有几只鸡,几只兔?5. 一共有15只鸡兔,总共有42只脚,请问有几只鸡,几只兔?6. 在一个鸡兔同笼里,有20只脚,问有几只鸡,几只兔?7. 一共有25只鸡兔,总共有70只脚,请问有几只鸡,几只兔?8. 在一个鸡兔同笼里,有30只脚,问有几只鸡,几只兔?9. 一共有18只鸡兔,总共有50只脚,请问有几只鸡,几只兔?10. 在一个鸡兔同笼里,有28只脚,问有几只鸡,几只兔?11. 一共有30只鸡兔,总共有84只脚,请问有几只鸡,几只兔?12. 在一个鸡兔同笼里,有36只脚,问有几只鸡,几只兔?13. 一共有22只鸡兔,总共有60只脚,请问有几只鸡,几只兔?14. 在一个鸡兔同笼里,有40只脚,问有几只鸡,几只兔?15. 一共有35只鸡兔,总共有98只脚,请问有几只鸡,几只兔?16. 在一个鸡兔同笼里,有44只脚,问有几只鸡,几只兔?17. 一共有28只鸡兔,总共有77只脚,请问有几只鸡,几只兔?18. 在一个鸡兔同笼里,有50只脚,问有几只鸡,几只兔?19. 一共有40只鸡兔,总共有112只脚,请问有几只鸡,几只兔?20. 在一个鸡兔同笼里,有56只脚,问有几只鸡,几只兔?21. 一共有32只鸡兔,总共有90只脚,请问有几只鸡,几只兔?22. 在一个鸡兔同笼里,有60只脚,问有几只鸡,几只兔?23. 一共有45只鸡兔,总共有126只脚,请问有几只鸡,几只兔?24. 在一个鸡兔同笼里,有66只脚,问有几只鸡,几只兔?25. 一共有36只鸡兔,总共有99只脚,请问有几只鸡,几只兔?26. 在一个鸡兔同笼里,有72只脚,问有几只鸡,几只兔?27. 一共有50只鸡兔,总共有140只脚,请问有几只鸡,几只兔?28. 在一个鸡兔同笼里,有78只脚,问有几只鸡,几只兔?29. 一共有42只鸡兔,总共有117只脚,请问有几只鸡,几只兔?30. 在一个鸡兔同笼里,有84只脚,问有几只鸡,几只兔?31. 一共有55只鸡兔,总共有154只脚,请问有几只鸡,几只兔?32. 在一个鸡兔同笼里,有90只脚,问有几只鸡,几只兔?33. 一共有48只鸡兔,总共有133只脚,请问有几只鸡,几只兔?34. 在一个鸡兔同笼里,有96只脚,问有几只鸡,几只兔?35. 一共有60只鸡兔,总共有168只脚,请问有几只鸡,几只兔?36. 在一个鸡兔同笼里,有104只脚,问有几只鸡,几只兔?37. 一共有70只鸡兔,总共有196只脚,请问有几只鸡,几只兔?38. 在一个鸡兔同笼里,有114只脚,问有几只鸡,几只兔?39. 一共有80只鸡兔,总共有224只脚,请问有几只鸡,几只兔?40. 在一个鸡兔同笼里,有120只脚,问有几只鸡,几只兔?41. 一共有90只鸡兔,总共有252只脚,请问有几只鸡,几只兔?42. 在一个鸡兔同笼里,有132只脚,问有几只鸡,几只兔?43. 一共有100只鸡兔,总共有280只脚,请问有几只鸡,几只兔?44. 在一个鸡兔同笼里,有144只脚,问有几只鸡,几只兔?45. 一共有120只鸡兔,总共有336只脚,请问有几只鸡,几只兔?46. 在一个鸡兔同笼里,有156只脚,问有几只鸡,几只兔?47. 一共有150只鸡兔,总共有420只脚,请问有几只鸡,几只兔?48. 在一个鸡兔同笼里,有180只脚,问有几只鸡,几只兔?49. 一共有200只鸡兔,总共有560只脚,请问有几只鸡,几只兔?50. 在一个鸡兔同笼里,有240只脚,问有几只鸡,几只兔?51. 一共有250只鸡兔,总共有700只脚,请问有几只鸡,几只兔?52. 在一个鸡兔同笼里,有280只脚,问有几只鸡,几只兔?53. 一共有300只鸡兔,总共有840只脚,请问有几只鸡,几只兔?54. 在一个鸡兔同笼里,有320只脚,问有几只鸡,几只兔?55. 一共有350只鸡兔,总共有980只脚,请问有几只鸡,几只兔?56. 在一个鸡兔同笼里,有360只脚,问有几只鸡,几只兔?57. 一共有400只鸡兔,总共有1120只脚,请问有几只鸡,几只兔?58. 在一个鸡兔同笼里,有420只脚,问有几只鸡,几只兔?59. 一共有450只鸡兔,总共有1260只脚,请问有几只鸡,几只兔?60. 在一个鸡兔同笼里,有480只脚,问有几只鸡,几只兔?61. 一共有500只鸡兔,总共有1400只脚,请问有几只鸡,几只兔?62. 在一个鸡兔同笼里,有520只脚,问有几只鸡,几只兔?63. 一共有550只鸡兔,总共有1540只脚,请问有几只鸡,几只兔?64. 在一个鸡兔同笼里,有560只脚,问有几只鸡,几只兔?65. 一共有600只鸡兔,总共有1680只脚,请问有几只鸡,几只兔?66. 在一个鸡兔同笼里,有630只脚,问有几只鸡,几只兔?67. 一共有650只鸡兔,总共有1820只脚,请问有几只鸡,几只兔?68. 在一个鸡兔同笼里,有660只脚,问有几只鸡,几只兔?69. 一共有700只鸡兔,总共有1960只脚,请问有几只鸡,几只兔?70. 在一个鸡兔同笼里,有720只脚,问有几只鸡,几只兔?71. 一共有750只鸡兔,总共有2100只脚,请问有几只鸡,几只兔?72. 在一个鸡兔同笼里,有780只脚,问有几只鸡,几只兔?73. 一共有800只鸡兔,总共有2240只脚,请问有几只鸡,几只兔?74. 在一个鸡兔同笼里,有840只脚,问有几只鸡,几只兔?75. 一共有900只鸡兔,总共有2520只脚,请问有几只鸡,几只兔?76. 在一个鸡兔同笼里,有960只脚,问有几只鸡,几只兔?77. 一共有1000只鸡兔,总共有2800只脚,请问有几只鸡,几只兔?78. 在一个鸡兔同笼里,有1020只脚,问有几只鸡,几只兔?79. 一共有1050只鸡兔,总共有2940只脚,请问有几只鸡,几只兔?80. 在一个鸡兔同笼里,有1080只脚,问有几只鸡,几只兔?81. 一共有1100只鸡兔,总共有3080只脚,请问有几只鸡,几只兔?82. 在一个鸡兔同笼里,有1140只脚,问有几只鸡,几只兔?83. 一共有1200只鸡兔,总共有3360只脚,请问有几只鸡,几只兔?84. 在一个鸡兔同笼里,有1260只脚,问有几只鸡,几只兔?85. 一共有1300只鸡兔,总共有3640只脚,请问有几只鸡,几只兔?86. 在一个鸡兔同笼里,有1320只脚,问有几只鸡,几只兔?87. 一共有1350只鸡兔,总共有3780只脚,请问有几只鸡,几只兔?88. 在一个鸡兔同笼里,有1380只脚,问有几只鸡,几只兔?89. 一共有1400只鸡兔,总共有3920只脚,请问有几只鸡,几只兔?90. 在一个鸡兔同笼里,有1440只脚,问有几只鸡,几只兔?91. 一共有1500只鸡兔,总共有4200只脚,请问有几只鸡,几只兔?92. 在一个鸡兔同笼里,有1560只脚,问有几只鸡,几只兔?93. 一共有1600只鸡兔,总共有4480只脚,请问有几只鸡,几只兔?94. 在一个鸡兔同笼里,有1680只脚,问有几只鸡,几只兔?95. 一共有1700只鸡兔,总共有4760只脚,请问有几只鸡,几只兔?96. 在一个鸡兔同笼里,有1740只脚,问有几只鸡,几只兔?97. 一共有1800只鸡兔,总共有5040只脚,请问有几只鸡,几只兔?98. 在一个鸡兔同笼里,有1860只脚,问有几只鸡,几只兔?99. 一共有1900只鸡兔,总共有5320只脚,请问有几只鸡,几只兔?100. 在一个鸡兔同笼里,有1920只脚,问有几只鸡,几只兔?。

鸡兔同笼题型汇总与总结

鸡兔同笼题型汇总与总结

鸡兔同笼题型汇总与总结鸡兔同笼问题是中国古代著名的数学趣题之一,也是小学数学中常见的一类应用题。

它不仅能锻炼我们的逻辑思维能力,还能帮助我们掌握一些基本的数学解题方法。

下面我们就来对鸡兔同笼的题型进行一个汇总与总结。

一、基本题型基本的鸡兔同笼问题通常会给出鸡和兔的总头数和总脚数,然后让我们求出鸡和兔分别的数量。

例如:笼子里有若干只鸡和兔,从上面数,有 8 个头,从下面数,有 26 只脚。

问鸡和兔各有几只?解题思路:我们可以假设笼子里全部都是鸡,那么脚的总数应该是2×8 = 16 只。

但实际有 26 只脚,多出来的 26 16 = 10 只脚是因为把兔当成鸡来算,每只兔少算了 4 2 = 2 只脚,所以兔的数量就是 10÷2= 5 只,鸡的数量就是 8 5 = 3 只。

二、变形题型1、已知头数差和脚数和比如:笼子里鸡比兔多2 只,一共有28 只脚,问鸡和兔各有几只?解题思路:先把多出来的 2 只鸡的脚数算出来,2×2 = 4 只。

然后从总脚数里减去这 4 只脚,28 4 = 24 只。

此时鸡和兔的数量相等,一只鸡和一只兔组成一组,一组有 6 只脚(2 + 4),那么组数就是 24÷6 = 4 组,所以兔有 4 只,鸡有 4 + 2 = 6 只。

2、已知脚数差和头数和举例:笼子里鸡和兔一共有 10 只,鸡的脚比兔的脚少 8 只,问鸡和兔各有几只?解题方法:假设给鸡增加 8 只脚,那么需要增加 8÷2 = 4 只鸡。

此时总头数为 10 + 4 = 14 只,鸡和兔的脚数相等。

一只兔的脚是一只鸡的脚的 2 倍,所以鸡的数量是兔的 2 倍。

把兔看作 1 份,鸡就是 2 份,一共3 份,14÷3 不是整数,说明这种假设不成立。

我们重新假设,给兔减少 8 只脚,那么兔就减少 8÷4 = 2 只。

此时总头数为 10 2 = 8 只,鸡和兔的脚数相等。

鸡兔同笼应用题六年级

鸡兔同笼应用题六年级

鸡兔同笼问题【含义】这是古典的算术问题。

已知笼子里鸡、兔共有多少只头和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。

已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。

【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)【解题思路和方法】解此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。

如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。

这类问题也叫置换问题。

通过先假设,再置换,使问题得到解决。

例题1:鸡和兔在一个笼子里,共有35个头,94只脚,那么鸡有多少只,兔有多少只?假设笼子里全部都是鸡,每只鸡有2只脚,那么一共应该有35×2=70(只)脚,而实际有94只脚,这多出来的脚就是把兔子当作鸡多出来的,每只兔子比鸡多2只脚,一共多了94-70=24(只),则兔子有24÷2=12(只),那么鸡有35-12=23(只)。

例题2:动物园里有鸵鸟和长颈鹿共70只,其中鸵鸟的脚比长颈鹿多80只,那么鸵鸟有多少只,长颈鹿有多少只?解:假设全部都是鸵鸟,则一共有70×2=140(只)脚,此时长颈鹿的脚数是0,鸵鸟脚比长颈鹿脚多140只,而实际上鸵鸟的脚比长颈鹿多80只,因此鸵鸟脚与长颈鹿脚的差数多了140-80=60(只),这是因为把其中的长颈鹿换成了鸵鸟。

把每一只长颈鹿换成鸵鸟,鸵鸟的脚数将增加2只,长颈鹿的脚数减少4只,那么鸵鸟脚数与长颈鹿脚数的差就增加了6只,所以换成鸵鸟的长颈鹿有60÷6=10(只),鸵鸟有70-10=60(只)。

小学五年级上册数学 列方程解答鸡兔同笼问题

小学五年级上册数学 列方程解答鸡兔同笼问题
4x+(26+x)×2=274
4x+52+2x=274
6x=222
x=37
鸡有:26+37=63(只)
答:鸡有63只,兔有37只.
4、龟鹤同池,鹤比龟少12只,龟和鹤的腿共有72条,求龟鹤各有多少只?
解:设龟有x只,则鹤有x-12只
4x+2×(x-12)=72
4x+2x-24=72
6x=96
x=16
16-12=4(只)
答:龟有16只,鹤有4只.
5、鸡兔同笼,鸡比兔多26只,共有脚274只.问鸡、兔各有多少只?(用方程解)
设兔有x只,则鸡有(26+x)只,则:
1、鸡与兔共有100只,鸡的脚比兔的脚少70只,问:鸡、兔各有多少只?
解:设兔有x只,则鸡有100-x只,
4x-(100-x)×2=70
4x-200+2x=70
6x=270
x=45
100-45=55(只)
答:鸡有ቤተ መጻሕፍቲ ባይዱ5只,兔有45只.
2、鸡兔同笼,鸡比兔多10只,鸡的脚比兔的脚少20只,求鸡兔各有多少只?(列方程解)
解:设兔有x只,则鸡有(10+x)只,
4x-2(10+x)=20
4x-20-2x=20
2x=40
x=20
20+10=30(只)
答:鸡有30只,兔有20只.
3、鸡和兔的数量相同,两种动物的腿加起来共有48条。鸡和兔各有多少只?
解:设鸡和兔子各有x只,根据题意可得方程:
2x+4x=48
6x=48
x=8
答:鸡和兔子各有8只。

鸡兔同笼解题方法(范文9篇)

鸡兔同笼解题方法(范文9篇)

鸡兔同笼解题方法(范文9篇)以下是网友分享的关于鸡兔同笼解题方法的资料9篇,希望对您有所帮助,就爱阅读感谢您的支持。

鸡兔同笼解题方法(1)一.笼子里有若干只鸡和兔,从上面数,有8个头,从下面数,有26只脚。

鸡和兔各有几只?解题方法:1.猜测,列表法2.假设法3.解方程法1.列表法2.假设法假设笼子里全是鸡,则共有2×8=16(只)脚,比实际少了26-16=10(只)脚,因为我们把兔子都看成了鸡,每只兔子少算了2只脚,共少了10只脚,说明兔子应该有10÷2=5(只)同理:假设笼子里的全是兔子,则一共有4×8=32(只)脚,比实际多了32-26=6(只)脚。

把鸡的脚当兔子的脚计算时,每只兔子比鸡多算了2只脚,所以鸡有6÷2=3(只)3.解方程法兔的脚数+鸡的脚数=鸡兔总脚数=26(只)设鸡有x只,那么兔就有8-x只,就有方程:2x+4(8-x)=26;解出x是鸡的只数,再求兔的只数。

鸡兔同笼解题方法(2)鸡兔同笼的解题方法【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数.或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数.例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡.解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔.(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数.(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式. (每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数.或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数.(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数.或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数. 例如,“灯泡厂生产灯泡的工人,按得分的多少给工资.每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分.某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元…….它的解法显然可套用上述公式.)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数.例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只.鸡兔各是多少只?”解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2=20÷2=10(只)……………………………鸡〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2=12÷2=6(只)…………………………兔(答略)鸡兔同笼解题方法(3)四年级下册鸡兔同笼数学问题解决方案:1、假设法:假设全部都是兔,(每只兔的脚数x头数-原来的总脚数)÷(每只兔的脚数-每只鸡的脚数)=鸡的只数;头数-鸡的只数=兔的只数假设全部都是鸡,(原来的总脚数-每只鸡的脚数x头数)÷(每只兔的脚数-每只鸡的脚数)=兔的只数;头数-兔的只数=鸡的只数例如:鸡兔同笼,头共有20个,脚共有50只,鸡,兔分别有多少只?(4x20-50)÷(4-2)=15(只)……鸡;20-15=5(只)……兔(50-2x20)÷(4-2)=5(只)……兔;20-5=15(只)……鸡2、列方程解:设兔有x只,鸡有20-x只。

鸡兔同笼应用题及答案(最新版)

鸡兔同笼应用题及答案(最新版)

鸡兔同笼应用题及答案鸡兔同笼应用题及答案鸡兔同笼是小学数学课本中的经典应用题,是常见的题型,以下是常见的鸡兔同笼的题型及解答,为大家分析鸡兔同笼应用题及答案鸡兔同笼应用题及答案一、鸡兔同笼问题例题透析例题1:有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只? 解:我们设想,每只鸡都是金鸡独立,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,也就是 244 2=122=24 8 =3.红笔数=16-3=13. 答:买了13支红铅笔和3支蓝铅笔.对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的脚数 19与11之和是30.我们也可以设想16只中,8只是兔子,8只是鸡,根据这一设想,脚数是 8 =240. 比280少40. 40 =5. 就知道设想中的8只鸡应少5只,也就是鸡数是3.30 8比19 16或11 16要容易计算些.利用已知数的特殊性,靠心算来完成计算. 实际上,可以任意设想一个方便的兔数或鸡数.例如,设想16只中,兔数为10,鸡数为6,就有脚数 19 10+11 6=256. 比280少24.24 =3,就知道设想6只鸡,要少3只.要使设想的数,能给计算带来方便,常常取决于你的心算本领.二、鸡兔同笼问题练习题及答案1.鸡兔同笼,共有30个头,88只脚。

求笼中鸡兔各有多少只?2.鸡兔同笼,共有头48个,脚132只,求鸡和兔各有多少只?3.一个饲养组一共养鸡、兔78只,共有200只脚,求饲养组养鸡和兔各多少只?4.鸡兔同笼不知数,三十六头笼中露。

数清脚共五十双,各有多少鸡和兔?5.小明用10元钱正好买了20分和50分的邮票共35张,求这两种邮票名买了多少张?6.小红用13元6角正好买了50分和80分邮票共计20张,求两种邮票各买了多少张?7.小刚的储蓄罐里共2分和5分硬币70枚,小刚数了一下,一共有194分,求两种硬币各有多少枚?8.三年一班30人共向北京奥运会捐款205元,同学每人了捐了5元或10元,你知道捐5元和10元的同学各有多少人吗?9.三年二班45个同学向爱心基金会共计捐款100元,其中11个同学每人捐1元,其他同学每人捐2元或5元,求捐2元和5元的同学各有多少人?10.松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个。

鸡兔同笼题目及应用技巧

鸡兔同笼题目及应用技巧

鸡兔同笼题目及应用技巧鸡兔同笼问题是中国古代著名的数学趣题之一,也是小学数学中常见的一类应用题。

它不仅有趣,还能锻炼我们的逻辑思维和数学运算能力。

先来看一道典型的鸡兔同笼题目:笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有 94 只脚,问鸡和兔各有多少只?对于这类问题,我们有多种解题方法。

方法一:假设法假设笼子里全部都是鸡,那么每只鸡有 2 只脚,35 只鸡就应该有35×2 = 70 只脚。

但实际上有 94 只脚,多出来的脚就是兔子比鸡多的脚。

每只兔子有 4 只脚,比每只鸡多 2 只脚。

所以兔子的数量就是(94 70)÷ 2 = 12 只,鸡的数量就是 35 12 = 23 只。

我们也可以假设笼子里全部都是兔子。

那么 35 只兔子就应该有35×4 = 140 只脚,比实际的 94 只脚多了 140 94 = 46 只脚。

这是因为把鸡当成兔子来算,每只多算了 2 只脚,所以鸡的数量就是 46÷2 = 23 只,兔子的数量就是 35 23 = 12 只。

方法二:方程法设鸡的数量为x 只,兔的数量为y 只。

因为鸡和兔一共有35 个头,所以 x + y = 35;又因为鸡有 2 只脚,兔有 4 只脚,一共有 94 只脚,所以 2x + 4y = 94。

由第一个方程可得 x = 35 y,将其代入第二个方程,得到 2×(35 y) + 4y = 94,化简可得 70 2y + 4y = 94,2y = 24,y = 12,那么 x = 35 12 = 23。

鸡兔同笼问题在实际生活中也有很多应用。

比如在养殖场中,工作人员要统计鸡和兔的数量。

如果只知道总头数和总脚数,就可以通过鸡兔同笼的解题方法来算出鸡和兔各自的数量,从而合理安排饲料、规划养殖场地等。

再比如在一些数学竞赛中,会出现变形的鸡兔同笼问题。

比如“有20 元一张和 50 元一张的人民币共 35 张,总值 1250 元,问 20 元的和50 元的人民币各有多少张?”这道题其实和鸡兔同笼问题的本质是一样的,我们可以把 20 元的人民币看成鸡,50 元的人民币看成兔,通过类似的方法来求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学应用题之鸡兔同笼问题
【含义】
这是古典的算术问题。

已知笼子里鸡、兔共有多少只头和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。

已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。

【数量关系】
第一鸡兔同笼问题:
假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)
假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)
第二鸡兔同笼问题:
假设全是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)
假设全是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)
【解题思路和方法】
解此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。

如果先假设都是鸡,然后以兔换鸡;如果先
假设都是兔,然后以鸡换兔。

这类问题也叫置换问题。

通过先假设,再置换,使问题得到解决。

例1:
鸡和兔在一个笼子里,共有35个头,94只脚,那么鸡有多少只,兔有多少只?
解:假设笼子里全部都是鸡,每只鸡有2只脚,那么一共应该有35×2=70(只)脚,而实际有94只脚,这多出来的脚就是把兔子当作鸡多出来的,每只兔子比鸡多2只脚,一共多了94-70=24(只),则兔子有24÷2=12(只),那么鸡有35-12=23(只)。

例2:
动物园里有鸵鸟和长颈鹿共70只,其中鸵鸟的脚比长颈鹿多80只,那么鸵鸟有多少只,长颈鹿有多少只?
解:假设全部都是鸵鸟,则一共有70×2=140(只)脚,此时长颈鹿的脚数是0,鸵鸟脚比长颈鹿脚多140只,而实际上鸵鸟的脚比长颈鹿多80只,因此鸵鸟脚与长颈鹿脚的差数多了140-80=60(只),这是因为把其中的长颈鹿换成了鸵鸟。

把每一只长颈鹿换成鸵鸟,鸵鸟的脚数将增加2只,长颈鹿的脚数减少4只,那么鸵鸟脚数与长颈鹿脚数的差就增加了6只,所以换成鸵鸟的长颈鹿有60÷6=10(只),鸵鸟有70-10=60(只)。

例3:
李阿姨的农场里养了一批鸡和兔,共有144条腿,如果鸡数和兔数互换,那么共有腿156条。

鸡和兔一共有多少只?解:根据题意可得:前后鸡的总只数=前后兔的总只数。

把1只鸡和1只兔子看做一组,共有6条腿。

前后鸡和兔的总腿数有144+156=300(条),所以共有300÷6=50(组),也就是鸡和兔的总只数有50只。

例4:
一次数学考试,只有20道题。

做对一题加5分,做错一题倒扣3分(不做算错)。

乐乐这次考试得了84分,那么乐乐做对了多少道题?
解:如果20题全部做对,应该得20×5=100(分),而实际得了84分,少了100-84=16(分)。

做错一题和做对一题之间,相差5+3=8(分),所以少了的16分,也就是做错了16÷8=2(题)。

一共20题,所以乐乐做对了20-2=18(题)。

相关文档
最新文档