禁忌搜索算法
禁忌搜索算法教程

移动 Sx
3,1 2,3 3,4 7,1 6,1
C x
2 1 -1 -2 -4
T表 1 4,5
2 3
…… ……
结论:互换1和3
30
三.TS举例
③ 迭代2 编码:2-4-7-1-5-6-3
C x 18 x* x A(s, x) C(x*) 18
第三章 禁忌搜索
1
第三章 禁忌搜索
一.导言 二.禁忌搜索 三. TS举例 四. TS中短、中、长久表旳使用 五.学习TS旳几点体会
2
1. 问题描述
一.导言
min f (x) s.t. g(x) 0
x X
目的函数 约束条件 定义域
注:X为离散点旳集合,TS排斥实优化
3
一.导言
2. 局域搜索
➢ 邻域旳概念 ① 函数优化问题: 邻域(N(x))一般定义为在给定距离空间内,以一点 (x)为中心旳一种球体 ② 组合优化问题:
xbest:=xnow=(ACBDE)
ABCDE
11
一.导言
2. 局域搜索
➢ 示例 措施:全邻域搜索 第2步 N(xbest)={(ACBDE),(ABCDE),(ADBCE),(AEBDC) ,(ACDBE),(ACEDB),(ACBED)}, 相应目的函数为f(x)={43, 45, 44, 59, 59, 58, 43}
5
一.导言
2. 局域搜索
➢ 邻域旳概念 例: 解旳邻域映射可由2-opt,推广到k-opt,即对k个元 素按一定规则互换。
邻域旳构造依赖于解旳表达,邻域旳构造 在智能优化算法中起主要旳作用。
6
练习
禁忌搜索

禁忌长度:
禁忌表的大小
候选解:
利用当前解的邻域函数产生其所有(或若干) 邻域解,并从中确定若干候选解。 候选解集的确定是选择策略的关键,对算法 性能影响很大。
藐视准则:
当一个禁忌移动在随后T次的迭代内再度出现
时,如果它能把搜索带到一个从未搜索过的区域,
则应该接受该移动即破禁,不受禁忌表的限制。
4.迭代③ 编码:4-2-7-1-5-6-3
Cx 14, C x* 18
结论:因渴望水平发挥作用,交换在破禁 表中的4和5
5.迭代④ 编码:5-2-7-1-4-6-3
Cx C x* 20
结论:交换7和1
6.迭代⑤ 编码:5-2-1-7-4-6-3
Cx C x* 20
*
.更新T表,转步骤2
四、禁忌算法示例
问题:由七层不同的绝缘材料构成的一种绝 缘体,应如何排列顺序,可获得最好的绝 缘性能
编码方式:顺序编码
初始编码:2-5-7-3-4-6-1
目标值:极大化目标值 邻域定义:两两交换是一个邻 域移动 邻域大小:Tabu Size: 3 NG: 5
禁忌搜索
专业:物流工程 姓名:冯颖 学号:201322303100
一、禁忌搜索概述
二、禁忌搜索的重要参数与基本
原理 三、禁忌搜索的算法步骤 四、禁忌算法示例
一、概述
禁忌搜索(Tabu Search或Taboo Search,简称TS ) 的思想最早由Glover提出,它是对局部领域搜索的一 种扩展,是一种全局逐步寻优算法,是对人类智力过 程的一种模拟。TS算法通过引入一个灵活的存储结构 和相应的禁忌准则来避免迂回搜索,并通过藐视准则 来赦免一些被禁忌的优良状态,进而保证多样化的有 效搜索以最终实现全局优化。
禁忌搜索算法

3 禁忌搜索的关键参数和操作
3.1 变化因素
禁忌表的主要指标(两项指标)
禁忌对象:禁忌表中被禁的那些变化元素
禁忌长度:禁忌的步数
状态变化(三种变化) 解的简单变化 解向量分量的变化
目标值变化
3 禁忌搜索的关键参数和操作
3.1 变化因素
解的简单变化
假设x, y D,邻域映射为 N,其中D为优化问题的定义域, 则简单解变化 x y N ( x) 是从一个解变化到另一 个解。
2 禁忌搜索
2.2 禁忌搜索示例
四城市非对称TSP问题
初始解x0=(ABCD),f(x0)=4,邻域映射为两个城市 顺序对换的2-opt,始、终点都是A城市。
2 禁忌搜索
2.2 禁忌搜索示例
四城市非对称TSP问题
第1步
解的形式 A B C D f(x0)=4 禁忌对象及长度 B A B C C D 候选解
2 禁忌搜索
2.1 算法的背景 使用传统的方法,我们必须对每一个问题都去设 计一套算法,相当不方便,缺乏广泛性,优点在 于我们可以证明算法的正确性,我们可以保证找 到的答案是最优的;而对于启发式算法,针对不 同的问题,我们可以套用同一个架构来寻找答案, 在这个过程中,我们只需要设计评价函数以及如 何找到下一个可能解的函数等,所以启发式算法 的广泛性比较高,但相对在准确度上就不一定能 够达到最优,但是在实际问题中启发式算法那有 着更广泛的应用。
此时H已达到4个解,新选入的解代替最早被禁的解
3 禁忌搜索的关键参数和操作
3.2 禁忌表
禁忌对象的选取
情况1:禁忌对象为简单的解变化
第5步—— xnow=(AECBD),f(xnow)=44,H={(ACBDE;43) , (ACBED;43) ,(ABCED;44) ,(AECBD;44)} Can_N(xnow)={(AEDBC;43),(ABCED;44), (AECBD;44),(AECDB;44),(AEBCD;45)}。 xnext=(AEDBC)
禁忌搜索算法.pptx

候选集合
禁忌表
3,2
[1,4,2,5,3,1] f1=8
3-4
3,5
[1,4,5,3,2,1] f2=10
2-3
5,2
[1,4,3,2,5,1] f3=14
4,2
[1,2,3,5,4,1] f4=16
对x3交换3和2时最优f(x)=8,不满足藐视准则,且由于3-2已经在禁忌表中,因此 我们退而求其次选择f2=10对应的解,此时x4=[1,4,5,3,2,1] f(x4)=10,历史最优为5, 将5-3放入禁忌表中,由于禁忌长度为2,因此将最先放入禁忌表中的3-4移出禁忌 表。
[1,4,3,5,2,1] f4=5
对x2交换2和3时,5最优,此时x3=[1,4,3,5,2,1] f(x3)=5,历史最优为5,将2-3放入禁 忌表中
禁忌表
3-4
2-3
禁忌搜索算法(Tabu search)
x3=[1,4,3,5,2,1】 5(x3)=5,历史最优为5
邻域移动(交换中间两个城市)
禁忌表 3-5 2-3
参考教材和资料
彭扬, 伍蓓. 物流系统优化与仿真[M]. 中国物资出版社, 2007.
通过局部邻域搜索和相应 的禁忌准则来避免迂回搜 索,并通过特赦准则释放 被禁忌的优良状态。以保 证多样化的有效搜索,最
终实现全局最优化。
禁忌搜索算法的思想
禁忌搜索算法的思想
1
禁忌搜索算法的思想
2
1
5
4
3
禁忌搜索算法的思想
15 14 13
11 10
12 9
2
1
58
4 6
3
7
时间步 T=1
禁忌表 1、2、3、4、5
禁忌搜索算法ppt课件

个候选解?
的解替换当前解
用新的解替换 当前解;
否
找出下一个 次好的新解
更新tabulist NI=NI+1
NI=0 Intensification
n=n+1
否 NI=M?
是 Diversification
NI=0 是
n<N
否
25
End
判断是否为tabu, 决定接受与否
接受最好的候选解,并替换当前解
NI=0 是
n<N
否
21
End
求得初始解 BS=初始解
初始解
Sequence The length of the route
132456
28
BS
Sequence The length of the route
132456
28
22
Start
Tabu list 初始化(清空) 设M,N的值
求得初始解 BS=初始解
Sequence The length of the route
当前解 413256
30
Sequence The length of the route
BS
132456
28
Tabu list {41, },NI=1,n=1
26
Start
Tabu list 初始化(清空) 设M,N的值
求得初始解 BS=初始解
The length of the route
30
35
38
40
45
24
Start
Tabu list 初始化(清空) 设M,N的值
求得初始解 BS=初始解
n=0;NI=0
禁忌搜索算法

禁忌搜索算法
禁忌搜索算法示例
四城市非对称TSP问题
第4步(如果减小禁忌长度)
解的形式
禁忌对象及长度
ACBD f(x3)=7.5
BCD A
B12 C0
对换 评价值
CD 4.5☻ BC 7.5 BD 8
禁忌搜索算法
禁忌搜索算法示例
四城市非对称TSP问题
第2步
解
BCD A
B C3
候选解(邻域)
对换 评价值
CD 4.5 T BC 3.5☻ BD 4.5
禁忌搜索算法
禁忌搜索算法示例
四城市非对称TSP问题
禁忌搜索算法 领域的概念
例: TSP问题解的邻域映射可由swap,推广到k-opt。
邻域概念的重要性 邻域的构造依赖于移动操作(move), 邻域的结构在现代优化算法中起重要的作用。
禁忌搜索算法 算法的主要思路
算法的提出 禁忌搜索(Tabu search)是局部邻域搜索算法的推广,Fred Glover在1986年提出这个概念,进而形成一套完整算法。
禁忌搜索算法
禁忌搜索算法示例
Step 2: flip 5
1 2
3
7 6
5 4
Move: one-flip
函数值变化:f = 7
12345 6 7
-3 -1 2 -2 -1 -2 -1
禁忌表
1234567 2000300
禁忌搜索算法
禁忌搜索算法示例
Step 3: flip 3
1 2
3
7 6
5 4
Move: one-flip
函数值变化:f = 9
12345 6 7
禁忌搜索实验报告

一、实验背景禁忌搜索算法(Tabu Search,TS)是一种基于局部搜索的优化算法,最早由Glover和Holland于1989年提出。
该算法通过引入禁忌机制,避免陷入局部最优解,从而提高全局搜索能力。
近年来,禁忌搜索算法在蛋白质结构预测、调度问题、神经网络训练等领域得到了广泛应用。
本次实验旨在验证禁忌搜索算法在求解组合优化问题中的性能,通过改进禁忌搜索算法,提高求解效率,并与其他优化算法进行对比。
二、实验目的1. 研究禁忌搜索算法的基本原理及其在组合优化问题中的应用;2. 改进禁忌搜索算法,提高求解效率;3. 将改进后的禁忌搜索算法与其他优化算法进行对比,验证其性能。
三、实验方法1. 算法实现本次实验采用Python编程语言实现禁忌搜索算法。
首先,初始化禁忌表,存储当前最优解;然后,生成新的候选解,判断是否满足禁忌条件;若满足,则更新禁忌表;否则,保留当前解;最后,重复上述步骤,直到满足终止条件。
2. 实验数据本次实验采用TSP(旅行商问题)和VRP(车辆路径问题)两个组合优化问题作为实验数据。
TSP问题要求在给定的城市集合中找到一条最短的路径,使得每个城市恰好访问一次,并返回起点。
VRP问题要求在满足一定条件下,设计合理的配送路径,以最小化配送成本。
3. 对比算法本次实验将改进后的禁忌搜索算法与遗传算法、蚁群算法进行对比。
四、实验结果与分析1. TSP问题实验结果(1)改进禁忌搜索算法(ITS)实验结果表明,改进后的禁忌搜索算法在TSP问题上取得了较好的效果。
在实验中,设置禁忌长度为20,迭代次数为1000。
改进禁忌搜索算法的求解结果如下:- 最短路径长度:335- 迭代次数:1000- 算法运行时间:0.0015秒(2)遗传算法(GA)实验结果表明,遗传算法在TSP问题上的求解效果一般。
在实验中,设置种群规模为100,交叉概率为0.8,变异概率为0.1。
遗传算法的求解结果如下:- 最短路径长度:345- 迭代次数:1000- 算法运行时间:0.003秒(3)蚁群算法(ACO)实验结果表明,蚁群算法在TSP问题上的求解效果较好。
第三章禁忌搜索

25
二.禁忌搜索
3. 算法流程
Step 3
若
且
C C
ssLL
x x
Opt A(s,
C x)
sx
,令 x
,s
x
sL (x)
N x
,转Step
5;
注:Step 3的作用破禁检查
Step 4
若 C sK x Opt C s x, s x N x \ T
7
练习
定义邻域移动为:2-opt 对顺序编码[4 2 3 5 1],下列编码是否在其邻域内:
[4 3 2 5 1] [4 3 5 1 2] [4 3 3 5 1] [5 2 3 4 1] [1 2 3 5 4] [3 4 2 5 1]
8
练习
定义邻域移动为:位值+1或-1 对整数编码[2 2 3 5 3],下列编码是否在其邻域内:
➢ 渴望水平 渴望水平A(s,x)是一个取决于s和x的值,若有
C sx As, x
成立,则s(x)不受T表限制。也就是说即使存在
s(x) T
x仍然可以移动到s(x)。 A(s,x)一般选取为历史上所能达到的最优函数值。
禁忌策略和渴望水平构成了TS的两大核心移动规则
23
二.禁忌搜索
构成要素
➢ 停止准则 ① 设定最大迭代次数 ② 得到满意解 ③ 设定某个对象的最大禁忌频率
移动 Sx
1,3 2,4 7,6 4,5 5,3
C x
-2 -4 -6 -7 -9
若选择这项 C(x)=16,渴望水平 不能发生作用
T表 1 1,3 2 4,5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
tabu search
测控二班 高钊政 201424080217
禁忌搜索
禁忌搜索概述
禁忌搜索的主要思路 禁忌搜索的流程
栗子
禁忌搜索算法概述
禁忌——禁止重复前面的操作 禁忌搜索(Tabu Search)算法是一种亚启发式(meta-heuristic)随机搜索算 法,它从一个初始可行解出发,选择一系列的特定搜索方向(移动)作为试探, 选择实现让特定的目标函数值变化最多的移动。为了避免陷入局部最优解, TS搜索中采用了一种灵活的“记忆”技术,对已经进行的优化过程进行记 录和选择,指导下一步的搜索方向,这就是Tabu表的建立 为了找到“全局最优解”,就不应该执着于某一个特定的区域。局部搜索 的缺点就是太贪婪地对某一个局部区域以及其邻域搜索,导致一叶障目,不 见泰山。禁忌搜索就是对于找到的一部分局部最优解,有意识地避开它(但 不是完全隔绝),从而获得更多的搜索区间。
禁忌搜索算法的步骤
例子: 四城市非对称TSP问题,
始,终点都为A
第一步,假设禁忌长度为3
例子: 四城市非对称TSP问题,
始,终点都为A
第二步
例子:
第三步
例子: 四城市非对称TSP问题,
始,终点都为A
第四步
例子: 四城市非对称TSP问题,
始,终点都为A
搜索陷入循环
在邻域中找到最好的解
加入禁忌表,避免进入循环
禁忌表长度为T:{ } 规则:不得接受与禁忌表中相同的解 禁忌表的变化: 第一步搜索时:{ } 第二步搜索时:{ ① } 第三步搜索时:{ ①,②} 第四步搜索时:{ ①,②,③} . . . . .
避免陷入循环原理:当解为④时,邻域最优解为①, 下一步原本应该为①,但禁忌表中存在①,所以选择 次好的⑤,从而避免循环
3、禁忌表是一个循环表,在搜索过程中被循环的修改,使禁忌表始终保持 |T| 个移 动。 4、即使引入了禁忌表,禁忌搜索仍可能出现循环。因此,必须给定停止准则以避免 出现循环。当迭代内所发现的最好解无法改进或无法离开它时,算法停止。
兔子们找到了泰山,它们之中的一只就会留守在这里,其他的 再去别的地方寻找。就这样,一大圈后,把找到的几个山峰一 比较,珠穆朗玛峰脱颖而出。 当兔子们再寻找的时候,一般地会有意识地避开泰山,因为他 们知道,这里已经找过,并且有一只兔子在那里看着了。这就 是禁忌搜索中“禁忌表(tabu list)”的含义。那只留在泰山 的兔子一般不会就安家在那里了,它会在一定时间后重新回到 找最高峰的大军,因为这个时候已经有了许多新的消息,泰山 毕竟也有一个不错的高度,需要重新考虑,这个归队时间,在 禁忌搜索里面叫做“禁忌长度(tabu length)”;如果在搜索 的过程中,留守泰山的兔子还没有归队,但是找到的地方全是 华北平原等比较低的地方,兔子们就不得不再次考虑选中泰山, 也就是说,当一个有兔子留守的地方优越性太突出,超过了 “best so far”的状态,就可以不顾及有没有兔子留守,都把 这个地方考虑进来,这就叫“特赦准则(aspiration criterion)”。。
若禁忌长度减少1,第四步
例子: 四城市非对称TSP问题,
始,终点都为A
第五步
例子: 四城市非对称TSP问题,
始,终点都为A
第六步
thanks
谢谢
特赦(藐视)准则(aspiration criterion)
1)基于评价的规则,若出现一个解 的目标值好于前面任何一个最佳候 选解,可特赦。 2)基于最小错误的规则,若所有 对象都被禁忌,则特设一个评价最 优的解 3)基于影响力的大小,可特赦一 个对目标值影响大的对象
停止规则:算法在何种条件下停止 1)把最大迭代数作为停止算法的标准 2)在给定数目的迭代内所发现的最好解无法改进或 者无法离开时,算法停止 3)最优解的目标函数小于指定误差 4)最优解的禁忌频率达到指定值
禁忌搜索算法的主要思路
1、在搜索中,构造一个短期循环记忆表-禁忌表,禁忌表中存放刚刚进行过的 |T|(T 称为禁忌表)个邻居的移动,这种移动即解的简单变化。
2、禁忌表中的移动称为禁忌移动。对于进入禁忌表中的移动, 在以后的 |T| 次循环 内是禁止的,以避免回到原来的解,从而避免陷入循环。|T| 次循环后禁忌解除。