2021年煤炭的燃烧过程

2021年煤炭的燃烧过程
2021年煤炭的燃烧过程

一、煤碳的燃烧过程

欧阳光明(2021.03.07)

煤从进入炉膛到燃烧完毕,一般经历四个阶段:水分蒸发阶段,当温度达到105℃左右时,水分全部被蒸发;挥发物着火阶段,煤不断吸收热量后,温度继续上升,挥发物随之析出,当温度达到着火点时,挥发物开始燃烧。挥发物燃烧速度快,一般只占煤整个燃烧时间的1/10左右;焦碳燃烧阶段,煤中的挥发物着火燃烧后,余下的碳和灰组成的固体物便是焦碳。此时焦碳温度上升很快,固定碳剧烈燃烧,放出大量的热量,煤的燃烧速度和燃烬程度主要取决于这个阶段;燃烬阶段,这个阶段使灰渣中的焦碳尽量烧完,以降低不完全燃烧热损失,提高效率。

良好燃烧必须具备三个条件:

1、温度。温度越高,化学反应速度快,燃烧就愈快。层燃炉温度通常在1100~1300℃。

2、空气。空气冲刷碳表面的速度愈快,碳和氧接触越好,燃烧就愈快。

3、时间。要使煤在炉膛内有足够的燃烧时间。

碳燃烧时在其周围包上一层灰壳,碳燃烧形成的一氧化碳和二氧化碳往往透过灰壳向外四周扩散运动,其中一氧化碳遇到氧后又继续燃烧形成二氧化碳。也就是说,碳粒燃烧时,灰壳外包围着一氧化碳和二氧化碳两层气体,空气中的氧必须穿过外壳才能与碳接触。因此,加大送风,增加空气冲刷碳粒的速度,就容易把外包层

的气体带走;同时加强机械拨动,就可破坏灰壳,促使氧气与碳直接接触,加快燃烧速度。如果氧气不充足,搅动不够,煤就烧不透,造成灰渣中有许多未参与燃烧的碳核,另外还会使一部分一氧化碳在炉膛中没有燃烧就随烟气排出。对于大块煤,必须有较长的燃烧时间,停留时间过短,燃烧不完全。因此,实际运行中,一般采取供给充足的氧气,采用炉拱和二次风来加强扰动,提高燃烧温度,炉膛容积不宜过小等措施保证煤充分燃烧。

二、链条炉排的燃烧特点

链条炉排着火条件较差,主要依靠炉膛火焰和炉拱的辐射热。煤的上面先着火,然后逐步向下燃烧,在炉排上就出现了明显的分层区域,如图共分五个区。燃料在新燃烧区1中预热干燥,在炉排上占有相当长的区域。在区域2中燃料释放出挥发分,并着火燃烧。燃烧进行得很激烈,来自炉排下部空气中的氧气在氧化区3中迅速耗尽,燃烧产物CO2和水蒸气上升到还原区4后,立即被只热的焦碳所还原。最后在链条炉排尾部形成灰渣区5。

在燃烧准备区1和燃烬区5都不需要很多空气,而在燃烧区2、3必须保证有足够的空气,否则则会出现空气在中部不足,而在炉膛前后过剩的现象。为改善以上燃烧状况,常常采用以下三个措施:合理布置炉拱;采取分段送风;增加二次风.

三、链条炉排对煤种的要求

链条炉排对煤种有一定的选择性,以挥发分15%以上,灰熔点高于1250℃以上的弱黏结、粒度适中,热值在18800~21000kJ/kg

以上的烟煤最为适宜。

煤中含有灰分应控制在10%~30%。粉煤(0~6mm)应不超过50%~55%,0~3mm的煤粉不超过30%,块煤尺寸不超过40mm。

煤中含水量推荐值为:煤中小于3mm的煤粉含量为20~40%时,含水量控制在5~7.5%,煤中小于3mm的煤粉含量为80%,含水量控制在12.5%,煤中小于3mm的煤粉含量为~100%,含水量控制在20%。

目前煤质存在的问题有:1、煤炭灰份较多,2、煤炭颗粒不均,3、煤炭中含有大量的杂质,4、煤炭的发热值较低,5、燃烧时不易引燃着火,6、煤炭中水分含量不定。7、煤炭不好烧,炉渣含碳量高。

四、煤质对锅炉稳定燃烧的影响

1.煤的发热量是反映煤质好坏的一个重要指标,当煤的发热量低到一定数值时,不仅会影响燃烧不稳定不完全,而且会导致锅炉熄火,使锅炉出口温度很难达标,影响正常供热。

2.挥发分在较低温度下能够析出和燃烧,随着燃烧放热,焦碳粒的温度迅速提高,为其着火和燃烧提供了极其有利的条件,另外挥发分的析出又增加了焦碳内部空隙和外部反应面积,有利于提高焦碳的燃烧速度。因此,挥发分含量越大,煤中难燃的固定碳成分越少,煤粉越容易燃烬,挥发分析出的空隙多,增大反应表面积,使燃烧反应加快。挥发份含量降低时,煤粉气流着火温度显著升高,着火热随之增大,着火困难,达到着火所需的时间变长,燃烧稳定性降低,火焰中心上移,炉膛辐射受热面吸收的热量减少,对流受热面吸收的热量增加,尾部排烟温度升高,排烟损失增大。

3.煤的灰份在燃烧过程中不但不会发出热量,而且还要吸收热量。灰分含量越大,发热量越低,容易导致着火困难和着火延迟,同时炉膛温度降低,煤的燃烬程度降低,造成的飞灰可燃物高。灰分含量增大,碳粒可能被灰层包裹,碳粒表面燃烧速度降低,火焰传播速度减小,造成燃烧不良。另外飞灰浓度增高,使锅炉受热面特别是省煤器、空气预热器等处的磨损加剧,除尘量增加,锅炉飞灰和炉渣物理热损失增大,降低了锅炉的热效率。有关资料显示,平均灰份从13%上升到18%,锅炉的强迫停运率将从1.3%上升到7.54%。

4.煤的颗粒度对锅炉的燃烧有很大影响。颗粒度过大时,煤块在锅炉内燃烧时停留时间过短,煤炭中的焦碳没有完全燃烬,炉渣中的含碳量增大,增加了锅炉炉渣的物理热损失;颗粒度过小时,细煤粉在炉排上燃烧时通风不好,碳与氧不能很好地接触发生化学反应,易形成黑带,同时细煤粉也易被空气吹起,很快随着烟气被带走,增加了锅炉烟气中的飞灰热损失,(在层燃烧锅炉中,尽量不要燃用煤粉(~3mm)含量超过30%的煤种)。因此要根据煤炭颗粒度合理调整给风量。

5.煤的含水量在一定的含量限度内与挥发分对燃煤的着火特性影响一致,少量水分对着火有利,从燃烧动力学角度看,在高温火焰水蒸气对燃烧具有催化作用,可以加速煤粉焦碳的燃烧,可以提高火焰黑度,加强燃烧室炉壁的辐射换热。另外,水蒸气分解时产生的氢分子和氢氧根可以提高火焰的热传导率。但水分含量过大时,着火热也随之增大,同时由于一部分燃烧热用来加热水分并使其汽

化,降低了炉内烟气温度,从而使煤粉气流吸卷的烟气温度以及火焰对煤粉的辐射热都降低,这对着火不利。

6.煤中杂质不仅会吸收煤燃烧生产的热量,阻碍煤与氧充分接触,影响煤的燃烧,降低锅炉热效率,增大锅炉运行时的除渣除灰量,而且对锅炉的安全运行带来很大危害。

五、煤质对锅炉及其辅助设备运行的影响

当进入炉膛的煤质与锅炉设计煤质和校核煤质要求相差较大时,会对锅炉燃烧和辅助设备带来如下不良影响:

1.煤质较差时,锅炉点火和运行调节困难,难以燃烧,容易灭火,严重影响了锅炉出口温度达标。

2.炉膛容易结焦,对流管束、省煤器、空气预热器等受热面处磨损严重,且容易积灰,锅炉送风阻力增大,影响锅炉热效率。

3.煤块较大时容易卡住分层给煤器和炉排,影响了煤炭的稳定燃烧和锅炉的安全平稳运行。

4.煤质不好时,锅炉耗煤量相对增加,炉渣的含碳量也增大,输煤、除渣系统运行负荷大大增加,输煤机、除渣机、抓渣行吊等设备故障增多,煤炭拉运和炉渣拉运成本加大。

5.灰分大的煤燃烧后,不仅影响了除尘器的除尘效果,而且增加了除灰、排灰系统的运行负荷,容易出现运行故障,对工作环境和外部环保都造成了不良影响。

6.煤质含硫量大时,容易引起水冷壁高温腐蚀,锅炉尾部烟道、省煤器、空气预热器等处的低温腐蚀,造成锅炉爆管,影响锅炉安全运行。

六、建议采取的应对措施

针对目前煤炭供应的紧张形势和煤质变化引起的锅炉燃烧困难,积极试验和摸索,制定相应的可操作性强的应对措施,努力调整好锅炉的燃烧运行工作,保证锅炉出口温度达标和减少锅炉及辅助设备的运行故障,以保证整个供热工作的安全、平稳、经济运行。建议采取如下应对措施:

1.加强司炉工的技术操作水平,使司炉人员及时掌握入炉煤的煤质分析情况,特别是煤的发热量、挥发分、灰分、颗粒度大小等,以便针对不同煤质的进行相应的燃烧调整。

2.加强各煤种的混烧、掺烧和配煤技术工作。通过不断进行燃烧调整试验,探索出不同煤种燃烧时,锅炉的煤层厚度、炉排速度、鼓引风量、各风室的配风等运行参数,并在此基础上试验摸索不同煤种的混烧、掺烧和配煤技术,以提高各种煤质,特别是劣质煤的利用率,降低供热运行成本。

3.加强对锅炉的燃烧调节工作。保证煤与空气量要相配合适,并且要充分混合接触,炉膛应尽量保持高温,以利于燃烧,调整锅炉负荷按规定操作,监视炉膛负压、排烟温度、氧气、二氧化碳等含量,使锅炉运行参数保持到最佳数值。对由于煤炭颗粒度不均匀、炉排不平整等原因引起的燃烧不完全、燃烧不均,对炉排上的火口或黑带进行人工拨火。

4.加强对输煤工作的管理。对不同的煤种尽量采取按类分别堆放,根据需要,在不同时期燃用不同的煤种,或按不同的比例搭配使用。输煤时输煤工与当班司炉工及时沟通,对含水量较低或含粉

煤较多的煤种可采取适量加水搅拌的办法,输煤时将杂质分拣出来,把大颗粒的煤粉碎等。

5.加强锅炉燃烧设备和辅助设备的巡检及维修工作。及时排除锅炉及辅助设备(特别是锅炉本体密封、炉排、分层给煤器、省煤器、空气预热器、除渣除尘等设备)出现的故障。

6.加强对锅炉送风和炉膛温度的控制,保持较高的炉膛温度,有利于煤的着火和燃烬,炉膛温度越低,越不利于燃烧。

7.加强对煤的保管工作。采取切实有效的措施,防止储煤风化和自燃,降低煤质质量,增加燃烧难度。

8.8加强对进煤质量的严格控制和管理,开辟煤质较好、较为稳定的煤源市场,及时准确地掌握进煤的工业分析数据,提供给各供热车间,以便运行管理人员选择较为适应本单位锅炉的煤种,进行相应的运行调节。

9.采用比较成熟的先进的技术和设备改变燃烧状况。如分层给煤技术,煤炭助燃剂,振动碎煤机等。

七结论

随着煤炭供应的日趋紧张,煤质随时都会发生很大的变化,摸索研究不同煤种,最大限度降低煤质变化对锅炉运行燃烧带来的不利影响,实现供热锅炉的优化运行

煤的先进燃烧技术

煤的先进燃烧技术 化艺1101 苗蓓目前,在我国的能源消费结构中,煤炭是第一能源,以煤、石油、和天然气为主的化石燃料的使用也随之带来一系列的环境问题。煤是最重要的固体燃料,它是一种不均匀的有机燃料,主要由植物的部分分解和变质形成的,所以其形成要经历一段很长的时期,常常是处于高压覆盖层以及较高的温度条件。而在燃烧过程中,煤的发热量低,灰分含量高,含硫量虽然比重油低,但为获得同样热量所耗煤量要大的多,所以产生的硫氧化物反而可能更多。煤的含氮量约比重油高5倍,因而氮氧化物生成量也高于重油,此外煤的燃烧还会带来汞、砷等微量重金属类污染,氟、氯等卤素污染和低水平的放射性污染。因此,采用先进的燃烧技术可以使煤充分燃烧,产生的污染会随之减少。 控制NO x 排放的技术措施可以分为两类,一是所谓的源头控制,其特征是通过各种技术手段,控制燃烧过程中NO x 的生成反应,另一类是所谓的尾部控制,其特征是把已经生成的NO x 通过某种手段还原为N2,从而降低NO x 的排放量。低NO x 燃烧技术措施一直是应用最广泛的措施,即便为满足排放标准的要求不得不使用尾气净化装置,仍需采用它来降低净化装置入口的NO x浓度,已达到节省费用的目的。从20世纪50年代起,人们就开始了燃烧过程中氮氧化物生成机理和控制方法的研究,到70年代末和80年代,低NO x 燃烧技术的研究和开发达到高潮,开发出低NO x 燃烧器等。90年代后,已开发的低NO x 燃烧器经过大量改进和优化,日臻完善。 一、低NO x 燃烧技术 目前工业采用的低NO x 燃烧技术主要包括低氧技术、烟气循环燃烧、分段燃烧和浓淡燃烧技术等。 1、低氧燃烧技术 NO x 排放量随着炉内空气量的增加而增加,为了降低其含量,锅炉应在炉内空气量较低的工况下运行,一般来说,可以降低15%-20%。锅炉采用低空气过剩系数运行技术,不仅可以降低NO x ,还减少了锅炉排烟热损失,提高锅炉热效率。需要说明的是,由于采用低空气过剩系数会导致一氧化碳、碳氢化合物以及炭黑等污染物相应增多,飞灰中可燃物质也可能增加,从而使燃烧效率下降,故电站锅炉实际运行时的空气过剩系数不能做大幅度调整。因此,在低空气过剩系数燃烧时,必须同时满足过路盒燃烧效率较高、而一氧化氮等有害物质最少的要求。 我国燃用烟煤的电站锅炉多数设计在空气过剩系数为 1.17-1.20(氧含量为3.5%-4.0%)下运行,此时一氧化碳含量为(30-40)*10^-6;若氧含量降到3.0%以下,则一氧化碳含量将急剧增加,不仅导致化学不完全燃烧损失增大,而且会引起炉内的结渣和腐蚀。因此,以炉内含氧量3%以上或一氧化碳含量等于2*10…^-4作为最小空气过剩系数的选择依据。 2、降低助燃空气预热温度 在工业实际操作中,经常利用尾气的废热预热进入燃烧器的空气。虽然这样有助于节约能源和提高火焰温度,但也导致氮氧化物排放量增加。实验数据表明,当燃烧空气由27℃预热至315℃,NO排放量将会增加三倍。降低助燃空气预热温度可降低火眼去的温度峰值,从而减少热力型NO x 生成量。实践表明,这一措施不宜用于燃煤、燃油锅炉;对于燃气锅炉,则有明显降低NO x 排放的效果。

燃煤锅炉灰渣、烟气量、烟尘、二氧化硫的计算

根据环境统计手册 煤渣包括煤灰和炉渣,锅炉中煤粉燃烧产生的叫粉煤灰,炉膛中排出的灰渣称为炉渣。 (1)炉渣产生量: Glz= B×A×dlz/(1-Clz) 式中: Glz——炉渣产生量,t/a; B——耗煤量,t/a; A——煤的灰份,20%; dlz——炉渣中的灰分占燃煤总灰分的百分数,取35%; Clz——炉渣可燃物含量,取20%(10-25%); (2)煤灰产生量: Gfh= B×A×dfh×η/(1-Cfh) 式中: Gfh——煤灰产生量,吨/年; B——耗煤量,800吨/年; A——煤的灰份,20%; dfh——烟尘中灰分占燃煤总灰分的百分比,取75% (煤粉炉75-85%);dfh=1-dlz η——除尘率; Cfh——煤灰中的可燃物含量,25%(15-45%); 注:1)煤粉悬燃炉Clz可取0-5%;C f取15%-45%,热电厂粉煤灰可取4%-8%。Clz、Cfh也可根据锅炉热平衡资料选取或由分析室测试得出。 2) d fh值可根据锅炉平衡资料选取,也可查表得出。当燃用焦结性烟煤、褐煤或煤泥时, d fh值可取低一些,燃用无烟煤时则取得高一点。 烟尘中的灰占煤灰之百分比(d fh)

表1 煤的工业分析与元素分析 一、烟气量的计算: 0V -理论空气需求量(Nm 3/Kg 或Nm 3/Nm 3(气体燃料)); ar net Q ?-收到基低位发热量(kJ/kg 或kJ/Nm 3(气体燃料)); daf V -干燥无灰基挥发分(%); V Y -烟气量(Ng 或Nm 3/m 3/KNm 3(气体燃料)); α-过剩空气系数, α=αα?+0。 1、理论空气需求量 daf V >15%的烟煤: 278.01000 Q 05.1ar net 0+? =?V daf V <15%的贫煤及无烟煤: 61.04145Q ar net 0+= ?V 劣质煤ar net Q ?<12560kJ/kg : 455.04145 Q ar net 0+= ?V 液体燃料:

最新燃烧用煤发热量计算公式

第二章锅炉燃料 本章目的:了解燃料特别是煤的特性,为煤的燃烧作准备; 本章关键:学会煤的评价指标,何为好,坏煤 本章难点:煤的成分换算,其实是个小技巧! 本章在全部内容的重要性:中等 对后面内容影响:锅炉经济性分析(热效率) 制粉系统 燃烧过程及燃烧布置 第一节燃料介绍 固体燃料 液体燃料 气体燃料 煤炭 油类 天然气 2,电力燃料的选用 电力燃料的选用 从能源利用的政策上 (1)弃优用劣燃烧取其热量属于低级行为 (2)就地取才运输成本和交通运力等 (3)充分利用提高经济性 (4)保护环境社会效益,国家强制 电厂考虑价格,核算成本,企业以赢利为目的 第二节煤的组成成分及性质 即化学分析:碳(C),氢(H),氧(O),氮(N),硫(S)五种元素和 水分(M),灰分(A)两种成分. 可燃成分与不可燃成分 一,煤的元素分析 (1)碳 主要的可燃成分,其含量一般为40% 90% 碳的燃烧反应 固定碳的定义及固定碳的燃烧特性 (2)氢 氢的发热量比较高但含量较少(3% 6%)氢燃烧后生成H2O,其物态影响反应的发热量 2H2+O2 2H2O(l) +143112 KJ/Kg 2H2+O2 2H2O(g)+120522 KJ/Kg 氢的燃烧特点及其对煤着火的影响 (3)硫 煤中硫的组成: 可燃硫(有机硫硫化铁中的硫)和硫酸盐中的硫 硫燃烧后生成SOx 低温腐蚀,大气污染 煤中的硫化铁对磨煤部件的磨损 (4)氧和氮

实际上不可燃,氧的含量与煤的炭化程度有关,最多可达40%; 氮的含量比较少,只有0.5% 2%. 氧的影响:使可燃元素相对减少,煤的发热量降低. 氮的影响:在一定条件下生成Nox,对环境有害. (5)水分 不可燃成分,有害成分,含量差别大(2% 60%) 水分的相关定义:表面水分(外在水分),固有水分(内在水分) 和全水分 水分对锅炉工作的危害: (1)降低发热量 (2)阻碍着火及燃烧 (3)影响煤的磨制及煤粉的输送 (4)烟气流过低温受热面产生堵灰及低温腐蚀 (6)灰分 灰分的定义 燃烧前后灰分中的矿物质是不同的 内在灰分与外在灰分 不可燃成分,有害成分, 含量差别大(10% 50%) 灰分对锅炉工作的危害: (1)降低发热量 (2)阻碍着火及燃烧 (3)烟气携带飞灰流过受热面产生结渣,积灰,磨损,腐蚀等 有害现象 飞灰对大气的污染 煤的元素分析法 表示—质量百分含量 作用—燃烧计算,煤的分类 应用—正式场合(设计,研究,设备鉴定等) 二,煤的工业分析 成分—水分(M),挥发分(V),固定碳(FC),灰分(A) 作用—指导燃烧调整,改善燃烧工况;煤分类的主要依据;锅炉设计时的重要参数. 方法—通过加热,灼烧得到水分,挥发分和固定碳,灰分 (1)挥发分 定义 组成:可燃气体(H2,CO,CH4等)和少量不可燃气体 (O2,N2,CO2,H2O等)组成 特点: 容易着火,燃烧速度快,火焰长.其加热过程是一个热分解过程 (粒径小于100 m的煤粉在煤粉炉中的热分解属于快速热分解,其升温速度大于一万℃/s,在不到0.1 s内完成).挥发分析出后焦碳变得疏松呈多孔性,参与燃烧的表面积增大,有利于焦碳的燃烧. 其余成分前述!!

煤炭的燃烧过程

一、?煤碳的燃烧过程 ? 煤从进入炉膛到燃烧完毕,一般经历四个阶段:水分蒸发阶段,当温度达到105℃左右时,水分全部被蒸发;挥发物着火阶段,煤不断吸收热量后,温度继续上升,挥发物随之析出,当温度达到着火点时,挥发物开始燃烧。挥发物燃烧速度快,一般只占煤整个燃烧时间的1/10左右;焦碳燃烧阶段,煤中的挥发物着火燃烧后,余下的碳和灰组成的固体物便是焦碳。此时焦碳温度上升很快,固定碳剧烈燃烧,放出大量的热量,煤的燃烧速度和燃烬程度主要取决于这个阶段;燃烬阶段,这个阶段使灰渣中的焦碳尽量烧完,以降低不完全燃烧热损失,提高效率。 良好燃烧必须具备三个条件: 1、温度。温度越高,化学反应速度快,燃烧就愈快。层燃炉温度通常在1100~1300℃。 2、空气。空气冲刷碳表面的速度愈快,碳和氧接触越好,燃烧就愈快。 3、时间。要使煤在炉膛内有足够的燃烧时间。 碳燃烧时在其周围包上一层灰壳,碳燃烧形成的一氧化碳和二氧化碳往往透过灰壳向外四周扩散运动,其中一氧化碳遇到氧后又继续燃烧形成二氧化碳。也就是说,碳粒燃烧时,灰壳外包围着一氧化碳和二氧化碳两层气体,空气中的氧必须穿过外壳才能与碳接触。因此,加大送风,增加空气冲刷碳粒的速度,就容易把外包层的气体带走;同时加强机械拨动,就可破坏灰壳,促使氧气与碳直接接触,加快燃烧速度。如果氧气不充足,搅动不够,煤就烧不透,造成灰渣中有许多未参与燃烧的碳核,另外还会使一部分一氧化碳在炉膛中没有燃烧就随烟气排出。对于大块煤,必须有

较长的燃烧时间,停留时间过短,燃烧不完全。因此,实际运行中,一般采取供给充足的氧气,采用炉拱和二次风来加强扰动,提高燃烧温度,炉膛容积不宜过小等措施保证煤充分燃烧。 ? 二、链条炉排的燃烧特点 ? 链条炉排着火条件较差,主要依靠炉膛火焰和炉拱的辐射热。煤的上 面先着火,然后逐步向下燃烧,在炉排上就出现了明显的分层区域,如图共分五个区。燃料在新燃烧区1中预热干燥,在炉排上占有相当长的区域。在区域2中燃料释放出挥发分,并着火燃烧。燃烧进行得很激烈,来自炉排下部空气中的氧气在氧化区3中迅速耗尽,燃烧产物CO2和水蒸气上升到还原区4后,立即被只热的焦碳所还原。最后在链条炉排尾部形成灰渣区5。 在燃烧准备区1和燃烬区5都不需要很多空气,而在燃烧区2、3必须保证有足够的空气,否则则会出现空气在中部不足,而在炉膛前后过剩的现象。为改善以上燃烧状况,常常采用以下三个措施:合理布置炉拱;采取分段送风;增加二次风. ? 三、链条炉排对煤种的要求 ? 链条炉排对煤种有一定的选择性,以挥发分15%以上,灰熔点高于1250℃以上的弱黏结、粒度适中,热值在18800~21000kJ/kg以上的烟煤最为适宜。

煤炭发热量计算公式

煤样中水分的测定 全水(Mt) 挥发分是反应煤化程度的一个指标,而焦渣可以判断煤炭粘接性的好坏,所以煤炭的挥发分和焦渣特征可以估计煤炭的工业分析和加工利用途径! 以收到状态单位质量的煤燃烧后产生的热量。 收到基As received basis 已收到状态的煤为基准ar 空气干燥基Air dried basis 与空气湿度达到平衡状态的煤为基准ad 分析基 干燥基Dry basis 以假想无水状态的煤为基准 d 干基 1、恒容低位发热量 煤或水煤浆(称取水煤浆干燥试样时)的收到基恒容低位发热量按下式计算Qnet,v,ar=(Qgr,v,ad-206Had)×-23Mt式中: Qnet,v,ar——煤或水煤浆的收到基恒容低位发热量,单位为焦耳每克(J/g);Qgr,v,ad——煤(或水煤浆干燥试样)的空气干燥基恒容高位发热量,单位为焦耳每克(J/g); Mt——煤的收基全水分或水煤浆的水分(Mcwm)(按GB/T211测定)的质量分数,%; Mad—煤(或水煤浆干燥试样)的空气干燥基水分(按GB/T212测定)的质量分数,%;

Had——煤(或水煤浆干燥试样)的空气干燥基氢的质量分数(按GB/T476测定),%; 206——对应于空气干燥煤样(或水煤浆干燥试样)中每1%氢的气化热校正值(恒容),单位为焦耳每克(J/g); 23——对应于收到基煤或水煤浆中每1%水分的气化热校正值(恒容),单位为焦耳每克(J/g)。如果称取的是水煤浆试样,其恒容低位发热量按下式计算:Qnet,v,cwm=Qgr,v,cwm-206Hcwm-23Mcwm 式中: Qnet,V,cwm—水煤浆的恒容低位发热量,单位为焦耳第克(J/g ); Qgr,v,cwm——水煤浆的恒容高位发热量,单位为焦耳第克(J/g); Hcwm——水煤浆氢的质量分数,%; Mcwm——水煤浆水分的质量分数,% 其余符号意义同前。 2、低位发热量基的换算 煤的各种不同水分基的恒容低位发热量按下式换算: Qnet,v,M=(Qgr,v,ad-206Had)×-23M 式中: Qnet,v,M—水分为M的煤的恒容低位发热量,单位为焦耳每克(J/g);M——煤样的水分,以质量分数表示,%; 干燥基时M=0;空气干燥基时M=Mad;收到基时,M=Mt 其余符号意义同前。

煤炭的燃烧过程之欧阳家百创编

一、煤碳的燃烧过程 欧阳家百(2021.03.07) 煤从进入炉膛到燃烧完毕,一般经历四个阶段:水分蒸发阶段,当温度达到105℃左右时,水分全部被蒸发;挥发物着火阶段,煤不断吸收热量后,温度继续上升,挥发物随之析出,当温度达到着火点时,挥发物开始燃烧。挥发物燃烧速度快,一般只占煤整个燃烧时间的1/10左右;焦碳燃烧阶段,煤中的挥发物着火燃烧后,余下的碳和灰组成的固体物便是焦碳。此时焦碳温度上升很快,固定碳剧烈燃烧,放出大量的热量,煤的燃烧速度和燃烬程度主要取决于这个阶段;燃烬阶段,这个阶段使灰渣中的焦碳尽量烧完,以降低不完全燃烧热损失,提高效率。 良好燃烧必须具备三个条件: 1、温度。温度越高,化学反应速度快,燃烧就愈快。层燃炉温度通常在1100~1300℃。 2、空气。空气冲刷碳表面的速度愈快,碳和氧接触越好,燃烧就愈快。 3、时间。要使煤在炉膛内有足够的燃烧时间。 碳燃烧时在其周围包上一层灰壳,碳燃烧形成的一氧化碳和二氧化碳往往透过灰壳向外四周扩散运动,其中一氧化碳遇到氧后又继续燃烧形成二氧化碳。也就是说,碳粒燃烧时,灰壳外包围着一氧化碳和二氧化碳两层气体,空气中的氧必须穿过外壳才能与碳接触。因此,加大送风,增加空气冲刷碳粒的速度,就容易

把外包层的气体带走;同时加强机械拨动,就可破坏灰壳,促使氧气与碳直接接触,加快燃烧速度。如果氧气不充足,搅动不够,煤就烧不透,造成灰渣中有许多未参与燃烧的碳核,另外还会使一部分一氧化碳在炉膛中没有燃烧就随烟气排出。对于大块煤,必须有较长的燃烧时间,停留时间过短,燃烧不完全。因此,实际运行中,一般采取供给充足的氧气,采用炉拱和二次风来加强扰动,提高燃烧温度,炉膛容积不宜过小等措施保证煤充分燃烧。 二、链条炉排的燃烧特点 链条炉排着火条件较差,主要依靠炉膛火焰和炉拱的辐射热。煤的上面先着火,然后逐步向下燃烧,在炉排上就出现了明显的分层区域,如图共分五个区。燃料在新燃烧区1中预热干燥,在炉排上占有相当长的区域。在区域2中燃料释放出挥发分,并着火燃烧。燃烧进行得很激烈,来自炉排下部空气中的氧气在氧化区3中迅速耗尽,燃烧产物CO2和水蒸气上升到还原区4后,立即被只热的焦碳所还原。最后在链条炉排尾部形成灰渣区5。 在燃烧准备区1和燃烬区5都不需要很多空气,而在燃烧区2、3必须保证有足够的空气,否则则会出现空气在中部不足,而在炉膛前后过剩的现象。为改善以上燃烧状况,常常采用以下三个措施:合理布置炉拱;采取分段送风;增加二次风. 三、链条炉排对煤种的要求

煤的清洁燃烧

煤的清洁燃烧 第一章 1.储量:经过详查或勘探,达到控制或探明的程度,在进行了预可行性或可行性研究,扣除了设计和采矿损失,能实际采出的矿产资源数量。 2.能源的计量—标准煤当量(tce)。 3.中国能源储量结构—化石能源煤炭为主,石油储量偏低,天然气贫乏。 4.生物质能—从植物和其衍生物以及某些动物获得的能量。 5.环境—作用于人类的所有外界事物的总合。 6.生态系统—特定范围内,生物和非生物成分通过物质循环、能量流动等相互作用、演变制约形成动态平衡的功能体系。 7.环境污染—环境的化学组分和或物理状态发生变化,环境质量恶化,扰乱或破坏了原有的生态系统或正常的生产生活条件。 8.化石能源利用对环境的影响:煤炭和石油都会对环境造成污染和影响,天然气对环境友好,影响最小。 9.PM—空气中的有机、无机颗粒物。 10.霾—大气悬浮的细微烟、尘或盐类。 11.酸雨:降水pH<5.6 12.煤的清洁燃烧广义定义:煤炭从开采到利用的全过程中,为了减少排放和提高效率而进行的煤炭加工、燃烧、转化及污染控制等高新技术的总称。 第二章 1.煤燃烧的三种方式:煤粉燃烧、层燃、流化床燃烧 2.三种燃烧方式的特征:流化床燃烧特征①燃烧在整个燃烧室进行②气固之间大相对速度③气固高湍流度④横向混合⑤低温动力控制燃烧800~950℃ 第三章污染物控制(粉尘,NO X,SO X,重金属) 粉尘 1.颗粒密度—单颗粒粉尘单位体积(包含颗粒孔隙体积)粉尘的重量。 2.堆积密度—粉尘松散堆积状态下单位体积(包含颗粒孔隙体积和颗粒间体积)粉尘的重量。 3.粉尘的比电阻—截面积和长度均为1时粉尘颗粒的电阻值(Ω˙cm)。 比电阻怎么影响电除尘器的工作? 粉尘比电阻—最适宜比电阻为104~5×1011Ωcm 比电阻ρ↓→感应正电荷→相斥→尘粒重新进入气流 比电阻ρ↑→较密负电荷→排斥荷电尘粒靠近收尘极板 4.活性—粉尘中的组分与其它物质在特定条件下化学反应的能力。

煤炭基础知识

煤炭基础知识

煤炭基础知识 一、煤炭的生成 煤炭的生成。煤炭是古代的有机物(主要是植物)的遗体,经过生物及化学的变质作用而形成的。大体可分为两个阶段,第一阶段是泥煤炭化阶段,即由植物转变成泥炭阶段。当植物枯死之后,堆积在充满水的沼泽中,开始是水存在的氧气不足,后来在水面下隔绝空气,并在细菌的作用下,直到植物的各部分不断分解,相互作用,最后植物的遗体变成了褐色或黑褐色的淤泥物质,这就是泥炭。这个过程,叫做泥炭化过程。这个阶段需要漫长的地质历史时期,需要进行千百万年。第二阶段,由泥炭转变成褐煤,褐煤转变成烟煤,烟煤再转变成无烟煤阶段。当泥炭层形成后。有水经常冲刷大陆的低洼地方,带来了大量的砂、石,在泥潭层逐渐形成岩层(称为顶板)。被埋在顶板下的泥炭层在顶板下的泥潭层在顶板岩石层的压力作用下,发生了压紧、失水、胶体老化、硬结等一系列变化,同时它的化学组成也发生了缓慢的变化,逐步变成比重较大,较致密的黑褐色的褐煤。当顶板逐渐加厚,顶板的静压力逐渐增高,煤层中温度也逐渐升高后,煤质便发生变化,逐渐由成岩作用变成了以温度影响为主的变质作用。这样褐煤逐渐变成了烟煤、无烟煤。如果有更高的温度,最终可能变成石墨。成煤必须具备四个先决条件:(1)植物条件。(2)气候条件。(3)地理条件。(4)地壳运动条件。 二、煤炭的分类及各类煤的主要特征和用途 (1)煤炭按煤的用途分为:动力煤、炼焦煤、喷吹煤及无烟煤 凡是以发电、机车推进、锅炉燃烧等为目的,产生动力而使用的煤炭都属于

动力用煤,简称动力煤; 作为生产原料,用来生产焦炭,进而用于钢铁行业的煤炭种,称为炼焦煤; 钢铁行业高炉喷吹用的喷吹煤; 无烟煤块煤主要应用是化肥(氮肥、合成氨)、陶瓷、制造锻造等行业;无烟粉煤主要应用在冶金行业用于高炉喷吹。 我国约1/3的煤用于发电,目前平均消耗为标准煤(7000大卡)370g/kw.h。 (2)煤炭按粒度分类:经简单筛选后剩下的大块有烟煤,筛选常用通过网目大小来规定最小尺寸的块度。 块煤:﹥13mm,最大块不得大于300mm 主要分为三类混煤 末煤(助燃用):粒度﹤13mm (3)煤炭按煤的挥发分,将所有煤分为褐煤、烟煤和无烟煤三大类,具体分类如下: 1.褐煤(HM) 它是煤化程度最低的煤。其特点是水分高、比重小、挥发分高、不粘结、化学反应性强、热稳定性差、发热量低,含有不同数量的腐殖酸。多被用作燃料、气化或低温干馏的原料,也可用来提取褐煤蜡、腐殖酸,制造磺化煤或活性炭。一号褐煤还可以作农田、果园的有机肥料。 2.长焰煤(CY) 它的挥发分含量很高,没有或只有很小的粘结性,胶质层厚度不超过5mm,易燃烧,燃烧时有很长的火焰,故得名长焰煤。可作为气化和低温干馏的原料,也可作民用和动力燃料。

煤炭发热量的实用计算公式(精选.)

煤炭发热量的计算公式 煤炭发热量的计算公式 以煤工业分析结果,创立计算煤炭低位发热量新公式的原理与方法,不再详述。仅就实际应用的计算公式介绍如下: 1.计算烟煤低位发热量新公式 以焦耳表示的计算方式: Q net.ad =35859.9-73.7V ad -395.7A ad -702.0M ad +173.6CRC 焦/克 或用卡制表示的计算式: Q net.ad =8575.63-17.63V ad -94.64A ad -167.89M ad +41.52CRC 卡/克 Q net.ad ——分析基低位发热量; V ad ——分析基挥发分(%); A ad ——分析基灰分(%); M ad ——分析基水分(%); CRC——焦渣特征。 2.计算无烟煤低位发热量新公式 以焦耳表示的计算方式: Q net.ad =34813.7-24.7V ad -382.2A ad -563.0M ad 焦/克 或者以卡制表示的计算式: Q net.ad =8325.46-5.92V ad -91.41A ad -134.63M ad 卡/克 如果有条件能测定H值,或者从固定用煤矿区取得矿区以往H值的平均值,用下式计算的无烟煤低位发热量结果精度更高。 以焦耳表示的计算式: Q net.ad =32346.8-161.5V ad -345.8A ad -360.3M ad +1042.3H ad 焦/克 或者用卡制表示的计算式: Q net.ad =7735.52-38.63V ad -82.70A ad -86.16M ad +249.27H ad 卡/克 3.计算褐煤低位发热量新公式以焦耳表示的计算式: Q net.ad =31732.9-70.5V ad -321.6A ad -388.4M ad 焦/克 或者用卡制表示的计算式: Q net.ad =7588.69-16.85V ad -76.91A ad -92.88M ad 卡/克 4.在水泥生产使用中,计算标准煤耗时,按上述公式计算的分析基低位发热 量(Q net.ad )用下式换算成应用煤低位发热量(Q net.ar )后,再计算标准煤耗。 应用煤低位发热量计算公式 100-M ad 100-M ar Q net.ar =Q net.ad ×──────-23(M ar -M ad ×─────)焦/克 100-M ad 100-M ad

煤的低位发热如何计算

煤的低位发热如何计算? 计算烟煤低位发热量新公式 以焦耳表示的计算方式: Qnet.ad=35859.9-73.7Vad-395.7Aad-702.0Mad+173.6CRC 焦/克 或用卡制表示的计算式: Qnet.ad=8575.63-17.63Vad-94.64Aad-167.89Mad+41.52CRC 卡/克 Qnet.ad——分析基低位发热量; Vad——分析基挥发分(%); Aad——分析基灰分(%); Mad——分析基水分(%); CRC——焦渣特征。 焦渣特征(CRC)煤炭热分解以后剩余物质的形状。根据不同形状分为8个序号,其序号即为焦渣特征代号。 1、粉状。全部是粉末,没有相互粘着的颗粒; 2、粘着。用手指轻碰即成为粉末状或基本上是粉末状,其中较大的团块轻轻一碰机即成粉末。 3 、弱粘性。用手指轻压即成小块; 4、不熔融粘结。用手指用力压才裂成小块,焦渣上表面无光泽,下表面稍微有银白色光泽; 5、不膨胀熔融粘结。焦渣形成扁平的块,煤粒的界限不易分清。焦渣上表面有明显的银白色金属光泽,下表面银白色光泽更明显; 6、微膨胀熔融粘结。用手指压不碎,焦渣的上、下表面均有银白色金属光泽。但是焦渣表面具有较小的膨胀泡; 7、膨胀熔融粘结。焦渣上下表面均有银白色金属光泽,明显膨胀,但高度不超过15mm; 8、强膨胀熔融粘结。焦渣上、下表面有银白色金属光泽,焦渣高度超过15mm。 2.计算无烟煤低位发热量新公式 以焦耳表示的计算方式: Qnet.ad=34813.7-24.7Vad-382.2Aad-563.0Mad焦/克 或者以卡制表示的计算式: Qnet.ad=8325.46-5.92Vad-91.41Aad-134.63Mad卡/克 如果有条件能测定H值,或者从固定用煤矿区取得矿区以往H值的平均值,用下式计算的无烟煤低位发热量结果精度更高。 以焦耳表示的计算式: Qnet.ad=32346.8-161.5Vad-345.8Aad-360.3Mad+1042.3Had焦/克 或者用卡制表示的计算式: Qnet.ad=7735.52-38.63Vad-82.70Aad-86.16Mad+249.27Had卡/克

2021年煤炭的燃烧过程

一、煤碳的燃烧过程 欧阳光明(2021.03.07) 煤从进入炉膛到燃烧完毕,一般经历四个阶段:水分蒸发阶段,当温度达到105℃左右时,水分全部被蒸发;挥发物着火阶段,煤不断吸收热量后,温度继续上升,挥发物随之析出,当温度达到着火点时,挥发物开始燃烧。挥发物燃烧速度快,一般只占煤整个燃烧时间的1/10左右;焦碳燃烧阶段,煤中的挥发物着火燃烧后,余下的碳和灰组成的固体物便是焦碳。此时焦碳温度上升很快,固定碳剧烈燃烧,放出大量的热量,煤的燃烧速度和燃烬程度主要取决于这个阶段;燃烬阶段,这个阶段使灰渣中的焦碳尽量烧完,以降低不完全燃烧热损失,提高效率。 良好燃烧必须具备三个条件: 1、温度。温度越高,化学反应速度快,燃烧就愈快。层燃炉温度通常在1100~1300℃。 2、空气。空气冲刷碳表面的速度愈快,碳和氧接触越好,燃烧就愈快。 3、时间。要使煤在炉膛内有足够的燃烧时间。 碳燃烧时在其周围包上一层灰壳,碳燃烧形成的一氧化碳和二氧化碳往往透过灰壳向外四周扩散运动,其中一氧化碳遇到氧后又继续燃烧形成二氧化碳。也就是说,碳粒燃烧时,灰壳外包围着一氧化碳和二氧化碳两层气体,空气中的氧必须穿过外壳才能与碳接触。因此,加大送风,增加空气冲刷碳粒的速度,就容易把外包层

的气体带走;同时加强机械拨动,就可破坏灰壳,促使氧气与碳直接接触,加快燃烧速度。如果氧气不充足,搅动不够,煤就烧不透,造成灰渣中有许多未参与燃烧的碳核,另外还会使一部分一氧化碳在炉膛中没有燃烧就随烟气排出。对于大块煤,必须有较长的燃烧时间,停留时间过短,燃烧不完全。因此,实际运行中,一般采取供给充足的氧气,采用炉拱和二次风来加强扰动,提高燃烧温度,炉膛容积不宜过小等措施保证煤充分燃烧。 二、链条炉排的燃烧特点 链条炉排着火条件较差,主要依靠炉膛火焰和炉拱的辐射热。煤的上面先着火,然后逐步向下燃烧,在炉排上就出现了明显的分层区域,如图共分五个区。燃料在新燃烧区1中预热干燥,在炉排上占有相当长的区域。在区域2中燃料释放出挥发分,并着火燃烧。燃烧进行得很激烈,来自炉排下部空气中的氧气在氧化区3中迅速耗尽,燃烧产物CO2和水蒸气上升到还原区4后,立即被只热的焦碳所还原。最后在链条炉排尾部形成灰渣区5。 在燃烧准备区1和燃烬区5都不需要很多空气,而在燃烧区2、3必须保证有足够的空气,否则则会出现空气在中部不足,而在炉膛前后过剩的现象。为改善以上燃烧状况,常常采用以下三个措施:合理布置炉拱;采取分段送风;增加二次风. 三、链条炉排对煤种的要求 链条炉排对煤种有一定的选择性,以挥发分15%以上,灰熔点高于1250℃以上的弱黏结、粒度适中,热值在18800~21000kJ/kg 以上的烟煤最为适宜。

火电厂煤粉燃烧系统

火电厂煤粉燃烧系统 火力发电厂简称火电厂,是利用煤、石油、天然气作为燃料生产电能的工厂,它的基本生产过程是:燃料在锅炉中燃烧加热水生成蒸汽,将燃料的化学能转变成热能,蒸汽压力推动汽轮机旋转,热能转换成机械能,然后汽轮机带动发电机旋转,将机械能转变成电能。今天我的课题是煤粉燃烧系统。 一、煤粉的制备及预热 用火车或汽车、轮船等将煤运至电厂的煤场后,经初步筛选处理,用输煤皮带送到锅炉的原煤仓。煤从原煤仓落入煤斗,由给煤机送入磨煤机磨成煤粉,并经空气预热器来的一次风干燥并带至粗粉分离器。在粗粉分离器中将不合格的粗粉分离返回磨煤机再行磨制,合格的细煤粉被一次风带入旋风分离器,使煤粉与空气分离后进入煤粉仓。 二、煤粉气流的着火和燃烧 (一)煤粉气流的着火 煤粉空气混合物经燃烧器以射流方式被喷入炉膛后,经过湍流扩散和回流,卷吸周围的高温烟气,同时又受到炉膛四周高温火焰的辐射,被迅速加热,热量到达一定温度后就开始着火。有实验表明,煤粉气流的着火温度要比煤的着火温度高一些。因此,煤粉空气混合物较难着火,这是煤粉燃烧的特点之一。 在锅炉燃烧中,希望煤粉气流离开燃烧器喷口不远处就能稳定地着火,如果着火过早可能使燃烧器喷口因过热被烧坏,也易使喷口附近结渣;如果着火太迟,就会推迟整个燃烧过程,使煤粉来不及烧完就离开炉膛,增大机械不完全燃烧损失。另外着火推迟还会使火焰中心上移,造成炉膛出口处的受热面结渣。 煤粉气流着火后就开始燃烧,形成火炬,着火以前是吸热阶段,需要从周围介质中吸收一定的热量来提高煤粉气流的温度,着火以后才是放热过程。将煤粉气流加热到着火温度所需的热量称为着火热。它包括加热煤粉及空气(一次风),并使煤粉中水分加热、蒸发、过热所需热量。 (二)煤粉燃烧的三个阶段 煤粉同空气以射流的方式经喷燃器喷入炉膛,在悬浮状态下燃烧,从燃烧器出口,煤粉的燃烧过程大致可分为以下三个阶段: 1.着火前的准备阶段 煤粉气流喷人炉内至着火这一阶段为着火前的准备阶段。着火前的准备阶段是吸热阶段。在此阶段内,煤粉气流被烟气不断加热,温度逐渐升高。煤粉受热后,首先是水分蒸发,接着干燥的煤粉进行热分解并析出挥发分。挥发分析出的数量和成分取决于煤的特性、加热温度和速度。着火前煤粉只发生缓慢氧化,氧浓度和飞灰含碳量的变化不大。一般认为,从煤粉中析出的挥发分先着火燃烧。挥发分燃烧放出的热量又加热炭粒,炭粒温度迅速升高,当炭粒加热至一定温度并有氧补充到炭粒表面时,炭粒着火燃烧。 2.燃烧阶段 煤粉着火以后进入燃烧阶段。燃烧阶段是一个强烈的放热阶段。煤粉颗粒的着火燃烧,首先从局部开始,然后迅速扩展到整个表面。煤粉气流一旦着火燃烧,

煤炭发热量经验计算新公式

煤炭发热量经验计算新公式 煤炭发热量是评价煤质的一项重要指标,是水泥生产用煤计算熟料热耗及标准煤耗的主要依据。煤的发热量除少数大厂采用氧弹热量计实测外,绝大多数水泥企业都是利用工业分析结果,采用经验公式计算煤的发热量。 由于过去所用公式不够统一,为此,原建材部于1980年下发了《关于燃料热值和标准煤统一计算方法规定的通知》,通知所规定的经验公式为煤炭科学院六十年代末期推导的三个公式即:烟煤、无烟煤和褐煤低位发热量经验公式。其计算公式请见《化验室工作手册》附录。上述三个公式在水泥生产用煤、熟料热耗及对水泥企业标准煤耗考核中起到了一定的作用。但这一公式也有一定的缺陷和局限性,如烟煤发热量与水分、灰分、挥发分和焦渣特征有关,但当时推导这一公式时,没有把焦渣特征定量化纳入公式中,而是根据焦渣特征的大小分组列出K值。在计算煤炭发热量时,根据焦渣特征大小,查出K值再纳入公式。这不仅计算麻烦,而且因K值呈台阶式变化,对某些挥发分在边界处的煤样,其计算误差就会增大。为此,煤炭院煤化所陈文敏教授领导的“七五”科技攻关项目,收集了全国大量煤样数据,利用多元回归法,采用电子计算机,进行大量的数据处理,研究推导出一套烟煤、无烟煤、褐煤低位发热量经验公式。 创立的新公式有两套计算方法。一是利用元素分析结果计算各种煤的低位发热量公式。二是利用煤的工业分析结果计算烟煤、无烟煤和褐煤低位发热量公式。利用元素分析结果计算煤发热量更为准确,但目前水泥厂均未开展这项测定工作。因此,仅介绍利用煤的工业分析结果计算发热量的新公式,并结合水泥生产用煤具体应用作一简要介绍。各厂在生产实际应用中进行新旧公式计算比较,在适当的时候新公式将列为国家标准,以代替旧公式计算煤炭发热量。 新创立的煤炭低位发热量快速计算公式,应用于煤炭及用煤生产企业将会取得巨大的经济和社会效益。二、利用煤工业分析结果计算煤低位发热量的新公式 以煤工业分析结果,创立计算煤炭低位发热量新公式的原理与方法,不再详述。仅就实际应用的计算公式介绍如下: 1.计算烟煤低位发热量新公式 以焦耳表示的计算方式:Qnet.ad=35859.9-73.7V ad-395.7Aad-702.0Mad+173.6CRC 焦/克或用卡制表示的计算式:

煤炭的燃烧过程

一、煤碳的燃烧过程 煤从进入炉膛到燃烧完毕,一般经历四个阶段:水分蒸发阶段,当温度达到 105 C左右时,水分全部被蒸发;挥发物着火阶段,煤不断吸收热量后,温度继 续上升,挥发物随之析出,当温度达到着火点时,挥发物开始燃烧。挥发物燃烧速度快,一般只占煤整个燃烧时间的1/10左右;焦碳燃烧阶段,煤中的挥发物着火燃烧后,余下的碳和灰组成的固体物便是焦碳。此时焦碳温度上升很快,固定碳剧烈燃烧,放出大量的热量,煤的燃烧速度和燃烬程度主要取决于这个阶段;燃烬阶段,这个阶段使灰渣中的焦碳尽量烧完,以降低不完全燃烧热损失,提高效率。 良好燃烧必须具备三个条件: 1、温度。温度越高,化学反应速度快,燃烧就愈快。层燃炉温度通常在 1100?1300 C。 2、空气。空气冲刷碳表面的速度愈快,碳和氧接触越好,燃烧就愈快。 3、时间。要使煤在炉膛内有足够的燃烧时间。 碳燃烧时在其周围包上一层灰壳,碳燃烧形成的一氧化碳和二氧化碳往往透过灰壳向外四周扩散运动,其中一氧化碳遇到氧后又继续燃烧形成二氧化碳。也就是说,碳粒燃烧时,灰壳外包围着一氧化碳和二氧化碳两层气体,空气中的氧必须穿过外壳才能与碳接触。因此,加大送风,增加空气冲刷碳粒的速度,就容易把外包层的气体带走;同时加强机械拨动,就可破坏灰壳,促使氧气与碳直接接触,加快燃烧速度。如果氧气不充足,搅动不够,煤就烧不透,造成灰渣中有许多未参与燃烧的碳核,另外还会使一部分一氧化碳在炉膛中没有燃烧就随烟气排出。对于大块煤,必须有较长的燃烧时间,停留时间过短,燃烧不完全。因此,实际运行中,一般采取供给充足的氧气,采用炉拱和二次风来加强扰动,提高燃烧温度,炉膛容积不宜过小等措施保证煤充分燃烧。 二、链条炉排的燃烧特点 链条炉排着火条件较差,主要依靠炉膛火焰和炉拱的辐射热。煤的上面先着火,然后 逐步向下燃烧,在炉排上就出现了明显的分层区域,如图共分五个区。 燃料在新燃烧区1中预热干燥,在炉排上占有相当长的区域。在区域2中燃料释放出挥发分, 并着火燃烧。燃烧进行得很激烈,来自炉排下部空气中的氧气在氧化区3中迅速耗尽,燃烧产 物CO2和水蒸气上升到还原区4后,立即被只热的焦碳所还原。最后在链条炉排尾部形成灰渣区5。 在燃烧准备区1和燃烬区5都不需要很多空气,而在燃烧区2、3必须保证有足够的空气, 否则则会出现空气在中部不足,而在炉膛前后过剩的现象。为改善以上燃烧状况,常常采用以下三个措施:合

关于煤-无烟煤-烟煤

一.煤的物理性质 煤的物理性质是煤的一定化学组成和分子结构的外部表现。它是由成煤的原始物质及其聚积条件、转化过程、煤化程度和风、氧化程度等因素所决定。包括颜色、光泽、粉色、比重和容重、硬度、脆度、断口及导电性等。其中,除了比重和导电性需要在实验室测定外,其他根据肉眼观察就可以确定。煤的物理性质可以作为初步评价煤质的依据,并用以研究煤的成因、变质机理和解决煤层对比等地质问题。 1.颜色 是指新鲜煤表面的自然色彩,是煤对不同波长的光波吸收的结果。呈褐色—黑色,一般随煤化程度的提高而逐渐加深。 2.光泽 是指煤的表面在普通光下的反光能力。一般呈沥青、玻璃和金刚光泽。煤化程度越高,光泽越强;矿物质含量越多,光泽越暗;风、氧化程度越深,光泽越暗,直到完全消失。 3.粉色 指将煤研成粉末的颜色或煤在抹上釉的瓷板上刻划时留下的痕迹,所以又称为条痕色。呈浅棕色—黑色。一般是煤化程度越高,粉色越深。 4.比重和容重 煤的比重又称煤的密度,它是不包括孔隙在内的一定体积的煤的重量与同温度、同体积的水的重量之比。煤的容重又称煤的体重或假比重,它是包括孔隙在内的一定体积的煤的重量与同温度、同体积的水的重量之比。煤的容重是计算煤层储量的重要指标。褐煤的容重一般为 1.05~ 1."2,烟煤为 1."2~

1."4,无烟煤变化范围较大,可由 1."35~ 1."8。煤岩组成、煤化程度、煤中矿物质的成分和含量是影响比重和容重的主要因素。在矿物质含量相同的情况下,煤的比重随煤化程度的加深而增大。 5.硬度 是指煤抵抗外来机械作用的能力。根据外来机械力作用方式的不同,可进一步将煤的硬度分为刻划硬度、压痕硬度和抗磨硬度三类。煤的硬度与煤化程度有关,褐煤和焦煤的硬度最小,约2~ 2."5;无烟煤的硬度最大,接近 4。" 6.脆度 是煤受外力作用而破碎的程度。成煤的原始物质、煤岩成分、煤化程度等都对煤的脆度有影响。在不同变质程度的煤中,长焰煤和气煤的脆度较小,肥煤、焦煤和瘦煤的脆度最大,无烟煤的脆度最小。 7.断口 是指煤受外力打击后形成的断面的形状。在煤中常见的断口有贝壳状断口、参差状断口等。 煤的原始物质组成和煤化程度不同,断口形状各异。 8.导电性 是指煤传导电流的能力,通常用电阻率来表示。褐煤电阻率低。褐煤向烟煤过渡时,电阻率剧增。烟煤是不良导体,随着煤化程度增高,电阻率减小,至无烟煤时急剧下降,而具良好的导电性。 (一)煤的化学组成

煤粉燃烧仿真过程);

煤粉燃烧仿真过程 1.导入网格,使用压力基(pressure-based)和稳态计算(steady); 2.选择KE湍流模型; 3.激活能量方程; 4.激活组分输运模型,Mixture Material(燃料)项下选择coal-hv-volatiles-air,勾选Reactions项下 的Volumetric以激活反应,Turbulence-Chemistry-Interaction项下选择涡耗散模型Eddy-Dissipation; 5.激活辐射模型Radiation,并选择P1辐射模型; 6.设置离散相参数,在Discrete Phase项下,设置最大追踪步数为4000,指定长度尺寸为0.0025; 7.使用Define→Injections设置入射流,设置入射流入口为V-1,入射流类型Particle Type为 Combusting燃烧组份,入射流材料Material为coal-hv高挥发性煤,粒径分布Diameter Distribution 为均匀分布uniform,挥发份Devolatilizing Species为高挥发性煤hv_vol;在Point Properties项下设置进口特性,温度Temperature设定为343K,Z方向速度Z-velocity设定为23.11,质量流量Total Flow Rate(kg/s)设置为0.00018264,直径Diameter为1e-6;在Turbulent Dispersion项下激活随机轨道模型Discrete Random Walk Model,轨道数Number of Tries设置为10,尺度长度Time Scale Constant设置为0.15;如果有多股粒径不同的质量流,也可以使用同样的方法设置其它的几股质量流;

关于工业锅炉房煤场及灰渣部分设计计算

关于工业锅炉房煤场及灰渣部分设计计算 摘要:本文涉及了160吨/小时的锅炉房的煤场面积,输煤皮带的计算及灰渣量的计算,其中灰渣部分单独计算了70吨/小时的灰量和渣量,90吨/小时的渣量,160吨/小时的灰量。 关键词:煤场面积,输煤皮带计算煤耗,灰渣量,灰量,渣量 前言:煤场面积与进场煤的运输方式有关,灰渣量灰渣量与煤的灰份大小和燃烧方式有关,常用数据的选取由相关数据表给出。 1.煤场面积的计算: 由煤厂面积计算公式 KH ρ QN = F F —煤场面积( m2) Q —煤堆储煤量(t ),按进场煤的运输方式计算,火车或船舶运输贮存10~25天锅炉最大耗煤量,取15天。160吨/小时额定蒸汽对应最大煤耗量(对链条锅炉,吨汽煤耗取值0.17t/t ): Q=9792(t ) N —煤堆通道占用面积系数,火车运煤取1.3 K —煤堆形状系数,梯形取值0.7~0.8。这里取0.8 H —煤堆高度(m),由表1-1取值2.5m ρ—煤的堆积密度(t/m3),由表1-2取值0.8 于是 KH ρQN = F 7956m2=0.8×2.5×0.8 1.3×9792= 即:火车给总蒸发量为160吨/小时的锅炉房运煤,按储煤15天,需要煤 场面积为7956平方米。 我场常用煤的资料: 灰份Aar:17.52%, 挥发份Vdaf:22.48%, 水份Mar:11.73% 低位发热量https://www.360docs.net/doc/0a17029391.html,:22652.8kJ/kg,,固定炭C:48.27% 根据附表2-1我国工业锅炉用煤分类表,其为Ⅲ类烟煤

1.2.贮煤场的装卸机械设备 见附表1-3煤厂机械适用范围 2.输煤皮带 锅炉计算燃煤吨汽煤耗:0.17t/t 锅炉房160t/h 额定蒸发量为最大连续蒸发量,则该锅炉房小时煤耗 0.17×160=27.2t/h 则锅炉房24小时最大煤耗Q1: 0.17×160×24=652.8t 输煤皮带额定输送量计算公式: Q=k ×B 2×v ×ρ Q —额定输送量 (t/h ) K —按倾角β=20°槽形(有托辊)计算查表取值:320 B —皮带宽度,500mm,计算取值0.5m v —带速,最大值2m/s ,经验取值1.0m/s 。 ρ—煤堆积密度(散装),依据附表1-2煤堆积密度和安息角,取值: 0.8t/m3, 则输煤皮带额定输送量Q : Q=320×0.52×1×0.78=62.4t/h >27.2t/h 皮带昼夜工作时间T 为 昼夜最大煤耗Q1/输煤皮带额定输送量Q : T =Q1/Q=652.8/62.4=10.46小时 即输煤皮带在带速V=1.0m/s 的工况下,额定输送量大于锅炉房额定煤耗量,且皮带昼夜工作时间T 为10.46小时, 满足生产需要。 3.灰渣量的计算; 锅炉灰渣量的大小与煤的灰份大小和燃烧方式有关,每台锅炉的灰渣量可以按照下式计算; G=G m 【A ar ÷100 +(Q net.ar ×q 4)÷(33870×100)】 G ——煤台锅炉的灰渣量(t/h ) G m ——锅炉最大连续蒸发量时的实际煤耗量(t/h ) A ar ——燃煤收到基灰份(%),依据煤质资料,A ar =17.52 Q net.ar ——燃煤收到基低位发热量(kJ/kg ),依据煤质资料Q net.ar =22652.8 kJ/kg

相关文档
最新文档