2020考研数学二真题完整版

合集下载

考研_2020考研数学二真题及答案

考研_2020考研数学二真题及答案

e x -1ln 1+ x0 0⎰⎰0 2020考研数学二真题及答案一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答.题.纸.指定位置上. (1) 当 x → 0+时,下列无穷小量中最高阶是()(A )⎰ x (et 2-1)dt(B ) ⎰xln (1+ t2)dt(C )sin x sin t 2dt【答案】(D )1-cos x (D )sin t 2 dt【解析】由于选项都是变限积分,所以导数的无穷小量的阶数比较与函数的比较是相同的。

(A )(⎰ x(e t 2-1)dt )' = e x-1 ~ x 2(B )(⎰ xln (1+ t 2)dt )' = ln (1+ x 2 )x(C ) (C)(⎰sin x sin t 2dt )' = sin (sin 2 x ) x 2(D )( 01-cos xdt )'=x 1 x 32经比较,选(D )(2) 函数 f (x ) =1 (e x-1)(x - 2)的第二类间断点的个数为( )(A )1(B )2 (C )3 (D )4【答案】(C )【解析】由题设,函数的可能间断点有 x = -1, 0,1, 2 ,由此1lim f (x ) = lim - 1= - e 2lim ln 1+ x = -∞ ;x →-1 x →-1 (e x -1)(x - 2) 3(e -1 -1) x →-11lim f (x ) = lim = - e -1 lim ln(1+ x ) = - 1 ; x →0 x →0 (e x -1)(x - 2) 2 x →0 x 2eex -1ln 1+ x sin t 2 sin(1- cos x )2 e x -1ln 1+ x ⎰2∂f ∂x -n - 2 x →2 x →2 (e x2 x →21lim f (x ) = lim= ln 21lim e x -1 = 0;x →1-1x →1- (e x-1)(x - 2) 1- e x →1- ;lim = ln 2 1lim e x -1 = -∞;x →1+ (e x-1)(x - 2) 1- e x →1+1e x -1 ln 1+ xe ln 3 1lim f (x ) = lim -1)(x - 2) = (e -1) lim x - 2 = ∞ 故函数的第二类间断点(无穷间断点)有 3 个,故选项(C )正确。

2020年全国硕士研究生入学统一考试数学二试题完整版附答案分析及详解

2020年全国硕士研究生入学统一考试数学二试题完整版附答案分析及详解

x (0, 0)
xy (0, 0)
(x, y)→( 0,0 )
y→0 x→0
数是
A.4 B.3 C.2 D.1
答案:B
6. 设函数 f (x) 在区间 − 2,2上可导,且 f (x) f (x) 0 ,则()
A f (−2) 1 f (−1)
B f (0) e C f (1) e2 D f (2) e3
3.
1
0
arcsin
x (1−xx)源自dx=π2
A.
4
π2
B.
8
C. π
D. π
4
8
答案: A
解析: 1 arcsin xdx = arcsin2
0 x(1− x)
x
1 0
2 =
4
.
4. f ( x) = x2 ln (1− x), n 3 时, f (n) (0) =
A. − n! n−2
答案: A
+
y(x)dx =
0
解析:由
y + 2y + y = 0
y
(0)
=0,y
(
0)
y))dy
dz
(0, )
=
(
−1)dx − dy
12.斜边长为 2a 等腰直角三角形平板铅直地沉没在水中,且斜边与水面相齐,设重力加速度 为 g,水密度为 ,则该平板一侧所受的水压力为
答案: 1 ega3 3
解析: a g(a − y)[ y − (− y)]dy = 1 ga3
0
3
13.设 y = y ( x) 满足 y + 2y + y = 0 ,且 y (0) =0,y(0) =1,则

2020年考研数学二真题及解析

2020年考研数学二真题及解析

2020全国硕士研究生入学统一考试数学二试题详解一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)当0x +→时,下列无穷小量中最高阶是( ) (A )()21xt e dt -⎰(B)(0ln 1xdt +⎰(C )sin 20sin xt dt ⎰(D)1cos 0-⎰【答案】(D )【解析】由于选项都是变限积分,所以导数的无穷小量的阶数比较与函数的比较是相同的。

(A )()()222011x t x e dt e x '-=-~⎰(B )(()(22ln 1ln 1x t dt x x'+=⎰(C )()()sin 2220sin sin sin xt dt x x '=⎰(D )()1cos 22301sin sin(1cos )2xt dt x x x-'=-⎰经比较,选(D )(2)函数11ln 1()(1)(2)x x e xf x e x -+=--的第二类间断点的个数为 ( )(A )1 (B )2 (C )3 (D )4 【答案】(C )【解析】由题设,函数的可能间断点有1,0,1,2x =-,由此11121111ln 1lim ()lim lim ln 1(1)(2)3(1)x x x x x e x ef x x e x e ---→-→-→-+==-+=-∞---; 111000ln 1ln(1)1lim ()lim lim (1)(2)22x x x x x e x e x f x e x x e--→→→++==-=---;1111111111111ln 1ln 2lim ()lim lim 0;(1)(2)1ln 1ln 2lim lim ;(1)(2)1x x x x x x x x x x x exf x e e x e e x e e x e ---++--→→→--→→+===---+==-∞---;112222ln 1ln 31lim ()limlim (1)(2)(1)2x x x x x e x e f x e x e x -→→→+===∞----故函数的第二类间断点(无穷间断点)有3个,故选项(C )正确。

2020年考研数学二真题及解析

2020年考研数学二真题及解析

2020全国硕士研究生入学统一考试数学二试题详解一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)当0x +→时,下列无穷小量中最高阶是( ) (A )()21xt e dt -⎰(B)(0ln 1xdt +⎰(C )sin 20sin xt dt ⎰(D)1cos 0-⎰【答案】(D )【解析】由于选项都是变限积分,所以导数的无穷小量的阶数比较与函数的比较是相同的。

(A )()()222011x t x e dt e x '-=-~⎰(B )(()(22ln 1ln 1x t dt x x'+=⎰(C )()()sin 2220sin sin sin xt dt x x '=⎰(D )()1cos 22301sin sin(1cos )2xt dt x x x-'=-⎰经比较,选(D )(2)函数11ln 1()(1)(2)x x e xf x e x -+=--的第二类间断点的个数为 ( )(A )1 (B )2 (C )3 (D )4 【答案】(C )【解析】由题设,函数的可能间断点有1,0,1,2x =-,由此11121111ln 1lim ()lim lim ln 1(1)(2)3(1)x x x x x e x ef x x e x e ---→-→-→-+==-+=-∞---; 111000ln 1ln(1)1lim ()lim lim (1)(2)22x x x x x e x e x f x e x x e--→→→++==-=---;1111111111111ln 1ln 2lim ()lim lim 0;(1)(2)1ln 1ln 2lim lim ;(1)(2)1x x x x x x x x x x x exf x e e x e e x e e x e ---++--→→→--→→+===---+==-∞---;112222ln 1ln 31lim ()limlim (1)(2)(1)2x x x x x e x e f x e x e x -→→→+===∞----故函数的第二类间断点(无穷间断点)有3个,故选项(C )正确。

2020考研数学二真题含答案解析

2020考研数学二真题含答案解析

2020年全国硕士研究生招生考试数学二试题一、选择题:1~8题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项符合题目要求。

(1)当x 0时,下列无穷小量中最高阶的是A. ()x0(e 1)dte1x 1t 2 B.x0ln(1 t )dt3 C.sin x0sin t dt2 D.1 cos xsin 3tdt(2)函数f (x ) A.1个(3)ln1 x(e x 1)(x 2)的第二类间断点的个数为C.3个D.4个()B.2个arcsin xx (1 x )dx 1()2A.42 2B.8 C.(n )4D. 8()(4)已知函数f (x ) x ln(1 x ),当n 3时,f A.(0)(n 2)!nD.n !n 2B.n !n 2 C.(n 2)!n()xy ,xy 0 (5)关于函数f (x ,y )x ,y 0,给出下列结论: y ,x 0f ① x2f 1;②x yB.3(0,0)(0,0)1;③(x ,y ) (0,0)limf (x ,y ) 0;④lim lim f (x ,y ) 0.y 0x 0其中正确的个数为A.4(C.2D.1(D.)(6)设函数f (x )在区间 2,2 上可导,且f (x ) f (x ) 0.则A.)f ( 2)1f ( 1)B.f (0) e f ( 1)C.f (1) e 2f ( 1)f (2) e 3f ( 1)*(7)设4阶矩阵A (a ij )不可逆,a 12的代数余子式A 12 0, 1, 2, 3, 4为矩阵A 的列向量组,A 为A 的伴随矩阵,则方程组A *x 0的通解为A.x k 1 1k 22k 33,其中k 1,k 2,k 3为任意数B.x k 1 1k 22k 34,其中k 1,k 2,k 3为任意数C.x k 1 1k 23k 34,其中k 1,k 2,k 3为任意数D.x k 12k 23k 34,其中k 1,k 2,k 3为任意数()(8)设A 为3阶矩阵, 1, 2为A 的属于特征值1的线性无关的特征向量, 3为A 的属于特征值-1的特1001征向量,则满足P AP 0 10 的可逆矩阵P 可为001A.( 13, 2, 3)B.( 1 2, 2, 3)C.( 1 3, 3, 2)()D.( 1 2, 3, 2)二、填空题:9~14小题,每小题4分,共24分.请将答案写在横线上.x t 2 1d 2y (9)设,则22dxy ln(t t 1)(10) ________.t 110dy1yx 3 1dx ________.(0, )(11)设z arctan xy sin(x y ),则dz ________.(12)斜边长为2a 的等腰直角三角形平板铅直地沉没在水中,且斜边与水面相齐,记重力加速度为g ,水的密度为 ,则该平板一侧所受的水压力为________.(13)设y y (x )满足y 2y y 0,且y (0) 0,y (0) 1,则y (x )dx ________.a(14)行列式a1 1 11a 0110a________.0 11三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或验算步骤.(15)(本题满分10分)x 1 x求曲线y x 0 的斜渐近线方程. 1 x x(16)(本题满分10分)已知函数f x 连续且lim x 01f (x ) 1,g (x ) f (xt )dt ,求g (x )并证明g (x )在x 0处连续.0x求函数f x ,y x 8y xy 的极值.33(18)(本题满分10分)21 x 2x 设函数f (x )的定义域为 0, 且满足2f (x ) x f.求f (x ),并求曲线2 x 1 x 213y f (x ),y ,y 及y 轴所围图形绕x 轴旋转所成转体的体积.22(19)(本题满分10分)设平面区域D 由直线x 1,x 2,y x 与x 轴围成,计算Dx 2 y 2dxdy .x设函数f (x ) x 1e t dt .22(Ⅰ)证明:存在 (1,2),使得f ( ) (2 )e ;(Ⅱ)证明:存在 (1,2),使得f (2) ln 2 e .2(21)(本题满分11分)设函数f (x )可导,且f (x ) 0,曲线y f (x )(x 0)经过坐标原点O ,其上任意一点M 处的切线与x 轴交于T ,又MP 垂直x 轴与点P .已知由曲线y f (x ),直线MP 以及x 轴所围图形的面积与 MTP 的面积之比恒为3:2,求满足上述条件的曲线的方程.设二次型f (x 1,x 2,x 3) x 1 x 2x 3 2ax 1x 2 2ax 1x 3 2ax 2x 3经过可逆线性变换222 x 1 y 1222x P 2 y 2 化为二次型g (y 1,y 2,y 3) y 1 y 24y 3 2y 1y 2. x y 33(Ⅰ)求a 的值;(Ⅱ)求可逆矩阵P .(23)(本题满分11分)设A 为2阶矩阵,P ( ,A ),其中 是非零向量且不是A 的特征向量.(Ⅰ)证明P 为可逆矩阵;(Ⅱ)若A A 6 0,求P AP ,并判断A 是否相似于对角矩阵.2 12020考研数学真题(数学二)一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上....1.当x →0+时,下列无穷小量中最高阶的是()A.⎰x0(e -1)dtB.⎰ln(1+t )dtC.⎰0t 2x3sin x0sin t dtD.⎰21-cos xsin 3tdt解析:本题选D.考查了无穷小量的阶的比较,同时考查了变上限积分的函数的求导方法、洛必达法则等。

2020年考研数学二真题及解析

2020年考研数学二真题及解析


2
(A)
4
2
(B)
8
(C)
4
(D)
8
【答案】(A)
【解析】令 x sin t ,则 x sin2 t , dx 2sin t cos tdt
1 arcsin x
dx 2
t
2 sin t cos tdt
2 2tdt
t2
2
2
0 x 1 x 0 sin t cos t
0
4
0
(4) f x x2 ln 1 x ,n 3时, f n 0
x1 (ex 1)(x 2) 1 e x1
1
e x1 ln 1 x e ln 3
1
lim f (x) lim
lim
x2
x2 (ex 1)(x 2) (e2 1) x2 x 2
故函数的第二类间断点(无穷间断点)有 3 个,故选项(C)正确。
1 arcsin x
(3) 0
dx (
x 1 x
n! (A)
n2
n!
(B)
n2
n 2!
(C) n
n 2!
(D)
n
【答案】(A)
【解析】由泰勒展开式, ln(1 x)
xn ,则 x2 ln(1 x)
xn2
xn

n1 n
n1 n
n3 n 2
故 f (n) (0)
n! .
n2
xy, xy 0
(5)关于函数
f
x,
y
x,
y0
(A)1
(B)2
(C)3
(D)4
【答案】(C)
()
【解析】由题设,函数的可能间断点有 x 1, 0,1, 2 ,由此

2020年考研数学二真题及解析

2020年考研数学二真题及解析

2020全国硕士研究生入学统一考试数学二试题详解一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)当0x +→时,下列无穷小量中最高阶是( ) (A )()21xt e dt -⎰(B)(0ln 1xdt +⎰(C )sin 20sin xt dt ⎰(D)1cos 0-⎰【答案】(D )【解析】由于选项都是变限积分,所以导数的无穷小量的阶数比较与函数的比较是相同的。

(A )()()222011x t x e dt e x '-=-~⎰(B )(()(22ln 1ln 1x t dt x x'+=⎰(C )()()sin 2220sin sin sin xt dt x x '=⎰(D )()1cos 22301sin sin(1cos )2xt dt x x x-'=-⎰经比较,选(D )(2)函数11ln 1()(1)(2)x x e xf x e x -+=--的第二类间断点的个数为 ( )(A )1 (B )2 (C )3 (D )4 【答案】(C )【解析】由题设,函数的可能间断点有1,0,1,2x =-,由此11121111ln 1lim ()lim lim ln 1(1)(2)3(1)x x x x x e x ef x x e x e ---→-→-→-+==-+=-∞---; 111000ln 1ln(1)1lim ()lim lim (1)(2)22x x x x x e x e x f x e x x e--→→→++==-=---;1111111111111ln 1ln 2lim ()lim lim 0;(1)(2)1ln 1ln 2lim lim ;(1)(2)1x x x x x x x x x x x exf x e e x e e x e e x e ---++--→→→--→→+===---+==-∞---;112222ln 1ln 31lim ()limlim (1)(2)(1)2x x x x x e x e f x e x e x -→→→+===∞----故函数的第二类间断点(无穷间断点)有3个,故选项(C )正确。

2020年考研(数学二)真题试卷(题后含答案及解析)

2020年考研(数学二)真题试卷(题后含答案及解析)

2020年考研(数学二)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.当x→0+时,下列无穷小量中最高阶是A.(et2-1)dt.B.ln(1+)dt.C.sin t2dt.D.正确答案:D解析:x→0+时,A ∴(et2-1)dt是x的3阶无穷小.B∴是x的5/2导阶无穷小,C=sin(sin2x)·cos x~x2∴sint2dt是x的3阶无穷小.D∴是x的5阶无穷小.故应选D.2.函数f(x)=的第二类间断点的个数为A.1.B.2.C.3.D.4.正确答案:C解析:间断点为:x=-1,x=0,x=1,x=2因此x=0是f(x)的第一类可去间断点;所以x=1是f(x)的第二类间断点;同理由知x=2也是f(x)的第二类间断点.故应选C.3.dx=A.π2/4.B.π2/8.C.π/4.D.π/8.正确答案:A解析:所以x=0是可去间断点;x=1是无穷间断点.故是广义积分今:t=,则x=t2,dx=2t·dt故选A.4.已知函数f(x)=x2ln(1-x).当n≥3时,f(n)(0)=A.-n!/(n-2).B.n!/(n-2).C.-(n-2)!/n.D.(n-2)!/n.正确答案:A解析:5.关于函数f(x,y)=给出以下结论正确的个数是A.4.B.3.C.2.D.1.正确答案:B解析:6.设函数f(x)在区间[-2,2]上可导,且f’(x)>f(x)>0,则A.f(-2)/f(-1)>1.B.f(0)/f(-1)>e.C.f(1)/f(-1)<e2.D.f(2)/f(-1)=0可知,A11a1+A12a2+A13a3+A14a4=0,因为A12≠0,因此a2可由a1,a3,a4线性表示,故a1,a3,a4线性无关.因为r(A)一r(a1,a2,a3,a4)=3,因此a1,a3,a4为基础解系,故应选C.又因为A*A=|A|E=O,A的每一列a1,a2,a3,a4是A*x=0的解向量.只要找到是A*x=0的3个无关解就构成基础解系.8.设A为3阶矩阵,a1,a2为A的属于特征值为1的线性无关的特征向量,a3为A的属于特征值-1的特征向量,则满足P-1AP=的可逆矩阵P为A.(a1+a3,a2,-a3).B.(a1+a2,a2,-a3).C.(a1+a3,-a3,a2).D.(a1+a2,-a3,a2).正确答案:D解析:因为a1,a2为属于特征值1的线性无关的特征向量,所以a1+a2,a2仍为属于特征值1的线性无关的特征向量,a3为A的属于特征值-1的特征向量,故-a3为A的属于特征值-1的特征向量矩阵,因为特征向量与特征值的排序一一对应,故只需P=(a1+a2,-a3,a2)就有P-1AP=,故应选D.填空题9.=_______正确答案:一√2解析:10.=________正确答案:2/9(2√2-1)解析:11.设z=arctan[xy+sin(x+y)],则dz|(0,π)=_________正确答案:(π-1)dx-dy解析:12.斜边长为2a等腰直角三角形平板铅直地沉没在水中,且斜边与水面相齐,设重力加速度为g,水密度为ρ,则该平板一侧所受的水压力为_________正确答案:(ρga3)/3解析:13.设y=y(x)满足y”+2y’+y=0,且y(0)=0,y’(0)=l,则y(x)dx=_________正确答案:1解析:由条件知,特征方程为:r2+2r+1=0,特征值r1=r2=-1齐次方程通解为:y=(C1+C2x)e-x,由y(0)=0,y’(0)=1得C1=0,C2=1即y(x)=xe-x,从而知:14.行列式=________正确答案:a2(a2-4)解析:解答题解答应写出文字说明、证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020考研数学二真题完整版
一、选择题:1~8小题,第小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上. 1.0x +→,无穷小最高阶
A.()2
0e 1d x t t -⎰
B.(0ln d x
t ⎰
C.sin 20sin d x
t t ⎰
D.1cos 0t -⎰ 2.1
1ln |1|()(1)(2)
x x e x f x e x -+=--
A.1
B.2
C.3
D.4
3.10x =
⎰ A.2π4
B.2π8
C.π4
D.π8
4.2()ln(1),3f x x x n =-≥时,
()(0)n f = A.!2n n --
B.!2
n n - C.(2)!n n
-- D.(2)!n n
-
5.关于函数0(,)00
xy xy f x y x
y y x ≠⎧⎪==⎨⎪=⎩给出以下结论 ①(0,0)
1
f
x ∂=∂ ②2(0,0)
1f x y ∂=∂∂ ③
(,)(0,0)lim (,)0x y f x y →= ④00limlim (,)0y x f x y →→=正确的个数是
A.4
B.3
C.2
D.1
6.设函数()f x 在区间[2,2]-[上可导,且()()0f x f x '>>,则( ) A.(2)1(1)
f f ->- B.(0)(1)
f e f >- C.2(1)(1)
f e f <- D.3(2)(1)
f e f <- 7.设四阶矩阵()ij A a =不可逆,12a 的代数余子式1212340,,,,A αααα≠为矩阵A 的列向量组.*A 为A 的伴随矩阵.则方程组*A x =0的通解为( ).
A.112233x k k k ααα=++,其中123,k k k 为任意常数
B.112234x k k k ααα=++,其中123,k k k 为任意常数
C.112334x k k k ααα=++,其中,123,k k k ,后为任意常数.
D.122334x k k k ααα=++,其中123,k k k 为任意常数
8.设A 为3阶矩阵,12,αα为A 属于1的线性无关的特征向量,3α为A 的属于特
征值-1的特征向量,则满足1100010001P AP -⎛⎫ ⎪=- ⎪ ⎪⎝⎭的可逆矩阵
P 可为( ). A.1323(,,)αααα+-
B.1223(,,)αααα+-
C.1333(,,)αααα+--
D.1233(,,)αααα+--
二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.
9.
设(ln x y t ⎧=⎪⎨=+⎪⎩,则212t d y dx ==_______.
10.10dy =⎰_____.
11.设arctan[sin()]z xy x y =++,则(0,)|dz π=______.
12.斜边长为2a 等腰直角三角形平板铅直地沉没在水中,且斜边与水面相齐,设重力加速度为g ,水密度为ρ,则该平板一侧所受的水压力为______
13.设()y y x =满足20y y y '''++=,且(0)0,(0)1y y '==,则0()d y x x +∞=⎰_____
14.行列式01101
1110110a
a a
a --=--________
三、解答题:15~23小题,共94分.请将解答写在答题纸指定位置上.解答写出文字说明、证明过程或演算步骤.
15.(本题满分10分) 求曲线1(0)(1)x
x
x y x x +=>+的斜渐近线方程. 16.(本题满分10分)
已知函数()f x 连续且100()lim 1,()(),'()x f x g x f xt dt g x x
→==⎰求并证明'()0g x x =在处连续.
17.(本题满分10分)
33(,)8f x y x y xy =+-极值
19.(本题满分10分)
平面D 由直线1,2,x x y x x ===与
轴围成,计算.D 20.(本题满分11分)
2
1().x r f x e dt =⎰ (1)证:存在2
(1,2),()(2);f e ∈=-ξξξξ
(2)证:存在2(1,2),(2)ln 2.f e ∈=⋅ηηη
21.(本题满分11分)
()f x 可导,()0(0)f x x '>≥过原点O 上任意M 切线与X 轴交于T ,MP x ⊥轴,(),y f x MP x =轴围成面积与MTP ∆面积比为3:2,求曲线方程.
22.(本题满分11分)
设二次型22212312
3121323(,,)222f x x x x x x ax x ax x ax x =+++++经可逆线性变换
112233x y x P y x y ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
得()22212312312,,42g y y y y y y y y =+++. (1)求a 的值;
(2)求可逆矩阵P.
23.(本题满分11分)
设A 为2阶矩阵,(,)P A αα=,其中α是非零向量且是不是A 的特征向量.
(1)证明P 为可逆矩阵.
(2)若260A A ααα+-=,求1P AP -,并判断A 是否相似于对角矩阵.。

相关文档
最新文档