热统第三章作业答案

热统第三章作业答案
热统第三章作业答案

3.4 求证:

(a ),,;V n T V

S T n μ??????

=-

? ???????

(b ),,.T p

t n V p n μ??????

=

? ???????

解:(a )由自由能的全微分(式(3.2.9))

dF SdT pdV dn

μ=--+ (1)

及偏导数求导次序的可交换性,易得

,,.V n T V

S T n μ??????

=- ? ??????? (2)

这是开系的一个麦氏关系.

(a ) 类似地,由吉布斯函数的全微分(式(3.2.2))

dG SdT Vdp dn μ=-++

(3)

可得

,,.T p

T n V p n μ??????= ? ??????? (4)

这也是开系的一个麦氏关系.

3.5 求证:

,,.T V V n

U T n T μμ??????

-=- ? ???????

解:自由能F U T S

=-是以,

,T V n

为自变量的特性函数,求F 对n 的

偏导数(,

T V

不变),有

,,,.T V T V T V

F U S T n n n ?????????

=- ? ? ?????????? (1)

但由自由能的全微分

dF SdT pdV dn

μ=--+

可得

,,,,,

T V

T V V n

F n S n T μμ???

= ?

?????????

=- ? ??????? (2)

代入式(1),即有

,,.T V V n

U T n T μμ??????

-=- ? ???????

(3)

3.7 试证明在相变中物质摩尔内能的变化为

1.m p dT U L T dp ??

?=- ??

? 如果一相是气相,可看作理想气体,另一相是凝聚相,试将公式化简. 解:发生相变物质由一相转变到另一相时,其摩尔内能m U 、摩尔焓m H 和摩尔体积m V 的改变满足

.m m m U H p V ?=?-? (1)

平衡相变是在确定的温度和压强下发生的,相变中摩尔焓的变化等于物质在相变过程中吸收的热量,即相变潜热L :

.m H L ?=

克拉珀龙方程(式(3.4.6))给出

,m

dp L dT

T V =

? (3)

.m L dT V T dp

?=

(4)

将式(2)和式(4)代入(1),即有

1.m p dT U L T dp ???=- ??

? (5)

如果一相是气体,可以看作理想气体,另一相是凝聚相,其摩尔体积远小于气相的摩尔体积,则克拉珀龙方程简化为

2

.dp L p dT

R T

= (6)

式(5)简化为

1.m RT U L L ???=- ??

? (7)

3.9 以C βα表示在维持β相与α相两相平衡的条件下1mol β相物质升高1K 所吸收的热量,称为β相的两相平衡摩尔热容量,试证明:

.m p m m

p

V L C

C V V T βββ

α

β

α

???=-

?-??? 如果β相是蒸气,可看作理想气体,α相是凝聚相,上式可简化为

,p L C C T

β

β

α=-

并说明为什么饱和蒸气的热容量有可能是负的.

解:根据式(1.14.4),在维持β相与α相两相平衡的条件下,使

1mol β

相物质温度升高1K 所吸收的热量C βα为

.m m m p T dS S S dp C

T T T dT T p dT

βββ

β

α

????????==+ ? ? ?

???????? (1)

式(2.2.8)和(2.2.4)给出

,.

m p p

m m T p

S T C T S V p T β

βββ

???= ????????

??=- ? ??????? (2)

代入式(1)可得

.m p

p

V dp C

C T T dT βββ

α

???=- ?

??? (3)

将克拉珀龙方程代入,可将式(3)表为

.m p m m

p

V L C

C V V T ββ

β

α

β

α

???=-

?-??? (4)

如果β相是气相,可看作理想气体,α相是凝聚相,m

m

V V α

β

,在

式(4)中略去m

V α,且令m

pV R T

β

=,式(4)可简化为

.p L C C T

β

β

α=-

(5)

C β

α

是饱和蒸气的热容量. 由式(5)可知,当p L C T

β

<时,C βα是负的.

3.10 试证明,相变潜热随温度的变化率为

.m

m p

p m m

p p V V dL L

L C C dT

T T T V V βαβ

α

βα

????????=-+--?? ? ???-????????

如果β相是气相,α相是凝聚相,试证明上式可简化为

.p p dL C C dT

β

α

=-

解: 物质在平衡相变中由α相转变为β相时,相变潜热L 等于两相摩尔焓之差:

.m m L H H β

α

=- (1)

相变潜热随温度的变化率为

.m m m m p T p T

H H H H dL

dp dp

dT T p dT T p dT ββαα

????????????=+-- ? ? ? ????????????? (2)

式(2.2.8)和(2.2.10)给出

,

,p p

p T

H C T H V V T p T ???

= ??????????

=- ? ??????? (3)

所以

().m

m p p m

m p p V V dL dp

dp C C V V T dT

dT T T dT βαβ

α

β

α

????????=-+---??

? ???????????

将式中的

dp dT

用克拉珀龙方程(3.4.6)代入,可得

,m

m p

p m m

p p V V dL L

L C C dT

T T T V V βαβ

α

βα

????????=-+--?? ? ???-????????

(4)

这是相变潜热随温度变化的公式.

如果β相是气相,α相是凝聚相,略去m

V

α和m p

V T α

??? ?

???,并利用

m pV R T

β

=,可将式(4)简化为

.p p dL C C dT

β

α

=- (5)

3.15 证明在曲面分界面的情形下,相变潜热仍可表为

().m m m m L T S S H H β

α

β

α

=-=-

解:以指标α和β表示两相. 在曲面分界的情形下,热平衡条件仍为两相的温度相等,即

.T

T

T α

β

== (1)

当物质在平衡温度下从α相转变到β相时,根据式(1.14.4),相变潜

热为

().m m L T S S β

α

=- (2)

相平衡条件是两相的化学势相等,即

()(),,.T p T p α

α

β

β

μ

μ= (3)

根据化学势的定义

,m m m U TS pV μ=-+

式(3)可表为

,m m m m m m U TS p V U TS p V α

α

α

α

β

β

β

β

-+=-+

因此

()

()

m m

m m m m L T S S U p V U p V β

α

β

β

β

α

α

α

=-=+-+

.m m H H β

α

=- (4)

第七章、统计热力学基础习题和答案

统计热力学基础 一、选择题 1. 下面有关统计热力学的描述,正确的是:( ) A. 统计热力学研究的是大量分子的微观平衡体系 B. 统计热力学研究的是大量分子的宏观平衡体系 C. 统计热力学是热力学的理论基础 D. 统计热力学和热力学是相互独立互不相关的两门学科B 2. 在研究N、V、U有确定值的粒子体系的统计分布时,令刀n i = N,刀n i & i = U , 这是因为所研究的体系是:( ) A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的 C. 体系是孤立的,粒子是独立的 D. 体系是封闭的,粒子是相依的C 3. 假定某种分子的许可能级是0、&、2 £和3 &,简并度分别为1、1、2、3四个这样的分子构成的定域体系,其总能量为3£时,体系的微观状态数为:() A. 40 B. 24 C. 20 D. 28 A 4. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数N 很大,这是因为在推出该定律时:( ) . 假定粒子是可别的 B. 应用了斯特林近似公式 C. 忽略了粒子之间的相互作用 D. 应用拉氏待定乘因子法A 5. 对于玻尔兹曼分布定律n i =(N/q) ? g i ? exp( - £ i/kT)的说法:(1) n i是第i能级上的粒子分布数; (2) 随着能级升高,£ i 增大,n i 总是减少的; (3) 它只适用于可区分的独立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( ) A. (1)(3) B. (3)(4) C. (1)(2) D. (2)(4) C 6. 对于分布在某一能级£ i上的粒子数n i,下列说法中正确是:() A. n i 与能级的简并度无关 B. £ i 值越小,n i 值就越大 C. n i 称为一种分布 D. 任何分布的n i 都可以用波尔兹曼分布公式求出B 7. 15?在已知温度T时,某种粒子的能级£ j = 2 £ i,简并度g i = 2g j,则「和£ i上 分布的粒子数之比为:( ) A. 0.5exp( j/2£kT) B. 2exp(- £j/2kT) C. 0.5exp( -£j/kT) D. 2exp( 2 j/k£T) C 8. I2的振动特征温度? v= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2的温度是:( ) A. 306 K B. 443 K C. 760 K D. 556 K B 9. 下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( ) A. S、G、F、C v B. U、H、P、C v C. G、F、H、U D. S、U、H、G B 10. 分子运动的振动特征温度?v是物质的重要性质之一,下列正确的说法是: ( ) A. ? v越高,表示温度越高 B. ?v越高,表示分子振动能越小 C. ?越高,表示分子处于激发态的百分数越小 D. ?越高,表示分子处于基态的百分数越小 C 11. 下列几种运动中哪些运动对热力学函数G与

matlab课后习题解答第二章doc

第2章符号运算 习题2及解答 1 说出以下四条指令产生的结果各属于哪种数据类型,是“双精度” 对象,还是“符号”符号对象? 3/7+0.1; sym(3/7+0.1); sym('3/7+0.1'); vpa(sym(3/7+0.1)) 〖目的〗 ●不能从显示形式判断数据类型,而必须依靠class指令。 〖解答〗 c1=3/7+0.1 c2=sym(3/7+0.1) c3=sym('3/7+0.1') c4=vpa(sym(3/7+0.1)) Cs1=class(c1) Cs2=class(c2) Cs3=class(c3) Cs4=class(c4) c1 = 0.5286 c2 = 37/70 c3 = 0.52857142857142857142857142857143 c4 = 0.52857142857142857142857142857143 Cs1 = double Cs2 = sym Cs3 = sym Cs4 = sym 2 在不加专门指定的情况下,以下符号表达式中的哪一个变量被认 为是自由符号变量. sym('sin(w*t)'),sym('a*exp(-X)'),sym('z*exp(j*th)') 〖目的〗 ●理解自由符号变量的确认规则。 〖解答〗 symvar(sym('sin(w*t)'),1) ans = w symvar(sym('a*exp(-X)'),1) ans = a

symvar(sym('z*exp(j*th)'),1) ans = z 3 求以下两个方程的解 (1)试写出求三阶方程05.443 =-x 正实根的程序。注意:只要正实根,不要出现其他根。 (2)试求二阶方程022=+-a ax x 在0>a 时的根。 〖目的〗 ● 体验变量限定假设的影响 〖解答〗 (1)求三阶方程05.443 =-x 正实根 reset(symengine) %确保下面操作不受前面指令运作的影响 syms x positive solve(x^3-44.5) ans = (2^(2/3)*89^(1/3))/2 (2)求五阶方程02 2 =+-a ax x 的实根 syms a positive %注意:关于x 的假设没有去除 solve(x^2-a*x+a^2) Warning: Explicit solution could not be found. > In solve at 83 ans = [ empty sym ] syms x clear syms a positive solve(x^2-a*x+a^2) ans = a/2 + (3^(1/2)*a*i)/2 a/2 - (3^(1/2)*a*i)/2 4 观察一个数(在此用@记述)在以下四条不同指令作用下的异同。 a =@, b = sym( @ ), c = sym( @ ,' d ' ), d = sym( '@ ' ) 在此,@ 分别代表具体数值 7/3 , pi/3 , pi*3^(1/3) ;而异同通过vpa(abs(a-d)) , vpa(abs(b-d)) , vpa(abs(c-d))等来观察。 〖目的〗 ● 理解准确符号数值的创建法。 ● 高精度误差的观察。 〖解答〗 (1)x=7/3 x=7/3;a=x,b=sym(x),c=sym(x,'d'),d=sym('7/3'), a =

高教热统答案第六章

第六章 近独立粒子的最概然分布 习题6.2 试证明,对子一维自由粒子,再长度L 内,在ε到εεd +的能量范围 内,量 子态数为: εεεεd m h L d D 2 1 22)(?? ? ??= 证:一维自由粒子,x P 附近的量子态为 x dP h L dn =;x x x x x dP m dP m m m dP P d m P ε εεε21222 +=?+==?= 于是。()εε εεd m h L d D 2+ = 而 ±P x 对应同一能量ε,于是:()m h L m h L D ε εε2222=??? ? ???= 习题6.3试证明,对于二维自由粒子,在长度L 2内,在ε到εεd +的能量范围 内, 量子态数为 ()επεεmd h L d D 22 2= 证:二维;在P x ,P y 附近dP x dP y 区间上内的粒子数。 ?PdPd h S dP dP h S dn y x 22== (s -面积) 因m P 22 =ε只与P 有关(P >0),故对?积分可得: ()??? ? ??==m P h S PdP h S d D 222222ππεε,επd h mS m 22= ()2 2h mS D πε= ? (s=L 2 ) 习题6.4在极端相对论情形下,粒子的能量动量关系为cp =ε。试求在体积V 内,在ε到εεd +的能量范围内能量范围内三维粒子的量子态数。 解:φθθd dpd p h V dp dp dp h V dn z y x sin 233== 由于cp =ε只与p 有关,与θ、φ无关,于是

??===ππ εππφθθεε200 3 2 2323)(44sin )(hc V dp p h V d dpd p h V d D 以上已经代入了 c d p d cp =?=εε 于是, 3 2 )(4)(hc V D επε= 习题6.5 设系统含有两种粒子,其粒子数分别为N 和N ’.粒子间的相互作用很 弱,可 看作是近独立的。假设粒子可分辨,处在一个个体量子态的粒子数不受限制。试 证明, 在平衡态下两种粒子的最概然分布分别为:l e a l l βεαω--=和' --' ='l e a l l βεαω。其 中l ε和 'l ε是两种粒子的能级,l ω和'l ω是能级简并度。 证: 粒子A 能级,粒子数分布:l ε——{a l }——简并度l ω 粒子B 能级,粒子数分布:'l ε——{a ’l }——简并度' l ω 由21Ω?Ω=Ω 21ln ln ln Ω+Ω=Ω 即使Ω最大,()11ln ΩΩ, ()22ln ΩΩ达到最大。 l e a l l βεαω--=? l e a l l εβαω''-'-'=' (注:' l a δ与l a δ在此情况下独立) 讨论,若将一系作为子系统,意味总能守恒,于是参照教材玻尔兹曼分布证 明 …… 0ln ln =??? ??''+-''-'??? ? ??''+-???? ???∑∑∑∑∑∑l l l l l l l l l l l l a a a a a a a a δεδεβδαδωδαδω 同一0β,原题得证。这也是满足热平衡的要求。

工程热力学思考题答案,第七章

第七章 气体与蒸汽的流动 7、1对改变气流速度起主要作用的就是通道的形状还就是气流本身的状态变化? 答:改变气流速度主要就是气流本身状态变化,主要就是压力变化直接导致流速 的变化。 7、2如何用连续性方程解释日常生活的经验:水的流通截面积增大,流速就降低? 答:日常生活中水的流动一般都为稳定流动情况11 221212f f m m m Ac A c q q q v v ====,对 于不可压缩流体水1v =2v ,故有流速与流通截面积成反比关系。 7、3在高空飞行可达到高超音速的飞机在海平面上就是否能达到相同的高马赫数? 答:不能,因为速度与压比有个反比关系,当压比越大最大速度越小,高空时压比小, 可以达到高马赫数,海平面时压比增大,最大速度降低无法达到一样的高马赫数。 7、4当气流速度分别为亚声速与超声速时,下列形状的管道(图7-16)宜于作喷管还就是宜于作扩压管? 答:气流速度为亚声速时图7-16中的1 图宜于作喷管,2 图宜于作扩压管,3 图宜 于作喷管。当声速达到超声速时时1 图宜于作扩压管,2 图宜于作喷管,3 图宜于作扩压管。4 图不改变声速也不改变压强。 7、5当有摩擦损耗时,喷管的流出速度同样可用2f c ,似乎与无 摩擦损耗时相同,那么摩擦损耗表现在哪里呢? 答:摩擦损耗包含在流体出口的焓值里。摩擦引起出口速度变小,出口动能的减小 引起出口焓值的增大。 7、6考虑摩擦损耗时,为什么修正出口截面上速度后还要修正温度? 答:因为摩擦而损耗的动能被气流所吸收,故需修正温度。

7、7考虑喷管内流动的摩擦损耗时,动能损失就是不就是就就是流动不可逆损 失?为什么? 答:不就是。因为其中不可逆还包括部分动能因摩擦损耗转化成热能,而热能又被 气流所吸收,所造成的不可逆。 7、8在图7-17 中图(a)为渐缩喷管,图(b) 为缩放喷管。设两喷管的工作背压均为0、1MPa,进口截面压力均为1 MPa,进口流速1f c 可忽略不计。1)若两喷管的最小截面面积相等,问两喷管的流量、出口截面流速与压力就是否相同?2) 假如沿截面2’-2’切去一段,将产生哪些后果?出口截面上的压力、流速与流量起什么变化? 答:1)若两喷管的最小截面面积相等,两喷管的流量相等,渐缩喷管出口截面流速 小于缩放喷管出口截面流速,渐缩喷管出口截面压力大于缩放喷管出口截面压力。 2) 若截取一段,渐缩喷管最小截面面积大于缩放喷管最小截面面积,则渐缩喷管的流量小于缩放喷管的流量,渐缩喷管出口截面流速小于缩放喷管出口截面流 速,渐缩喷管出口截面压力大于缩放喷管出口截面压力。 7、9图7-18中定焓线就是否就是节流过程线?既然节流过程不可逆,为何在推导节流微分效应j μ时可利用0dh =? 答:定焓线并不就是节流过程线。在节流口附近流体发生强烈的扰动及涡流,不能

热统第三章作业答案

3.4 求证: (a ),,;V n T V S T n μ?????? =- ? ??????? (b ),,.T p t n V p n μ?????? = ? ??????? 解:(a )由自由能的全微分(式(3.2.9)) dF SdT pdV dn μ=--+ (1) 及偏导数求导次序的可交换性,易得 ,,.V n T V S T n μ?????? =- ? ??????? (2) 这是开系的一个麦氏关系. (a ) 类似地,由吉布斯函数的全微分(式(3.2.2)) dG SdT Vdp dn μ=-++ (3) 可得 ,,.T p T n V p n μ??????= ? ??????? (4) 这也是开系的一个麦氏关系. 3.5 求证: ,,.T V V n U T n T μμ?????? -=- ? ??????? 解:自由能F U T S =-是以, ,T V n 为自变量的特性函数,求F 对n 的 偏导数(, T V 不变),有 ,,,.T V T V T V F U S T n n n ????????? =- ? ? ?????????? (1) 但由自由能的全微分 dF SdT pdV dn μ=--+ 可得 ,,,,, T V T V V n F n S n T μμ??? = ? ????????? =- ? ??????? (2) 代入式(1),即有

,,.T V V n U T n T μμ?????? -=- ? ??????? (3) 3.7 试证明在相变中物质摩尔内能的变化为 1.m p dT U L T dp ?? ?=- ?? ? 如果一相是气相,可看作理想气体,另一相是凝聚相,试将公式化简. 解:发生相变物质由一相转变到另一相时,其摩尔内能m U 、摩尔焓m H 和摩尔体积m V 的改变满足 .m m m U H p V ?=?-? (1) 平衡相变是在确定的温度和压强下发生的,相变中摩尔焓的变化等于物质在相变过程中吸收的热量,即相变潜热L : .m H L ?= 克拉珀龙方程(式(3.4.6))给出 ,m dp L dT T V = ? (3) 即 .m L dT V T dp ?= (4) 将式(2)和式(4)代入(1),即有 1.m p dT U L T dp ???=- ?? ? (5) 如果一相是气体,可以看作理想气体,另一相是凝聚相,其摩尔体积远小于气相的摩尔体积,则克拉珀龙方程简化为 2 .dp L p dT R T = (6) 式(5)简化为 1.m RT U L L ???=- ?? ? (7) 3.9 以C βα表示在维持β相与α相两相平衡的条件下1mol β相物质升高1K 所吸收的热量,称为β相的两相平衡摩尔热容量,试证明:

DS第二章-课后习题答案

第二章线性表 2.1 填空题 (1)一半插入或删除的位置 (2)静态动态 (3)一定不一定 (4)头指针头结点的next 前一个元素的next 2.2 选择题 (1)A (2) DA GKHDA EL IAF IFA(IDA) (3)D (4)D (5) D 2.3 头指针:在带头结点的链表中,头指针存储头结点的地址;在不带头结点的链表中,头指针存放第一个元素结点的地址; 头结点:为了操作方便,在第一个元素结点前申请一个结点,其指针域存放第一个元素结点的地址,数据域可以什么都不放; 首元素结点:第一个元素的结点。 2.4已知顺序表L递增有序,写一算法,将X插入到线性表的适当位置上,以保持线性表的有序性。 void InserList(SeqList *L,ElemType x) { int i=L->last; if(L->last>=MAXSIZE-1) return FALSE; //顺序表已满 while(i>=0 && L->elem[i]>x) { L->elem[i+1]=L->elem[i]; i--; } L->elem[i+1]=x; L->last++; } 2.5 删除顺序表中从i开始的k个元素 int DelList(SeqList *L,int i,int k) { int j,l; if(i<=0||i>L->last) {printf("The Initial Position is Error!"); return 0;} if(k<=0) return 1; /*No Need to Delete*/ if(i+k-2>=L->last) L->last=L->last-k; /*modify the length*/

2009热统复习题与思考题及答案

热力学与统计物理复习题及答案 一、解释如下概念 ⑴热力学平衡态;⑵可逆过程;⑶准静态过程;⑷焦耳-汤姆逊效应;⑸μ空间;⑹Γ空间;⑺特性函数;⑻系综;⑼混合系综;⑽非简并性条件;⑾玻色——爱因斯坦凝聚; ⑴热力学平衡态:一个孤立系统经长时间后,宏观性质不随时间而变化的状态。 ⑵可逆过程:若系统经一过程从状态A出发到达B态后能沿相反的过程回到初态A,而且 在回到A后系统和外界均回复到原状,那么这一过程叫可逆过程。 ⑶准静态过程:如果系统状态变化很缓慢,每一态都可视为平衡态,则这过程叫准静态过程。 ⑷焦耳一汤姆孙效应:气体在节流过程中气体温度随压强减小而发生变化的现象。 ⑸μ空间:设粒子的自由度r,以r个广义坐标为横轴,r个动量为横轴,所张成的笛卡尔 直角空间。 ⑹Γ空间:该系统自由度f,则以f个广义坐标为横轴,以f个广义动量为纵轴,由此张成的f2维笛卡尔直角空间叫Γ空间。 ⑺特性函数:若一个热力学系统有这样的函数,只要知道它就可以由它求出系统的其它函数,即它能决定系统的热力学性质,则这个函数叫特性函数。 ⑻系综:大量的彼此独立的具有相同结构但可以有不同微观状态的假想体系的集合叫系综,常见的有微正则系综、正则系综、巨正则系综。 ⑼混合系综:设系统能级E1…,E n…,系综中的n个系统中,有n1个处于E1的量子态;…,有n i个系统处于E i的相应量子态,则这样的系综叫混合系综。 页脚内容1

页脚内容2 ⑽非简并性条件:指1/<

热力学与统计物理第三章知识总结

§3.1 热动平衡判据 当均匀系统与外界达到平衡时,系统的热力学参量必须满足一定的条件,称为系统的平衡条件。这些条件可以利用一些热力学函数作为平衡判据而求出。下面先介绍几种常用的平衡判据。 oisd一、平衡判据 1、熵判据 熵增加原理,表示当孤立系统达到平衡态时,它的熵增加到极大值,也就是说,如果一个孤立系统达到了熵极大的状态,系统就达到了平衡态。于是,我们就能利用熵函数的这一性质来判定孤立系统是否处于平衡态,这称为熵判据。孤立系统是完全隔绝的,与其他物体既没有热量的交换,也没有功的交换。如果只有体积变化功,孤立系条件相当与体积不变和内能不变。 因此熵判据可以表述如下:一个系统在体积和内能不变的情形下,对于各种可能的虚变动,平衡态的熵最大。在数学上这相当于在保持体积和内能不变的条件下通过对熵函数求微分而求熵的极大值。如果将熵函数作泰勒展开,准确到二级有 d因此孤立系统处在稳定平衡态的充分必要条件为 既围绕某一状态发生的各种可能的虚变动引起的熵变,该状态的熵就具有极大值,是稳定的平衡状态。 如果熵函数有几个可能的极大值,则其中最大的极大相应于稳定平衡,其它较小的极大相应于亚稳平衡。亚稳平衡是这样一种平衡,对于无穷小的变动是稳定是,对于有限大的变动是不稳定的。如果对于某些变动,熵函数的数值不变,,这相当于中性平衡了。 熵判据是基本的平衡判据,它虽然只适用于孤立系统,但是要把参与变化的全部物体都包括在系统之内,原则上可以对各种热动平衡问题作出回答。不过在实际应用上,对于某些经常遇到的物理条件,引入其它判据是方便的,以下将讨论其它判据。 2、自由能判据

表示在等温等容条件下,系统的自由能永不增加。这就是说,处在等温等容条件下的系统,如果达到了自由能为极小的状态,系统就达到了平衡态。我们可以利用函数的这一性质来判定等温等容系统是否处于平衡态,其判据是:系统在等温等容条件下,对于各种可能的变动,平衡态的自由能最小。这一判据称为自由能判据。 按照数学上的极大值条件,自由能判据可以表示为: ; 由此可以确定平衡条件和平衡的稳定性条件。 所以等温等容系统处于稳定平衡状态的必要和充分条件为: 3吉布斯函数判据 在等温等压过程中,系统的吉布斯函数永不增加。可以得到吉布斯函数判据:系统在等温等压条件下,对于各种可能的变动,平衡态的吉布斯函数最小。 数学表达式为 , 等温等压系统处在稳定平衡状态的必要和充分条件为 除了熵,自由能和吉布斯函数判据以外,还可以根据其它的热力学函数性质进行判断。例如,内能判据,焓判据等。 二、平衡条件 做为热动平衡判据的初步应用,我们考虑一个均匀的物质系统与具有恒定温度和恒定压强的热源相互接触,在接触中二者可以通过功和热量的方式交换能量。我们推求在达到平衡时所要满足的平衡条件和平衡稳定条件。 1.平衡条件 现在利用熵判据求系统的平衡条件。我们将系统和热源合起来构成一个孤立系统,设系统的 熵为S,热源的熵为因为熵是一个广延量,具有可加性,则孤立系统的总熵(用) 为: (1) 当达到平衡态时,根据极值条件可得: (2)

热力学第三章答案

⑴∵PV=nRT,∴当P=2*105 Pa,T=35+273=308(k),R=8.3145 n=5?10328.9=173(mol),∴V=173?8.3145?308 2?105=2.215m 3,∴B 的容积为2.215m 3 (2)又∵P A =5?105 Pa, T A =25+273=298(k),又∵PV=nRT,∴n A =5?105?18.3145?298=201.8(mol) ∵PV=nRT,∵V=1+2.215=3.215(m 3),n=201.8+173=374.8(mol),T=20+273=293(k) P= 374.8*8.314*293/3.215=0.284MPa ⑶m =m A +m B =201.8*28.9*10?3+5=10.832(kg) 3-6 设用掉4kg 氮气后,剩余氮气的物质的量为n 1mol 又∵PV=nRT ,∴当n 1=3?105?68.3145?300=721.63(mol ),∴m 1=721.63*28*10?3=20.21(kg) ∴m 总=20.21+4=24.21(kg),又∵n 总=721.63+ 400028=864.49(mol ) ∴P 初=864.49?8.3145?3206=3.83*105 (Pa) 3-8 ⑴ 由平均比热容表可得 T 1=480k ,∴t 1=480-273=207(℃) ∴C p1=1.012+(1.019-1.012)*0.07=1.0125(kJ/kg), t 2=1000-273=727(℃) ∴C p2=1.061+(1.071-1.061)*0.27=1.0637(kJ/kg) ∴h 1=C p1*T 1=1.0125*480=486(kJ/kg),h 2=C p2*T 2=1.0637*1000=1063.7(kJ/kg) △h =h 2-h 1=577.7 又∵μ1=h 1-R g *T 1=486- 8.314528.9*480=347.9(kJ/kg) μ2=h 2-R g *T 2=1063.7-8.314528.9*1000=776(kJ/kg) ∴△μ=μ2-μ1=776-347.9=428.1(kJ/kg) 由空气热力性质表可得 h 1=482.49(kJ/kg),μ1=344.70(kJ/kg),S 1=2.17760(kJ/kg*k) h 2=1046.04(kJ/kg), μ2=758.94(kJ/kg ), S 2=2.96770(kJ/kg*k) ∴△h =h 2-h 1=1046.04-482.49=563.55(kJ/kg), △μ=μ2-μ1=414.24(kJ/kg) △S =S 2-S 1=2.9677-2.1776=0.7901(kJ/kg*k) ⑵ μ1, μ2, h 1, h 2, △h , △μ都不变,因为理想气体的这些参数只受温度的影响, 与压强无关。 ⑶两种算法的结果略有不同

大物第二章课后习题答案

简答题 什么是伽利略相对性原理什么是狭义相对性原理 答:伽利略相对性原理又称力学相对性原理,是指一切彼此作匀速直线运动的惯性系,对于描述机械运动的力学规律来说完全等价。 狭义相对性原理包括狭义相对性原理和光速不变原理。狭义相对性原理是指物理学定律在所有的惯性系中都具有相同的数学表达形式。光速不变原理是指在所有惯性系中,真空中光沿各方向的传播速率都等于同一个恒量。 同时的相对性是什么意思如果光速是无限大,是否还会有同时的相对性 答:同时的相对性是:在某一惯性系中同时发生的两个事件,在相对于此惯性系运动的另一个惯性系中观察,并不一定同时。 如果光速是无限的,破坏了狭义相对论的基础,就不会再涉及同时的相对性。 什么是钟慢效应 什么是尺缩效应 答:在某一参考系中同一地点先后发生的两个事件之间的时间间隔叫固有时。固有时最短。固有时和在其它参考系中测得的时间的关系,如果用钟走的快慢来说明,就是运动的钟的一秒对应于这静止的同步的钟的好几秒。这个效应叫运动的钟时间延缓。 尺子静止时测得的长度叫它的固有长度,固有长度是最长的。在相对于其运动的参考系中测量其长度要收缩。这个效应叫尺缩效应。 狭义相对论的时间和空间概念与牛顿力学的有何不同 有何联系 答:牛顿力学的时间和空间概念即绝对时空观的基本出发点是:任何过程所经历的时间不因参考系而差异;任何物体的长度测量不因参考系而不同。狭义相对论认为时间测量和空间测量都是相对的,并且二者的测量互相不能分离而成为一个整体。 牛顿力学的绝对时空观是相对论时间和空间概念在低速世界的特例,是狭义相对论在低速情况下忽略相对论效应的很好近似。 能把一个粒子加速到光速c 吗为什么 答:真空中光速C 是一切物体运动的极限速度,不可能把一个粒子加速到光速C 。从质速关系可看到,当速度趋近光速C 时,质量趋近于无穷。粒子的能量为2 mc ,在实验室中不存在这无穷大的能量。 什么叫质量亏损 它和原子能的释放有何关系 答:粒子反应中,反应前后如存在粒子总的静质量的减少0m ?,则0m ?叫质量亏损。原子能的释放指核反应中所释 放的能量,是反应前后粒子总动能的增量k E ?,它可通过质量亏损算出20k E m c ?=?。 在相对论的时空观中,以下的判断哪一个是对的 ( C ) (A )在一个惯性系中,两个同时的事件,在另一个惯性系中一定不同时;

第七章 统计热力学基础

第七章统计热力学基础 一、选择题 1、统计热力学主要研究()。 (A) 平衡体系(B)单个粒子的行为案(C) 非平衡体系(D) 耗散结构 2、能量零点的不同选择,在下面诸结论中哪一种说法是错误的:( ) (A) 影响配分函数的计算数值(B) 影响U,H,F,G 的数值 (C) 影响Boltzmann分布数N 的数值(D) 影响能级能量εi的计算数值 3、最低能量零点选择不同,对哪些热力学函数值无影响:( ) (A) U (B) S (C) G (D) H 4、统计热力学研究的主要对象是:() (A) 微观粒子的各种变化规律 (B) 宏观体系的各种性质 (C) 微观粒子的运动规律 (D) 宏观系统的平衡性质 5、对于一个U,N,V确定的体系,其微观状态数最大的分布就是最可几分布,得出这一结论的理论依据是:() (A) 玻兹曼分布定律(B) 等几率假设(C) 分子运动论(D) 统计学原理 6、以0到9这十个数字组成不重复的三位数共有() (A) 648个(B) 720个(C) 504个(D) 495个 7、各种不同运动状态的能级间隔是不同的,对于同一种气体分子,其平动、转动、振动和电子运动的能级间隔的大小顺序是:() (A) t > r > v > e(B) t < r < v < e (C) e > v > t > r(D) v > e > t > r 8、在统计热力学中,对物系的分类按其组成的粒子能否被分辨来进行,按此原则:() (A) 气体和晶体皆属定域子体系 (B) 气体和晶体皆属离域子体系 (C) 气体属离域子体系而晶体属定域子体系 (D) 气体属定域子体系而晶体属离域子体系 9、对于定域子体系分布X所拥有的微观状态t x为:() (A) (B)

第二章课后习题与答案

第2章人工智能与知识工程初步 1. 设有如下语句,请用相应的谓词公式分别把他们表示出来:s (1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。 解:定义谓词d P(x):x是人 L(x,y):x喜欢y 其中,y的个体域是{梅花,菊花}。 将知识用谓词表示为: (?x )(P(x)→L(x, 梅花)∨L(x, 菊花)∨L(x, 梅花)∧L(x, 菊花)) (2) 有人每天下午都去打篮球。 解:定义谓词 P(x):x是人 B(x):x打篮球 A(y):y是下午 将知识用谓词表示为:a (?x )(?y) (A(y)→B(x)∧P(x)) (3)新型计算机速度又快,存储容量又大。 解:定义谓词 NC(x):x是新型计算机 F(x):x速度快 B(x):x容量大 将知识用谓词表示为: (?x) (NC(x)→F(x)∧B(x)) (4) 不是每个计算机系的学生都喜欢在计算机上编程序。 解:定义谓词 S(x):x是计算机系学生 L(x, pragramming):x喜欢编程序 U(x,computer):x使用计算机 将知识用谓词表示为: ? (?x) (S(x)→L(x, pragramming)∧U(x,computer)) (5)凡是喜欢编程序的人都喜欢计算机。 解:定义谓词 P(x):x是人 L(x, y):x喜欢y 将知识用谓词表示为:

(?x) (P(x)∧L(x,pragramming)→L(x, computer)) 2 请对下列命题分别写出它们的语义网络: (1) 每个学生都有一台计算机。 解: (2) 高老师从3月到7月给计算机系学生讲《计算机网络》课。 解: (3) 学习班的学员有男、有女、有研究生、有本科生。 解:参例2.14 (4) 创新公司在科海大街56号,刘洋是该公司的经理,他32岁、硕士学位。 解:参例2.10 (5) 红队与蓝队进行足球比赛,最后以3:2的比分结束。 解:

热统第一章作业答案

1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数 κT 。 解:已知理想气体的物态方程为 ,pV nRT = (1) 由此易得 11 ,p V nR V T pV T α???= == ? ??? (2) 11 ,V p nR p T pV T β???= == ? ??? (3) 2111 .T T V nRT V p V p p κ???????=-=--= ? ? ???????? (4) 1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得: ()ln T V =αdT κdp -? 如果11 ,T T p ακ== ,试求物态方程。 解:以,T p 为自变量,物质的物态方程为 (),,V V T p = 其全微分为 .p T V V dV dT dp T p ?????? =+ ? ? ?????? (1) 全式除以V ,有 11.p T dV V V dT dp V V T V p ??????=+ ? ??????? 根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为 .T dV dT dp V ακ=- (2)

上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有 ()ln .T V dT dp ακ=-? (3) 若1 1,T T p ακ==,式(3)可表为 11ln .V dT dp T p ?? =- ???? (4) 选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体 积由0V 最终变到V ,有 000 ln =ln ln ,V T p V T p - 即 00 p V pV C T T ==(常量) , 或 .p V C T = (5) 式(5)就是由所给11,T T p ακ==求得的物态方程。 确定常量C 需要进一步的实验数据。

高教热统答案第七章

第七章 玻耳兹曼统计 习题7.1根据公式∑??-=l l l V a P ε证明,对于非相对论粒子: )()2( 2122 222 2 z y x n n n L m m p s ++= = π,z y x n n n ,,=0,±1,±2,… 有V U p 32=,上述结论对玻耳兹曼分布、玻色分布和费米分布都成立。 证:∑??-=l l l V a P ε=?? ????++??- ∑ )()2(212222z y x l l n n n L m V a π =?? ? ???++??-∑)()2(222223 z y x l l n n n L m L V a π 其中 V a u l l ε∑= ;V ~3L ?=p ??? ? ??? ? ++?? - ∑)() 2(212 2 2 2 32 z y x l l n n n V m V a π (对同一l ,2 22z y x n n n ++) =m a l l 21∑-2 )2( π)(2 22z y x n n n ++) 3 2(3 5- - V =m a l l 21∑-2 2 222) ()2(L n n n z y x ++ π) 3 2(3 532-- V V = V U 32 习题7.2试根据公式∑??-=l l l V a P ε证明,对于极端相对论粒子: 2 1 2 22) (2z y x n n n L c cp ++== πε,z y x n n n ,,=0,±1,±2,… 有V U p 31= ,上述结论对玻耳兹曼分布、玻色分布和费米分布都成立。 证: ∑??-=l l l V a P ε;

热力学与统计物理答案第三章.(DOC)

第三章 单元系的相变 3.1 证明下列平衡判据(假设S >0); (a )在,S V 不变的情形下,稳定平衡态的U 最小. (b )在,S p 不变的情形下,稳定平衡态的H 最小. (c )在,H p 不变的情形下,稳定平衡态的S 最小. (d )在,F V 不变的情形下,稳定平衡态的T 最小. (e )在,G p 不变的情形下,稳定平衡态的T 最小. (f )在,U S 不变的情形下,稳定平衡态的V 最小. (g )在,F T 不变的情形下,稳定平衡态的V 最小. 解:为了判定在给定的外加约束条件下系统的某状态是否为稳定的平衡状态,设想系统围绕该状态发生各种可能的自发虚变动. 由于不存在自发的可逆变动,根据热力学第二定律的数学表述(式(1.16.4)),在虚变动中必有 ?,U T S W δδ<+ (1) 式中U δ和S δ是虚变动前后系统内能和熵的改变,?W 是虚变动中外界所做的功,T 是虚变动中与系统交换热量的热源温度. 由于虚变动只涉及无穷小的变化,T 也等于系统的温度. 下面根据式(1)就各种外加约束条件导出相应的平衡判据. (a ) 在,S V 不变的情形下,有 0, ?0. S W δ== 根据式(1),在虚变动中必有 0.U δ< (2) 如果系统达到了U 为极小的状态,它的内能不可能再减少,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,S V 不变的情形下,稳定平衡态的U 最小. (b )在,S p 不变的情形下,有 0, ?, S W pdV δ==- 根据式(1),在虚变动中必有

0,U p V δδ+< 或 0.H δ< (3) 如果系统达到了H 为极小的状态,它的焓不可能再减少,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,S p 不变的情形下,稳定平衡态的H 最小. (c )根据焓的定义H U pV =+和式(1)知在虚变动中必有 ?.H T S V p p V W δδδδ<+++ 在H 和p 不变的的情形下,有 0,0, ?, H p W p V δδδ===- 在虚变动中必有 0.T S δ> (4) 如果系统达到了S 为极大的状态,它的熵不可能再增加,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,H p 不变的情形下,稳定平衡态的S 最大. (d )由自由能的定义F U TS =-和式(1)知在虚变动中必有 ?.F S T W δδ<-+ 在F 和V 不变的情形下,有 0, ?0, F W δ== 故在虚变动中必有 0.S T δ< (5) 由于0S >,如果系统达到了T 为极小的状态,它的温度不可能再降低,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,F V 不变的情形下,稳定平衡态的T 最小. (e )根据吉布斯函数的定义G U TS pV =-+和式(1)知在虚变动中必有 ?.G S T p V V p W δδδδ<-++- 在,G p 不变的情形下,有

第二章课后习题答案

1. 已知某一时期内某商品的需求函数为Q =50-5P ,供给函数为Qs=-10+5p。(1)求均衡价格Pe和均衡数量Qe,并作出几何图形。 (2)假定供给函数不变,由于消费者收入水平提高,使需求函数变为Qd=60-5P。求出相应的均衡价格Pe 和均衡数量Qe ,并作出几何图形。(3)假定需求函数不变,由于生产技术水平提高,使供给函数变为Qs=-5+5p。 求出相应的均衡价格Pe 和均衡数量Qe ,并作出几何图形。 (4)利用(1)(2 )(3),说明静态分析和比较静态分析的联系和区别。(5)利用(1)(2 )(3),说明需求变动和供给变动对均衡价格和均衡数量的影响. 解答: (1)将需求函数Qd = 50-5P和供给函数Qs =-10+5P 代入均衡条件Qd = Qs ,有: 50- 5P= -10+5P 得: Pe=6 以均衡价格Pe =6 代入需求函数Qd =50-5p ,得: Qe=20 所以,均衡价格和均衡数量分别为Pe =6 , Qe=20 (图略) (2)将由于消费者收入提高而产生的需求函数Qd=60-5p 和原供给函数 Qs=-10+5P, 代入均衡条件Q d= Qs ,有: 60-5P=-10+5P 得Pe=7 以均衡价格Pe=7代入Qd方程,得Qe=25 所以,均衡价格和均衡数量分别为Pe =7 , Qe=25 (图略) (3) 将原需求函数Qd =50-5p和由于技术水平提高而产生的供给函数Q =-5+5p , 代入均衡条件Qd =Qe ,有: 50-5P=-5+5P得Pe= 5.5 以均衡价格Pe= 5.5 代入Qd =50-5p ,得22.5 所以,均衡价格和均衡数量分别为Pe=5.5 Qe=22.5 (4)所谓静态分析是考察在既定条件下某一经济事物在经济变量的相互作用下所实现的均衡状态及其特征.也可以说,静态分析是在一个经济模型中根据所给的外生变量来求内生变量的一种分析方法.以(1)为例,在图中,均衡点 E 就是一个体现了静态分析特征的点.它是在给定的供求力量的相互作用下所达到的一个均衡点.在此,给定的供求力量分别用给定的供给函数Q=-10+5P 和需求函数Q=50-5P表示,均衡点具有的特征是:均衡价格P=6 且当P =6 时,有Q= Q d= Qe =20 ,同时,

第2章课后习题参考答案

第二章 一元线性回归分析 思考与练习参考答案 2.1 一元线性回归有哪些基本假定? 答: 假设1、解释变量X 是确定性变量,Y 是随机变量; 假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n 假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, σ2 ) i=1,2, …,n 2.2 考虑过原点的线性回归模型 Y i =β1X i +εi i=1,2, …,n 误差εi (i=1,2, …,n )仍满足基本假定。求β1的最小二乘估计 解: 得: 2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。 证明: 其中: ∑∑+-=-=n i i i n i X Y Y Y Q 1 2102 1 ))??(()?(ββ211 1 2 )?()?(i n i i n i i i e X Y Y Y Q β∑∑==-=-= 01????i i i i i Y X e Y Y ββ=+=-

即: ∑e i =0 ,∑e i X i =0 2.4回归方程E (Y )=β0+β1X 的参数β0,β1的最小二乘估计与最大似然估计在什 么条件下等价?给出证明。 答:由于εi ~N(0, σ2 ) i=1,2, …,n 所以Y i =β0 + β1X i + εi ~N (β0+β1X i , σ2 ) 最大似然函数: 使得Ln (L )最大的0 ?β,1?β就是β0,β1的最大似然估计值。 同时发现使得Ln (L )最大就是使得下式最小, 上式恰好就是最小二乘估计的目标函数相同。值得注意的是:最大似然估计是在εi ~N (0, σ2 )的假设下求得,最小二乘估计则不要求分布假设。 所以在εi ~N(0, σ2 ) 的条件下, 参数β0,β1的最小二乘估计与最大似然估计等价。 ∑∑+-=-=n i i i n i X Y Y Y Q 1 2102 1 ))??(()?(ββ0 1 00??Q Q β β ??==? ?

相关文档
最新文档