用均值不等式求最值的类型及方法
例说利用均值不等式求函数最值的几种技巧

例说利用均值不等式求函数最值的几种技巧利用均值不等式求函数最值是数学中常用的一种方法,通过这种方法,可以简单地确定函数的最大值和最小值。
本文将介绍几种利用均值不等式求函数最值的常用技巧。
1.权值平均:使用均值不等式时,通过给定变量的权重,我们可以找到一个平均值,该平均值应该落在函数的最大值和最小值之间。
例如,如果我们要找出一个函数f(x)在一些闭区间[a,b]上的最大值,我们可以找到一个适当的c,使得a<c<b,并应用以下均值不等式:f(a)≤f(c)≤f(b)然后,我们可以将函数的值乘以相应的权重(比如(a-c)和(b-c)),并利用均值不等式得出结论。
2.凸函数和凹函数:对于凸函数而言,任意两个点之间的连线位于这两个点所对应的函数值之上。
如果我们要找到函数f(x)在一些闭区间上的最大值,我们可以在该区间上找到两个点,判断这两个点的连线是否位于这个函数值之上。
如果是,那么函数值将成为该区间的最大值。
对于凹函数来说,与凸函数类似,只是方向相反。
3.形象化问题:通过将问题形象化,我们可以更好地理解利用均值不等式求函数最值的思路。
例如,我们有一个数轴上的几个点,我们想找到距离它们最近和最远的点。
我们可以将这些点放在数轴上,并根据它们的位置找到距离最近和最远的点。
同样地,在函数的最大值和最小值问题中,我们可以通过绘制图形并观察函数曲线来找到函数的最大值和最小值。
4.极值问题:利用均值不等式求函数最值时,我们可以寻找函数的极值点。
当函数的导数为0时,函数可能取得最大值或最小值。
我们可以计算导数,找到可能的极值点,并对这些极值点应用均值不等式,从而确定函数的最大值和最小值。
5.多元函数:均值不等式也可以应用于多元函数的情况。
在多元函数的情况下,我们可以将问题转化为一元函数的情况,并使用上述方法解决。
综上所述,利用均值不等式求函数最值是一个实用的方法。
通过使用权值平均、凸函数和凹函数特性、形象化问题、极值问题和多元函数等技巧,我们可以更好地利用均值不等式来确定函数的最大值和最小值,从而解决数学中的一些问题。
用均值不等式求最值的类型及方法

用均值不等式求最值的类型及方法均值不等式是数学中一种重要的不等式,它的适用范围十分广泛,可以用于求最值。
均值不等式可以有效地帮助我们找出变量的最大值或最小值,在工程和科学方面都有着广泛的应用。
均值不等式包含不同的类型,其中常用的有欧几里德均值不等式,黎曼均值不等式,拉格朗日均值不等式等。
这些形式的均值不等式可以求解各种复杂的变量最值问题,提供了关于变量最大值或最小值的重要依据。
例如,欧几里德均值不等式的表达式为:S = (x1 + x2 + ... + xn)/n (x1 x2...× xn)^1/n,其中x1,x2,...,xn是n个实数,S 表示均值。
欧几里德均值不等式表明,当x1,x2,...,xn的乘积大于均值的n次方时,变量x1,x2,...,xn中至少有一个大于均值,此时可求出变量x1,x2,...,xn中的最大值。
除了欧几里德均值不等式,黎曼均值不等式也是一种常用的均值不等式。
它的表达式为:S = (x1+ x2 + ... + xn)/n (x1 x2...×xn)^1/n,其中x1,x2,...,xn是n个实数,S表示均值。
与欧几里德均值不等式相比,黎曼均值不等式需要计算变量的平方和。
当x1,x2,...,xn的乘积大于均值的n次方时,变量x1,x2,...,xn中至少有一个大于均值,此时可求出变量x1,x2,...,xn中的最大值。
此外,拉格朗日均值不等式也是一种常用的均值不等式,其表达式为:S = (x1^m+ x2^m + ... + xn^m)/n (x1 x2...× xn)^1/n,其中x1,x2,...,xn是n个实数,m是一个正整数,S表示均值。
拉格朗日均值不等式需要计算变量的m次方和。
当x1,x2, (x)的乘积大于均值的n次方时,变量x1,x2,...,xn中至少有一个大于均值,此时可求出变量x1,x2,...,xn中的最大值。
用均值不等式求最值的类型及方法

用均值不等式求最值的类型及方法【摘要】本文阐述了用均值不等式求最值的类型及方法,主要包括最大值问题、最小值问题以及极值问题,并提出了其最优解的求解方法,包括利用求导法,黄金分割法,单调性法以及精确化法等多种方法。
本文探讨了用均值不等式求最值的应用,以及未来研究的可能方向和发展趋势。
【关键词】均值不等式,最大值,最小值,极值,最优解。
【正文】一、均值不等式求最值的类型均值不等式可以用来求解最优值问题,其类型有最大值问题、最小值问题以及极值问题。
1.最大值问题:即求函数最大值,即在变量范围内使函数取得最大值的值。
2.最小值问题:即求函数最小值,即在变量范围内使函数取得最小值的值。
3.极值问题:极值问题是指在给定变量范围内,找到函数取得极大值或极小值的变量值。
二、均值不等式求最值的解法1.求导法:当函数可导时,可以用求导法求最值,具体方法是:求函数的导数,使导数等于 0,解出导数为 0变量值,即可得到函数取得最大值或最小值的变量值。
2.黄金分割法:将 [a,b]区间分割成三等份,求函数在每一段的中点,观察其函数值的变化,以此确定函数最值的范围,并继续缩小其范围,直至区间缩小至足够小时即得出最终结果。
3.单调性法:当函数有单调性时,可以依据函数的单调性来确定函数最值范围,以便更精确地求函数最值。
4.精确化法:将变量值精确化或网格化,然后按这些精确值来求函数值,最终得出函数最值。
三、均值不等式求最值的应用均值不等式求最值的方法已有广泛的应用,包括机器学习、优化算法、视觉及语音识别、经济学等领域,可以用来求解一系列的复杂问题。
四、来研究的可能方向和发展趋势未来研究的可能方向和发展趋势可以从以下几个方面来看:1.究非凸最值问题:非凸最值问题是极具挑战性的,对于一般最优化算法效果均不佳。
因此,未来研究可以结合均值不等式和启发式方法,采用更有效的方法来求解非凸最值问题。
2.究多变量函数最值问题:多变量函数最值问题是比较复杂的最值问题,均值不等式可以用来解决多变量函数最值问题。
均值不等式解题方法和技巧总结

利用均值不等式求最值的方法和技巧几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立;③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链:ba 112+2a b+≤≤≤222b a +。
一、 配凑(8种技巧)1.拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。
例1 已知01x <<,求函数321y x x x =--++的最大值。
解:()()()()()()222111111y x x x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=∙∙∙-≤=⎪ ⎪⎝⎭。
当且仅当112x x +=-,即13x =时,上式取“=”。
故max 3227y =。
评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。
例2求函数)01y x x =<<的最大值。
解:y ==因()()32222221122122327x x x x x x ⎛⎫++-⎪∙∙-≤=⎪ ⎪ ⎪⎝⎭, 当且仅当()2212x x =-,即x =时,上式取“=”。
用均值不等式最值的方法和技巧

用均值不等式最值的方法和技巧均值不等式是数学中的一种重要的不等式关系,用于描述一组数据的平均值与其他性质之间的关系。
它可以应用于各种问题,如最值问题、优化问题等。
使用均值不等式来求解最值问题的方法和技巧有以下几个方面。
1.确定使用哪种均值不等式:均值不等式有许多种,如算术均值不等式、几何均值不等式、平方均值不等式等。
不同的均值不等式适用于不同的情况。
在解题时,要根据具体情况选择适合的均值不等式。
通常,当问题中涉及到平方和、乘积、根号等运算时,选择平方均值不等式;当问题中涉及到和、平均数等运算时,选择算术均值不等式;当问题中涉及到几何平均数、平方根等运算时,选择几何均值不等式。
2.清晰确定问题的条件和目标:在解决最值问题时,首先要清晰地确定问题的条件和目标。
条件是指问题中已知的信息,目标是指要求解的最值。
只有明确了条件和目标,才能有针对性地选择适合的均值不等式,并通过变换和推导进行求解。
3.运用不等式性质进行变换:在使用均值不等式进行求解时,可以根据题目中给出的条件进行变换,使得问题更容易求解。
如将含有平方和的表达式进行整理,将含有乘积的表达式进行拆分等。
变换后可利用不等式的性质,如对称性、单调性、对数性质等来推导和求解。
4.找到合适的等号成立条件:根据均值不等式的性质,等号成立的条件通常与数据的性质相关。
找到合适的等号成立条件不仅是验证结果的正确性,还可以通过这些条件求解最值问题。
例如,在求解两个数的平方和的最小值时,可通过设等号成立条件来求解。
5.结合其他方法进行求解:在使用均值不等式解决最值问题时,有时候也需要结合其他方法和技巧进行求解。
例如,可以结合求导、代数方法、几何方法等来解决一些复杂的最值问题。
这样可以提高问题的求解效率和准确性。
综上所述,运用均值不等式求解最值问题需要根据题目的条件和目标选择合适的不等式,进行变换和推导,并找到合适的等号成立条件。
同时,也可以结合其他方法和技巧进行求解。
均值不等式的题型和方法

均值不等式的题型和方法
- 题型一:配凑定和。
通过因式分解、纳入根号内、升幂等于段等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,配凑定和,求积的最大值。
- 题型二:配凑定积。
通过裂项、分子常数化、有理代换等手段,变为“和”的形式,然后以均值不等式的取等条件为出发点,配项凑定积,创造运用均值不等式的条件。
- 题型三:配凑常数降幂。
- 题型四:配凑常数升幂。
- 题型五:约分配凑。
通过“1”变换或添项进行配凑,使分母能约去或分子能降次。
- 题型六:引入参数配凑。
某些复杂的问题难以观察出匹配的系数,但利用“等”和“定”的条件,建立方程组,解得待定系数,可开辟解题捷径。
- 题型七:引入对偶式配凑。
根据已知不等式的结构,给不等式的一端匹配一个与之对偶的式子,然后一起参与运算,创造运用均值不等式的条件。
- 题型八:确立主元配凑。
在解答多元问题时,如果不分主次来研究,问题很难解决;如果根据具体条件和解题需要,确立主元,减少变元个数,恰当配凑,可创造性地使用均值不等式。
利用均值不等式求最值的方法

利用均值不等式求最值的方法均值不等式是一种重要的数学统计工具,它可以用来求出一组数据的最值。
均值不等式是一种用于求解参数最值的统计工具,它通过约束数据集中参数值来构建最大或最小值,从而获得最优解。
均值不等式最适用于求解连续参数的最值问题。
均值不等式由两部分构成,下面将进行详细讨论。
首先,均值不等式中包含一个数学定义,它是这样定义的:假设有一组数据集,记作:X = {x1, x2,, xn}其中,n表示数据集中数据的个数。
均值不等式的定义为:∑x/n KK为预先设定的参数值,它可以用来确定最值的上限。
其次,均值不等式还包含一些可以应用到数据集中的算法,这些算法可以用来求解最值问题。
例如,当要求解最小值时,可以通过下面的算法来推断出最小值:1.先计算出 X 中各数据项的和,记作 s 。
2.出 K 与 s比值 r=K/s 。
3.X中的每个数据项 xi乘以 r 。
4.乘以 r的数据项求出平均值,记作 m 。
5.较 m 与 xi值,得出最小值。
均值不等式有着广泛的应用,它通常用于求解线性规划问题,最优化函数等最值问题。
均值不等式还可以用于求解投资组合最值等一系列最值问题,具有很强的实用性。
接下来,将着重介绍均值不等式在解决最值问题中的实际应用。
首先,均值不等式可以用于求解数学优化问题。
优化问题中,最常用的是线性规划模型。
性规划模型可以用均值不等式来约束参数范围,从而得到最优解。
举个例子,在最小二乘法中,可以使用均值不等式来计算最小残差。
其次,均值不等式还可以用于解决投资组合的最值问题。
投资组合问题是指由投资者将自己的财富分散投资,通过投资组合来获得最高收益的问题。
在投资组合中,均值不等式可以有效地约束投资者不超出预先设定的范围,从而使投资收益最大化。
最后,均值不等式还可以用于求解最优化函数的最值问题。
最优化函数是指通过最小化或最大化函数值来获得最优解的函数,而均值不等式可以用于函数的求解。
总结,均值不等式是一种有效的数学统计工具,它可以用来求解最值问题。
用均值不等式最值的方法和技巧

用均值不等式最值的方法和技巧均值不等式是一个常用的不等式工具,在解决很多求最值问题时会起到很大的帮助。
它的核心思想是通过找到相应的均值来构造不等式,从而得到最值的估计。
下面,我将详细介绍均值不等式的方法和技巧。
1.算术平均-几何平均不等式(AM-GM不等式):AM-GM不等式是最常见的均值不等式,它表明对于任意非负实数x1,x2, ..., xn,有如下不等式成立:(x1 + x2 + ... + xn) / n ≥ √(x1 * x2 * ... * xn)这个不等式的意义在于,对于一组非负实数的和,取平均值一定大于等于这组数的乘积的正平方根。
这个不等式常常被用于证明其他数学结论的基础。
2.幂平均不等式:幂平均不等式是一组关于算术平均和几何平均之间关系的不等式。
对于任意非负实数x1, x2, ..., xn,以及实数p,q,有如下不等式成立:[(x1^p + x2^p + ... + xn^p) / n]^(1/p) ≥ [(x1^q + x2^q + ... + xn^q) / n]^(1/q)这个不等式是一个广义的不等式,AM-GM不等式就是其特例(p=q=1)。
使用幂平均不等式可以推导出很多常见的不等式,如柯西不等式、余弦不等式等。
3.杨辉不等式:杨辉不等式是一组与二项式系数相关的不等式。
对于任意自然数n,以及实数a,b,有如下不等式成立:(a+b)^n≥C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+...+C(n,n)*a^0*b^n这个不等式是二项式定理的推广,它可以用来证明其它不等式,如二项式不等式、二项式平均不等式等。
4.切比雪夫不等式:切比雪夫不等式是一组关于平均值和取值范围之间关系的不等式。
对于任意一组具有有限均值μ的实数x1, x2, ..., xn,有如下不等式成立:P(,x1-μ,≥k)≤(σ/k)^2其中,σ是x1, x2, ..., xn的标准差,即σ^2 = [(x1 - μ)^2 + (x2 - μ)^2 + ... + (xn - μ)^2] / n这个不等式的意义在于,对于平均值给定的一组数,其离平均值较远的数出现的概率是受标准差的限制的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三理应培优(用均值不等式求最值的类型及解题技巧)均值不等式是《不等式》一章重要内容之一,是求函数最值的一个重要工具,也是高考常考的一个重要知识点。
要求能熟练地运用均值不等式求解一些函数的最值问题。
一、几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a b+≤≤222b a +。
二、函数()(0)bf x ax a b x =+>、图象及性质 (1)函数()0)(>+=b a xb ax x f 、图象如图: (2)函数()0)(>+=b a xbax x f 、性质:①值域:),2[]2,(+∞--∞ab ab ;②单调递增区间:(,-∞,)+∞;单调递减区间:(0,,[0). 三、用均值不等式求最值的常见类型与解题技巧类型Ⅰ:求几个正数和的最小值。
例1、求函数21(1)2(1)y x x x =+>-的最小值。
(技巧1:凑项)解:21(1)2(1)y x x x =+>-21(1)1(1)2(1)x x x =-++>-21111(1)222(1)x x x x --=+++>-3211131222(1)x x x --≥⋅⋅+-312≥+52=, 当且仅当211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。
评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。
通常要通过添加常数、拆项(常常是拆低次的式子)等方式进行构造。
类型Ⅱ:求几个正数积的最大值。
例2、求下列函数的最大值:①23(32)(0)2y x x x =-<<②2sin cos (0)2y x x x π=<<解析:①30,3202x x <<->∴, ∴23(32)(0)(32)2y x x x x x x =-<<=⋅⋅-3(32)[]13x x x ++-≤=,当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。
(技巧2、取平方)②0,sin 0,cos 02x x x π<<>>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。
242sin cos y x x =⋅222sin sin cos x x x =⋅⋅2221(sin sin 2cos )2x x x =⋅⋅22231sin sin 2cos 4()2327x x x ++≤⋅=,当且仅当22sin 2cos x x =(0)2x π<<tan 2x ⇒=,即tan 2x arc =时,不等式中的“=”号成立,故此函数最大值是239。
技巧3: 分离 例3. 求2710(1)1x x y x x ++=>-+的值域。
解析一:本题看似无法运用基本不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。
当,即时,421)591y x x ≥+⨯+=+((当且仅当x =1时取“=”号)。
技巧4:换元解析二:本题看似无法运用基本不等式,可先换元,令t =x +1,化简原式在分离求最值。
22(1)7(1+10544=5t t t t y t t t t-+-++==++)当,即t =时,4259y t t≥⨯=(当t =2即x =1时取“=”号)。
评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。
即化为()(0,0)()Ay mg x B A B g x =++>>,g (x )恒正或恒负的形式,然后运用基本不等式来求最值。
评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。
通常要通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。
类型Ⅲ:用均值不等式求最值等号不成立。
技巧5:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()af x x x=+的单调性。
例4、若x 、y +∈R ,求4()f x x x =+)10(≤<x 的最小值。
解法一:(单调性法)由函数()(0)b f x ax a b x=+>、图象及性质知,当(0,1]x ∈时,函数4()f x x x =+是减函数。
证明:任取12,(0,1]x x ∈且1201x x <<≤,则12121244()()()()f x f x x x x x -=-+-211212()4x x x x x x -=-+⋅1212124()x x x x x x -=-⋅, ∵1201x x <<≤,∴12121240,0x x x x x x --<<,则1212()()0()()f x f x f x f x ->⇒>, 即4()f x x x=+在(0,1]上是减函数。
故当1x =时,4()f x x x=+在(0,1]上有最小值5。
解法二:(配方法)因01x <≤,则有4()f x x x =+24=+, 易知当01x <≤时,0μ=>且单调递减,则2()4f x =+在(0,1]上也是减函数, 即4()f x x x =+在(0,1]上是减函数,当1x =时,4()f x x x=+在(0,1]上有最小值5。
解法三:(导数法)由4()f x x x =+得24()1f x x '=-,当(0,1]x ∈时,24()10f x x '=-<,则函数4()f x x x =+在(0,1]上是减函数。
故当1x =时,4()f x x x=+在(0,1]上有最小值5。
评析:求解此类问题,要注意灵活选取方法,特别是单调性法、导数法具有一般性,配方法也是较为简洁实用得方法。
类型Ⅳ:条件最值问题。
例5、已知正数x 、y 满足811x y+=,求2x y +的最小值。
技巧6:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。
解法一:(利用均值不等式)2x y +8116()(2)10x y x y x y y x =++=++1018≥+=,当且仅当81116x y x y yx ⎧+=⎪⎪⎨⎪=⎪⎩即12,3x y ==时“=”号成立,故此函数最小值是18。
技巧7 消元.解法二:(消元法)由811x y +=得8x y x =-,由00088xy x x x >⇒>>⇒>-又 则2x y +22(8)1616162(8)108888x x x x x x x x x x -+=+=+=++=-++----162(8)10188x x ≥-⋅+=-。
当且仅当1688x x -=-即12,3x y ==此时时“=”号成立,故此函数最小值是18。
解法三:(三角换元法)令228sin 1cos x x x y⎧=⎪⎪⎨⎪=⎪⎩则有228sin 1cos x x y x ⎧=⎪⎪⎨⎪=⎪⎩ 则:22822sin cos x y x x+=+2222228csc 2sec 8(1cot )2(1tan )108cot 2tan x x x x x x =+=+++=++ 22102(8cot )(2tan )x x ≥+⋅18≥,易求得12,3x y ==此时时“=”号成立,故最小值是18。
评析:此类问题是学生求解易错得一类题目,解法一学生普遍有这样一种错误的求解方法:81812()(2)228x y x y x y x y x y+=++≥⋅⋅⋅=。
原因就是等号成立的条件不一致。
技巧8:凑系数例6. 当时,求(82)y x x =-的最大值。
解析:由知,,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。
当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。
评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。
变式:设230<<x ,求函数)23(4x x y -=的最大值。
解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫⎝⎛∈=23,043x 时等号成立。
类型Ⅴ:利用均值不等式化归为其它不等式求解的问题。
例7、已知正数x y 、满足3xy x y =++,试求xy 、x y +的范围。
解法一:由0,0x y >>,则3xy x y =++3xy x y ⇒-=+≥即230-≥13≤-≥(舍),当且仅当3x y xy x y ==++且即3x y ==时取“=”号,故xy 的取值范围是[9,)+∞。
又23()2x y x y xy +++=≤2()4()120x y x y ⇒+-+-≥2()6x y x y ⇒+≤-+≥舍或, 当且仅当3x y xy x y ==++且即3x y ==时取“=”号,故x y +的取值范围是[6,)+∞。
解法二:由0,0x y >>,3(1)3xy x y x y x =++⇒-=+知1x ≠,则:31x y x +=-,由30011x y x x +>⇒>⇒>-,则:2233(1)5(1)44(1)51111x x x x x xy x x x x x x ++-+-+=⋅===-++----59≥=, 当且仅当41(0)31x x x x -=>=-即,并求得3y =时取“=”号,故xy 的取值范围是[9,)+∞。
314441(1)2261111x x x y x x x x x x x x +-++=+=+=++=-++≥=----, 当且仅当41(0)31x x x x -=>=-即,并求得3y =时取“=”号,故xy 的取值范围是[9,)+∞。