2012年苏科版八年级数学下册阶段性测试试卷

合集下载

苏科版八年级下册数学第一次阶段性检测试卷

苏科版八年级下册数学第一次阶段性检测试卷
3.代数式 , , , 中分式有(★)
A.1个B.2个C.3个D.4个
4.如果不等式组 有解,那么的取值范围是(★)
A.m>5B.m<5C.m≥5 D.m≤5
5.若双曲线 经过点A(m,-2m),则m的值为(★)
A. B.3 C. D.
6.在同一平面直角坐标系中,函数 的图像大致是(★)
7.已知-=4,则的值等于(★)
一、选择题(本大题共8小题,每小题3分,共计24分.在每小题所给的四个选项中,恰有一项是符合题目要求,请将符合要求的选项前面的字母填入下表相应的空格内)
1
2
3
4
5
6
7
8
1.不等式 的解集是(★)
A. B. C. D.
2.如果把分式 中的x,y都扩大2倍,则该分式的值(★)
A.扩大2倍B.缩小2倍C.不变D.扩大3倍
(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;
(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?
26.(本题满分12分)如图,一次函数y=kx+b与反比例函数y= 的图象交于A(2,3),B(-3,n)两点.
(1)求一次函数与反比例函数的解析式;
为m.
13.若分式方程 有增根,则 的值为_______________.
14.反比例函数y = (k ≠0)的图象经过点(2,5),若点(1,n)在图象上,则n=.
15.当 时,分式 有意义;当 时,分式 值为0.
16.如图,A、B是双曲线上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC=6.则k=.
八年级下数学第一次阶段性检测

苏科版初中数学八年级下册《第10章 分式》单元测试卷

苏科版初中数学八年级下册《第10章 分式》单元测试卷

苏科新版八年级下学期《第10章分式》单元测试卷一.选择题(共21小题)1.下列各式中,分式的个数是().A.2B.3C.4D.52.使分式有意义的x的取值范围是()A.x≠1B.x≠2C.x≠1且x≠2D.x可为任何数3.若分式的值为0,则x的值是()A.±3B.﹣3C.3D.04.已知﹣=5,则分式的值为()A.1B.5C.D.5.一件工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是()A.a+b B.+C.D.6.不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是()A.B.C.D.7.化简的结果是()A.1B.C.D.08.若=﹣,则a﹣2b的值是()A.﹣6B.6C.﹣2D.29.下列分式中,最简分式是()A.B.C.D.10.张萌将分式进行通分,则这两个分式的最简公分母为()A.2(x+y)(x﹣y)B.4(x+y)(x﹣y)C.(x+y)(x﹣y)D.4(x+y)211.计算(a2b)3•的结果是()A.a5b5B.a4b5C.ab5D.a5b612.已知,则的值为()A.1B.0C.﹣1D.﹣213.张阿姨,李阿姨到农贸市场买大米,第一次,张阿姨买了100千克大米,李阿姨买了100元的大米;第二次,张阿姨还是买了100千克大米,李阿姨还是买了100元的大米.下列说法正确的是()A.如果米价下降张阿姨买的合算B.如果米价上涨张阿姨买的合算C.无论米价怎样变化李阿姨买的合算D.无法判断谁买的合算14.已知+=3,则代数式的值为()A.3B.﹣2C.﹣D.﹣15.下列方程是分式方程的是()A.B.C.x2﹣1=3D.2x+1=3x 16.若关于x的分式方程无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.5 17.方程=的解是()A.﹣B.C.﹣D.18.用换元法解方程,若设=y,则原方程可化为()A.y2﹣7y+6=0B.y2+6y﹣7=0C.6y2﹣7y+1=0D.6y2+7y+1=0 19.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣2 20.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A.=15B.=15C.=D.21.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()A.8B.7C.6D.5二.解答题(共7小题)22.下面是售货员与小明的对话:根据对话内容解答下列问题:(1)A、B两种文具的单价各是多少元?(2)若购买A、B两种文具共20件,其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,共有几种购买方案.23.两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒.(1)求两车的速度之和及两车相向而行时慢车驶过快车某个窗口(慢车车头到达窗口某一点至车尾离开这一点)所用的时间;(2)如果两车同向而行,慢车的速度不小于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为多少秒?24.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?25.济南在创建全国文明城市的进程中,高新区为美化城市环境,计划种植树木30000棵,由于志愿者的加入,实际每天植树比原计划多20%.结果提前10天完成任务,求原计划每天植树多少棵.26.在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?27.一项工程,甲队单独完成比乙队单独完成需少用9天,甲队单独做3天的工作乙队单独做需要4天,(1)甲、乙两队单独完成此项工程各需几天?(2)该项工程先由甲、乙两队合作,再由甲队单独完成,若完成此项工程不超过18天,甲乙两队至少合作几天?28.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价﹣进价)苏科新版八年级下学期《第10章分式》单元测试卷参考答案与试题解析一.选择题(共21小题)1.下列各式中,分式的个数是().A.2B.3C.4D.5【分析】判断分式的依据是看代数式的分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,的分母中均不含有字母,因此它们是整式,而不是分式;a+的分子不是整式,因此不是分式.,,的分母中含有字母,因此是分式.故选:B.【点评】本题考查了分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式,A叫做分式的分子,B叫做分式的分母.注意π不是字母,是常数,所以不是分式,是整式.2.使分式有意义的x的取值范围是()A.x≠1B.x≠2C.x≠1且x≠2D.x可为任何数【分析】分式有意义的条件是分母≠0,即x2﹣3x+2≠0,解得x.【解答】解:∵x2﹣3x+2≠0即(x﹣1)(x﹣2)≠0,∴x﹣1≠0且x﹣2≠0,∴x≠1且x≠2.故选:C.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.3.若分式的值为0,则x的值是()A.±3B.﹣3C.3D.0【分析】分式的值等于零,分子等于零,且分母不等于零.【解答】解:依题意,得x2﹣9=0且x+3≠0,解得,x=3.故选:C.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.已知﹣=5,则分式的值为()A.1B.5C.D.【分析】已知等式左边通分并利用同分母分式的减法法则变形,整理后代入原式计算即可得到结果.【解答】解:已知等式整理得:=5,即x﹣y=﹣5xy,则原式===1,故选:A.【点评】此题考查了分式的值,熟练掌握运算法则是解本题的关键.5.一件工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是()A.a+b B.+C.D.【分析】合作的工作效率=甲的工作效率+乙的工作效率,据此可得.【解答】解:∵甲单独完成需要a天,乙单独完成需要b天,∴甲的工效为,乙的工效为,∴甲、乙二人合作每天的工作效率是+,故选:B.【点评】本题主要考查列代数式,解题的关键是熟练掌握工程问题中关于合作的工作效率的相等关系.6.不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是()A.B.C.D.【分析】首先判断出分式的分子、分母的最高次项的系数分别为﹣1、﹣5,它们都是负数;然后根据分式的基本性质,把分式的分子、分母同时乘以﹣1,使分子、分母的最高次项的系数都为正即可.【解答】解:==∴不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是.故选:C.【点评】此题主要考查了分式的基本性质的应用,要熟练掌握,解答此题的关键是要明确:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.7.化简的结果是()A.1B.C.D.0【分析】将分子利用平方差公式分解因式,再进一步计算可得.【解答】解:原式=====1,故选:A.【点评】本题主要考查约分,解题的关键是掌握平方差公式分解因式和约分的定义.8.若=﹣,则a﹣2b的值是()A.﹣6B.6C.﹣2D.2【分析】先去分母,得4x=(a﹣b)x+(﹣2a﹣2b),再根据对应相等求出a、b 的值,代入计算即可.【解答】解:化简得,4x=(a﹣b)x+(﹣2a﹣2b),∴a﹣b=4,﹣2a﹣2b=0,解得a=2,b=﹣2,∴a﹣2b=2﹣2×(﹣2)=6,故选:B.【点评】本题考查了通分以及解二元一次方程组,是基础知识要熟练掌握.9.下列分式中,最简分式是()A.B.C.D.【分析】根据最简分式的定义对各选项逐一判断即可得.【解答】解:A、==,不符合题意;B、==,不符合题意;C、是最简分式,符合题意;D、==,不符合题意;故选:C.【点评】本题主要考查最简分式,解题的关键是掌握一个分式的分子与分母没有公因式时,叫最简分式.10.张萌将分式进行通分,则这两个分式的最简公分母为()A.2(x+y)(x﹣y)B.4(x+y)(x﹣y)C.(x+y)(x﹣y)D.4(x+y)2【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式的分母分别是2x+2y=2(x+y)、4x﹣4y=4(x ﹣y),故最简公分母是4(x+y)(x﹣y).故选:B.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.11.计算(a2b)3•的结果是()A.a5b5B.a4b5C.ab5D.a5b6【分析】根据积的乘方等于乘方的积,分式的乘法,可得答案.【解答】解:原式=a6b3•=a5b5,故选:A.【点评】本题考查了分式的乘除法,熟记法则并根据法则计算是解题关键.12.已知,则的值为()A.1B.0C.﹣1D.﹣2【分析】解决本题首先将已知条件转化为最简形式,再把所求分式通分、代值即可.本题考查了分式的加减运算.【解答】解:把已知+=去分母,得(a+b)2=ab,即a2+b2=﹣ab∴+===﹣1.故选C.【点评】分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.13.张阿姨,李阿姨到农贸市场买大米,第一次,张阿姨买了100千克大米,李阿姨买了100元的大米;第二次,张阿姨还是买了100千克大米,李阿姨还是买了100元的大米.下列说法正确的是()A.如果米价下降张阿姨买的合算B.如果米价上涨张阿姨买的合算C.无论米价怎样变化李阿姨买的合算D.无法判断谁买的合算【分析】先设第一次大米的单价为a,第二次大米的单价为b,分别计算两人两次所卖大米的平均单价,求出单价,再比较两者的差,根据结果来比较大小.【解答】解:设第一次大米的单价为a,第二次大米的单价为b,张阿姨两次购买的平均单价为,李阿姨两次购买的平均单价为则﹣=≥0.所以无论米价怎样变化都是李阿姨买的合算.故选:C.【点评】本题考查了分式的混合运算,解题的关键是求出两人两次所买大米的平均单价,再比较单价的大小.14.已知+=3,则代数式的值为()A.3B.﹣2C.﹣D.﹣【分析】已知等式左边通分并利用同分母分式的加法法则计算,整理得到a+2b =6ab,代入原式计算即可得到结果.【解答】解:+==3,即a+2b=6ab,则原式===﹣,故选:D.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.15.下列方程是分式方程的是()A.B.C.x2﹣1=3D.2x+1=3x【分析】依据分式方程的定义进行判断即可.【解答】解:A、﹣=0是一元一次方程,故A错误;B、=﹣2是分式方程,故B正确;C、x2﹣1=3是一元二次方程,故C错误;D、2x+1=3x是一元一次方程,故D错误.故选:B.【点评】本题主要考查的是分式方程的定义,熟练掌握分式方程的定义是解题的关键.16.若关于x的分式方程无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.5【分析】去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.【解答】解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选:D.【点评】本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x的值,题目比较好,难度也适中.17.方程=的解是()A.﹣B.C.﹣D.【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论解答可得.【解答】解:两边都乘以2(x+2),得:2(2x﹣1)=x+2,解得:x=,当x=时,2(x+2)≠0,所以x=是分式方程的解,故选:D.【点评】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.18.用换元法解方程,若设=y,则原方程可化为()A.y2﹣7y+6=0B.y2+6y﹣7=0C.6y2﹣7y+1=0D.6y2+7y+1=0【分析】观察方程的两个分式具备的关系,若设=y,则原方程另一个分式为6×.可用换元法转化为关于y的方程.去分母、整理即可.【解答】解:把=y代入原方程得:y+6×=7,方程两边同乘以y整理得:y2﹣7y+6=0.故选:A.【点评】换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.19.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣2【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出未知字母的值.【解答】解:方程两边都乘(x+a)(x﹣2),得x+a+3(x﹣2)(x+a)=(a﹣x)(x﹣2),∵原方程有增根,∴最简公分母(a+x)(x﹣2)=0,∴增根是x=2或﹣a,当x=2时,方程化为:2+a=0,解得:a=﹣2;当x=﹣a时,方程化为﹣a+a=2a(﹣a﹣2),即a(a+2)=0,解得:a=0或﹣2.当a=﹣2时,原方程可化为+3=,化为整式方程得,1+3(x﹣2)=﹣x﹣2,即:x=,不存在增根,故不符合题意,当a=0时,原方程可化为,化为整式方程得,x+3x(x﹣2)=﹣x(x﹣2),解得x=或x=0,此时,有增根为x=0,∴a=0符合题意,故选:B.【点评】增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.20.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A.=15B.=15C.=D.【分析】若设走路线A时的平均速度为x千米/小时,则走路线B时的平均速度为1.6x千米/小时,根据路线B的全程比路线A的全程多7千米,走路线B 的全程能比走路线A少用15分钟可列出方程.【解答】解:设走路线A时的平均速度为x千米/小时,根据题意,得﹣=.故选:D.【点评】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.21.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()A.8B.7C.6D.5【分析】工效常用的等量关系是:工效×时间=工作总量,本题的等量关系为:甲工作量+乙工作量=1,根据从第三个工作日起,乙志愿者加盟此项工作,本题需注意甲比乙多做2天.【解答】解:方法1、设甲志愿者计划完成此项工作需x天,故甲的工效都为:,由于甲、乙两人工效相同,则乙的工效为甲前两个工作日完成了,剩余的工作量甲完成了,乙在甲工作两个工作日后完成了,则+=1,解得x=8,经检验,x=8是原方程的解.故选:A.方法2、设甲志愿者计划完成此项工作需a天,则一天完成工作总量的,由于甲、乙两人工效相同,则乙的一天完成工作总量的,甲实际工作了(a﹣3)天,乙比甲少工作两天,实际工作了(a﹣5)天,即用甲的工作量加乙的工作量=1,建立方程×(a﹣3)+×(a﹣5)=1,∴a=8,故选:A.【点评】本题主要考查分式方程的应用,还考查了工效×时间=工作总量这个等量关系.二.解答题(共7小题)22.下面是售货员与小明的对话:根据对话内容解答下列问题:(1)A、B两种文具的单价各是多少元?(2)若购买A、B两种文具共20件,其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,共有几种购买方案.【分析】(1)设A种文具的单价为x元,则B种文具单价为(25﹣x)元,根据用80元购买A种文具的数量是用120元购买B种文具的数量的2倍,列方程求解;(2)设学校购进A种文具a件,则购进B种文具(20﹣a)件,根据其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,列不等式求出a的取值范围,结合a为正整数,确定购买方案.【解答】解:(1)设A种文具的单价为x元,则B种文具单价为(25﹣x)元,由题意得,=,解得:x=10,经检验,x=10是分式方程的解,且符合题意,25﹣x=15答:种文具的单价为10元,则B种文具单价为15元;(2)设学校购进A种文具a件,则购进B种文具(20﹣a)件,由题意得,解得:8≤a<10,∵a是正整数,∴a为8或9∴共有两种购买方案.【点评】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒.(1)求两车的速度之和及两车相向而行时慢车驶过快车某个窗口(慢车车头到达窗口某一点至车尾离开这一点)所用的时间;(2)如果两车同向而行,慢车的速度不小于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为多少秒?【分析】(1)快车驶过慢车某个窗口等量关系为:两车的速度之和×所用时间=快车车长;慢车驶过快车某个窗口等量关系为:两车的速度之和×所用时间=慢车车长;(2)等量关系为:两车速度之差×时间=两车车长之和.【解答】解:(1)设快,慢车的速度分别为x米/秒,y米/秒.根据题意得x+y==20,即两车的速度之和为20米/秒;设慢车驶过快车某个窗口需用t1秒,根据题意得x+y=,∴t1=.即两车相向而行时,慢车驶过快车某个窗口所用时间为7.5秒.答:两车的速度之和为20米/秒,两车相向而行时,慢车驶过快车某个窗口所用时间为7.5秒;(2)所求的时间t2=,∴,依题意,当慢车的速度为8米/秒时,t2的值最小,t2=,∴t2的最小值为62.5秒.答:从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为62.5秒.【点评】找到相应的等量关系是解决问题的关键;难点是得到相应的车速和路程.24.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)【分析】元,根据每件产品的成本价不超过34元,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论;(2)设这种产品的批发价为a元,则零售价为(a+30)元,根据数量=总价÷单价结合用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,即可得出关于a的分式方程,解之经检验后即可得出结论.【解答】解:(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)元,根据题意得:1.2(x+10)+x≤34,解得:x≤10.答:购入B种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a元,则零售价为(a+30)元,根据题意得:=,解得:a=50,经检验,a=50是原方程的根,且符合实际.答:这种产品的批发价为50元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出分式方程.25.济南在创建全国文明城市的进程中,高新区为美化城市环境,计划种植树木30000棵,由于志愿者的加入,实际每天植树比原计划多20%.结果提前10天完成任务,求原计划每天植树多少棵.【分析】设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%),根据题意可得,实际比计划少用10天,据此列方程求解.【解答】解:设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%),由题意得,﹣=10,解得:x=500,经检验,x=500是原分式方程的解,且符合题意.答:原计划每天种树500棵.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.26.在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?【分析】(1)根据商场的规定确定出x的范围即可;(2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.【解答】解:(1)根据题意得:0<x≤200,且x∈N;(2)设小王原计划购买x个纪念品,根据题意得:×5=×6,整理得:5x+175=6x,解得:x=175,经检验x=175是分式方程的解,且满足题意,则小王原计划购买175个纪念品.【点评】此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.27.一项工程,甲队单独完成比乙队单独完成需少用9天,甲队单独做3天的工作乙队单独做需要4天,(1)甲、乙两队单独完成此项工程各需几天?(2)该项工程先由甲、乙两队合作,再由甲队单独完成,若完成此项工程不超过18天,甲乙两队至少合作几天?【分析】(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+9)天,根据甲队单独做3天的工作乙队单独做需要4天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设甲乙两队合作y天,根据完成此项工程不超过18天,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,取其中的最小值即可得出结论.【解答】解:(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+9)天,根据题意得:=,解得:x=27,经检验,x=27是原方程的解,且符合题意,∴x+9=36.答:甲队单独完成此项工程需27天,乙队单独完成此项工程需36天.(2)设甲乙两队合作y天,根据题意得:+≥1,解得:y≥12.。

江苏省苏州市立达中学2012-2013学年八年级数学下学期期中试卷(解析版)苏科版

江苏省苏州市立达中学2012-2013学年八年级数学下学期期中试卷(解析版)苏科版

形的相似比为

考点 :相 似多边形的性质. . 分析:设 原矩形的长为 2a,宽为 b,表示出对折后的矩形的宽为
应边成比例列出比例式求出,即可得解. 解答:解 :如图,设原矩形的长为 2a,宽为 b,
则对折后的矩形的长为 b,宽为 a, ∵对折后所得的矩形与原矩形相似,
∴= ,
a,然后根据相似多边形对
解出 x 的值,再减去身高即可得出小刚举起的手臂超出头顶的高度.
解答:解:设手臂竖直举起时总高度 xm,列方程得:
=,
x,即可列方程
解得 x=2.4 , 2.4 ﹣ 1.8=0.6m , 所以小刚举起的手臂超出头顶的高度为 0.6m . 故选 C. 点评:本 题考查了相似三角形的应用, 解答此题的关键是明确在同一时刻物体的高度和影长 成正比.
5
点评:本 题结合图形的平移考查反比例函数的性质及相似形的有关知识.平移的基本性质 是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等, 对应线段平行且相等,对应角相等.本题关键是利用了对应线段平行且相等的性质.
二、选择题(每题 3 分,共 30 分)
13.( 3 分)下列各式:
∴= ,
即对折后的矩形与原矩形的相似比为

故答案为: .
点评:本 题考查了相似多边形对应边成比例的性质,是基础题,作出图形更形象直观. 6.(2 分)如图, 在黄金矩形 ABCD中,作一个边长为 10 的正方形 ABEF,则 EC约为 5 ﹣ 5.
2
考点 :黄 金分割. . 分析:根据黄金矩形的定义,可知矩形
主要考查学生理解能力和计算
10.( 2 分)已知点 A( x1, y1)、 B(x 2, y 2)是反比例函数 y=﹣图象上两点,且 0< x1 <x2, 则 y1、 y2 的大小关系是 y1< y2 .

苏科版八年级数学下册第12章二次根式检测卷(含答案)

苏科版八年级数学下册第12章二次根式检测卷(含答案)

第12章 二次根式 检测卷(满分:100分时间:90分钟)一、选择题(本大题共8小题,每小题3分,共24分)1.(2013.苏州)若式子12x -在实数范围内有意义,则x 的取值范围是 ( ) A .x>1 B .x<1C .x ≥1D .x ≤1 2.下列判断正确的是 ( )A .带根号的式子一定是二次根式B .式子21x +一定是二次根式C .式子x y +一定是二次根式D .二次根式的值必是无理数3.计算()23-的结果是 ( )A .3B .-3C .±3D .9 4.已知12n -是正整数,则实数n 的最大值为 ( )A .12B .11C .8D .3 5.(2013.西宁)下列各式计算正确的是 ( )A .2-22=-2B .28a =4a(a>0)C .()()4949-⨯-=-⨯-D .633÷=6.下列运算正确的是 ( )A .632a a = B .()22323-=-⨯ C .21a a a = D .1882-=7.计算132252⨯+⨯的结果估计在 ( ) A .6至7之间 B .7至8之间 C .8至9之间 D .9至10之间8.若x -y =2-1,xy =2,则代数式(x -1)(y +1)的值等于 ( )A .2+22B .22-2C .22D .2二、填空题(本大题共10小题,每小题2分,共20分)9.(2013.龙岩)已知23a b -+-=0,则a b =_______.10.代数式5a a +--的值为_______.11.若a>0,则化简3ab -的结果为_______.12.计算112121335÷÷的结果为_______. 13.已知x 、y 为实数,且满足()111x y y +---=0,那么x 2013-x 2013=_______.14.长方形的一边的长是2cm ,面积为6 cm 2,则这个长方形的周长为_______.15.(2013.南京)计算3122-的结果是_______. 16.不等式2x >3x 的解集为_______.17.观察下列各式:11111112,23,34334455+=+=+=……请你将发现的规律用含自然数n(n ≥1)的等式表示出来:______________.18.先阅读理解,再回答问题: 因为2112+=,1<2<2,所以211+的整数部分为1; 因为2226+=,2<6<3,所以222+的整数部分为2; 因为23312+=,3<12<4,所以233+的整数部分为3; 依次类推,我们不难发现2n n +(n 为正整数)的整数部分为_______. 现已知5的整数部分是x ,小数部分是y ,则x -y =_______.三、解答题(第19题6分,第20题16分,第21题8分,第22题8分,第23题9分,第24题9分,共56分)19.实数p 在数轴上的位置如图所示:化简222144p p p p -++-+.20.计算:(1)2712108-+ (2)11383322+-+(3)21212434828⎛⎫+- ⎪ ⎪⎝⎭ (4)3122a b b a b ⎛⎫∙÷ ⎪ ⎪⎝⎭21.若x 、y 是实数,且y<1112x x -+-+,求11y y --的值.22.已知a =2-1,先化简2222222114164821442a a a a a a a a a a a a a -+--+++÷--+-+-,再求值.23.(2013.张家界)先简化,再求值:2211211x x x x x +⎛⎫÷+ ⎪-+-⎝⎭,其中x =2+1.24.先阅读下面的材料,然后解答问题: 形如2m n ±的化简,只要我们找到两个数a 、b 使a +b =m ,ab =n ,即()()22a b m +=a b n ∙=,那么便有()22m n a b a b ±=±=±(a>b ). 例如:化简:743+.解:首先把743+化为7212+,这里m =7,n =12.由于4+3=7,4×3=12,即()()2243+=7,4·3=12,所以743+=7212+=()243+=2+3.根据上述材料中的方法化简: (1)13242-(2)740- (3)23-参考答案一、1.C 2.B 3.A 4.B 5.A 6.D 7.B 8.B二、9.8 10.-5 11.-b ab - 12.25713.-2 14.82 cm 15.2 16.x<2+3 17.()11122n n n n +=+++ 18.n 4-5 三、19.原式=1 20.(1)73 (2)322+323 (3)1-46 (4)3421.-1 22.原式=11a -,原式=222+- 23.原式=11x -,原式=22 24.(1)76- (2)52- (3)622-初中数学试卷灿若寒星 制作。

2012年苏科版八年级数学下册期中测试卷及答案

2012年苏科版八年级数学下册期中测试卷及答案

2011-2012学年度第二学期期中调研考试八年级数学试卷(试卷满分100分考试时间120分钟)一、选择题:(本大题共10个小题,每小题2分,共计20分)( )1.在ma y x x x 13212112+++、、、、中分式的个数有A .2个B .3个C .4个D .5个( )2.反比例函数y=x6-的图象位于( )A .第一、二象限B .第三、四象限C .第一、三象限D .第二、四象限 ( )3. 不等式24x -<的解集是A .2x >-B .12x >-C . 2x <-D .12x <- ( )4. 下列各式计算正确的是( ) A.222a ab b a b b a -+=-- B.2232()x xy yx y x y ++=++C.23546x x y y ⎛⎫= ⎪⎝⎭D.11x y x y -=-+-( )5. 已知a>b>0,则下列不等式不一定...成立的是 A. a+c>b+c B.2-a < 2-b C. ab>b 2D.ac 2>bc 2( )6. 如果把分式xyx +中的x ,y 都扩大2倍,则该分式的值 A . 扩大2倍 B . 缩小2倍 C . 不变 D.扩大3倍 ( )7. 把mn=pq (mn ≠0)写成比例式,写错的是A .m q p n = B .p n m q= C .q n m p = D .m pn q =( )8. 下列说法正确的是A .矩形都是相似图形;B .菱形都是相似图形C .各边对应成比例的多边形是相似多边形;D .等边三角形都是相似三角形 ( )9.如果不等式组⎩⎨⎧><mx x 5有解,那么m 的取值范围是A .m >5B .m <5C .m ≥5D .m ≤5( )10.下列说法中,正确的个数有①在分式392--x x 中,当x =±3时分式的值为零②若点1(,1)x -、2(,2)x -、3(,2)x 在双曲线1y x=-上,则213x x x >>③将双曲线2y x=-绕原点旋转90°后,可得到双曲线2y x =④若双曲线(0)k y k x=≠与直线y x =有交点, 则0k <A.1个B.2个C. 3个D.4个二、填空题:(本大题共10个小题,每小题2分,共计20分)11.函数13y x =-的自变量x 的取值范围是 . 12.若2,3a b =则aa b=+ . 13.若分式方程233x m x x -=--有增根,则m 的值为_______________. 14.反比例函数y = xk(k ≠0)的图象经过点(1,5)与(5,n-1)两点,则n = .15.当x = 时,分式242x x -+值为0.16.在比例尺为1∶4000000的中国地图上,量得无锡市与2008年奥运会举办地北京市相距27厘米,那么无锡市与北京市两地实际相距 千米. 17.若代数式23x -的值是负数,则正整数x = .18.如图,点A 在反比例函数y=kx的图象上,AB 垂直于x 轴,若S △AOB =4,•那么这个反比例函数的解析式为________.19.如果关于x 的方程x+2m-3=3x+7的解为非负数,那么m 的取值范围是___ __.20.两个反比例函数x y 3=,x y 6=在第一象限内的图象如图所示, 点P 1,P 2,P 3,…,P 2 005在反比例函数xy 6=图象上,它们的横坐标分别是x 1,x 2,x 3,…,x 2 005,纵坐标分别是1,3,5,…,共2 005个连续奇数,过点P 1, P 2,P 3,…,P 2 005分别作y 轴的平行线,与xy 3=的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2 005(x 2 005,y 2 005),则y 2 005= .三、解答题:(本大题共10个小题,共计60分)21.(每小题4分,共8分)解不等式(组),并把解集在数轴上表示出来(1)243643x x --<- (2) 2(5)63212.x x x +≥->+⎧⎨⎩,22.(4分) 计算 x x x x x x 9)332(2-⋅+--23.(4分)解方程 01122=-++x x x24.(4分)先化简,再求值: 212)14(-÷-+-a a a a a ,其中31=a25.(5分)已知y=y 1+y 2,其中y 1与x 成反比例,y 2与(x-2)成正比例.当x=1时,y=-1;x=3时,y=3.(1)求y 与x 的函数关系式;(3分) (2)当x=-1时,y 的值(2分)26.(5分)小明用12元买软面笔记本,小丽用21元买硬面笔记本。

第10章 分式 苏科版数学八年级下册综合素质评价(含答案)

第10章 分式 苏科版数学八年级下册综合素质评价(含答案)

第10章分式综合素质评价一、选择题(每题2分,共16分)1.代数式25x,1π,2x2+4,x2-23,1x,x+1x+2中,属于分式的有( )A.2个B.3个C.4个D.5个2.使分式2x-4有意义的x的取值范围是( )A.x≤4B.x≥4C.x≠4D.x=43.分式①a+2a2+3,②a-ba2-b2,③4a12(a-b),④1x-2中,最简分式有( )A.1个B.2个C.3个D.4个4.解分式方程2x-1-2xx-1=1,可知方程的解为( )A.x=1 B.x=3 C.x=12D.无解5.《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十…”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米…”.问题:有3斗粟(1斗=10升),若按照此“粟米之法”,则可以换得的粝米为( )A.1.8升B.16升C.18升D.50升6.计算m2m-1-2m-1m-1的结果是( )A.m+1 B.m-1 C.m-2 D.-m-27.对于非零的两个实数a,b,规定a*b=3b-2a,若5*(3x-1)=2,则x的值为( )A.56B.34C.23D.-168.若关于x 的分式方程3x -a x -3+x +13-x=1的解为正数,且关于y 的不等式组{y +9≤2(y +2),2y -a 3>1的解集为y ≥5,则所有满足条件的整数a 的值之和是( )A .13B .15C .18D .20二、填空题(每题2分,共20分)9.x 6ab 2与y9a 2bc 的最简公分母是________.10.计算:a 2a -b+b 2-2ab a -b=________.11.若x =1是分式方程a -2x -1x -2=0的根,则a =________.12.若关于x 的方程ax +1x -1-1=0无实数根,则a 的值为________.13.若关于x 的分式方程m x -1+31-x=1的解为正数,则m 的取值范围是________.14.小明同学在对分式方程2x x -2+3-m 2-x=1去分母时,方程右边的1没有乘x -2,若此时解得整式方程的解为x =2,则原方程的解为________.15.如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被盖住的x 的值是_______________.先化简,再求值:3-xx -4+1,其中x =★.解:原式=3-xx -4·(x -4)+(x -4)…①=3-x +x -4=-1.16.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现,小琼步行12 000步与小博步行9 000步消耗的能量相同.若小琼每消耗1千卡能量行走的步数比小博的多10步,则小博每消耗1千卡能量需要行走________步.17.若mn =n -m ≠0,则3n -3m的值为 ________.18.“绿水青山就是金山银山”.某地为美化环境,计划种植树木6 000棵.由于志愿者的加入,实际每天植树的棵数比原计划增加了25%,结果提前3天完成任务,则实际每天植树________棵.三、解答题(19~21题每题6分,22~23题每题8分,24~26题每题10分,共64分)19.计算:(1)2aa 2-9-1a -3;(2)(1+2a +1a 2)÷a +1a.20.先化简,再求值:(1)(1+1m -1)·m 2-1m,其中m =2.(2)a 2-6ab +9b 2a 2-2ab ÷a -3b a -2b -1a,其中a =4,b =1.21.解分式方程:(1)x 2x -3+53-2x=4.(2)x -2x +2-1=16x 2-4.22.已知M=2xyx2-y2,N=x2+y2x2-y2,用“+”或“-”连接M,N,有三种不同的形式:M+N,M-N,N-M,任选其中一种进行计算,并化简求值,其中x:y=5:2.23.已知关于x的方程mx+3-13-x=m+4x2-9.(1)若m=-3,解这个方程;(2)若原方程无解,求m的值.24.为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问原先每天生产多少万剂疫苗?25.小张去离家2 520 m的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23 min,于是他跑步回家,拿到门票后立刻找到一辆共享单车原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4 min,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度.(2)如果小张在家取票和寻找共享单车共用了5 min ,他能否在演唱会开始前赶到奥体中心?并说明理由.26.阅读下面材料,解答后面的问题.解方程:x -1x -4xx -1=0.解:设y =x -1x ,则原方程可化为y -4y =0,方程两边同时乘y ,得y 2-4=0,解得y =±2.经检验,y =2和y =-2都是方程y -4y =0的解.当y =2时,x -1x =2,解得x =-1;当y =-2时,x -1x =-2,解得x =13. 经检验,x =-1和x =13都是原分式方程的解.∴原分式方程的解为x =-1或x =13.上述这种解分式方程的方法称为换元法.(1)若在方程x -14x -xx -1=0中,设y =x -1x ,则原方程可化为________________;(2)若在方程x -1x +1-4x +4x -1=0中,设y =x -1x +1,则原方程可化为_______________;(3)模仿上述换元法解方程:x -1x +2-3x -1-1=0.答案一、1.B 2.C 3.B 4.D 5.C 6.B 7.B8.A 点拨:解分式方程得x =a -2,∵x >0且x ≠3,∴a -2>0且a -2≠3,∴a >2且a ≠5.解不等式组得{y ≥5,y >a +32,∵不等式组的解集为y ≥5,∴a +32<5,∴a <7.∴2<a <7且a ≠5,∴所有满足条件的整数a 的值之和为3+4+6=13.二、9.18a 2b 2c 10.a -b 11.1 12.1或-113.m >2且m ≠314.x =1 点拨:小明去分母得到的整式方程是2x -(3-m )=1,把x =2代入,得4-(3-m )=1,解得m =0.故原分式方程为2xx -2+32-x =1,解得x =1,经检验,x =1是原分式方程的解.15.5 点拨:3-x x -4+1=3-x +x -4x -4=14-x ,当14-x=-1时,可得x =5,检验:当x =5时,4-x ≠0,∴题图中被盖住的x 的值是5.16.30 点拨:设小博每消耗1千卡能量需要行走x 步,则小琼每消耗1千卡能量需要行走(x +10)步,根据题意得12 000x +10=9 000x ,解得x =30,经检验,x =30是原方程的解,且符合题意.故小博每消耗1千卡能量需要行走30步.17.-3 点拨:原式=3m mn -3nmn =3(m -n )mn.∵mn =n -m ,∴原式=-3mn mn=-3.18.500三、19.解:(1)原式=2a (a +3)(a -3)-a +3(a +3)(a -3)=a-3(a+3)(a-3)=1a+3.(2)原式=a2+2a+1a2÷a+1a=(a+1)2a2·aa+1=a+1a.20.解:(1)原式=(m-1m-1+1m-1)·(m+1)(m-1)m=mm-1·(m+1)(m-1)m=m+1,当m=2时,原式=m+1=2+1=3.(2)a2-6ab+9b2a2-2ab÷a-3ba-2b-1a=(a-3b)2a(a-2b)·a-2ba-3b-1a=a-3ba-1a=a-3b-1a,当a=4,b=1时,原式=4-3×1-14=0.21.解:(1)方程两边同乘2x-3,得x-5=4(2x-3),解得x=1,检验:当x=1时,2x-3≠0,所以x=1是原分式方程的解.(2)方程两边同乘(x+2)(x-2),得x2-4x+4-x2+4=16,解得x=-2.检验:当x=-2时,(x+2)(x-2)=0,所以x=-2是增根,原分式方程无解.22.解:选择一,M+N=2xyx2-y2+x2+y2x2-y2=(x+y)2(x+y)(x-y)=x+yx-y.当x:y=5:2时,x=5 2y,∴原式=52y+y52y-y=73;选择二,M -N =2xyx 2-y 2-x 2+y 2x 2-y 2=-(x -y )2(x +y )(x -y )=y -xx +y.当x :y =5:2时,x =52y ,∴原式=y -52y 52y +y =-37;选择三,N -M =x 2+y 2x 2-y 2-2xyx 2-y 2=(x -y )2(x +y )(x -y )=x -y x +y .当x :y =5:2时,x =52y ,∴原式=52y -y 52y +y =37.点拨:任选一种即可.23.解:(1)把m =-3代入原方程得-3x +3-13-x =-3+4x 2-9.方程两边同乘(x -3)(x +3),得-3(x -3)+(x +3)=1.解这个一元一次方程,得x =5.5.检验:当x =5.5时,(x +3)(x -3)≠0,∴x =5.5是原方程的解.(2)当(x +3)(x -3)=0时,x =3或-3.方程两边同乘(x -3)(x +3),得m (x -3)+(x +3)=m +4,整理,得(m +1)x =1+4m ,当m +1=0时,1+4m ≠0,方程无解,此时m =-1.当m +1≠0时,x =1+4m m +1,当x =3时,(x -3)(x +3)=0,方程无解,即1+4m m +1=3,解得m =2,经检验,m =2是方程1+4m m +1=3的解.当x =-3时,(x -3)(x +3)=0,方程无解,即1+4m m +1=-3,解得m =-47,经检验,m =-47是方程1+4mm +1=-3的解.综上,若原方程无解,则m =-1或2或-47.24.解:设原先每天生产x 万剂疫苗,由题意可得240(1+20%)x +0.5=220x ,解得x =40,经检验,x =40是原方程的解,且符合题意.答:原先每天生产40万剂疫苗.25.解:(1)设小张跑步的平均速度为x m/min ,则小张骑车的平均速度为1.5x m/min ,根据题意,得2 520x -2 5201.5x=4,解得x =210.经检验,x =210是原方程的解,且符合题意.答:小张跑步的平均速度为210 m/min.(2)不能.理由:小张跑步到家所用时间为2 520÷210=12(min),小张骑车赶回奥体中心所用时间为12-4=8(min),小张从开始跑步回家到赶回奥体中心所用时间为12+8+5=25(min),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.26.解:(1)y 4-1y =0 (2)y -4y=0(3)原方程可化为x -1x +2-x +2x -1=0,设y =x -1x +2,则原方程可化为y -1y =0,方程两边同时乘y ,得y 2-1=0,解得y =±1.经检验,y =1和y =-1都是方程y -1y =0的解.当y =1时,x -1x +2=1,该方程无解;当y =-1时,x -1x +2=-1,解得x =-12.经检验,x =-12是原分式方程的解.∴原分式方程的解为x =-12.。

苏科版(八年级)苏科版苏科版初二下册数学期中测试题及答案

苏科版(八年级)苏科版苏科版初二下册数学期中测试题及答案

苏科版(八年级)苏科版苏科版初二下册数学期中测试题及答案一、选择题1.下列调查中,最适合采用普查的是()A.长江中现有鱼的种类B.八年级(1)班36名学生的身高C.某品牌灯泡的使用寿命D.某品牌饮料的质量2.满足下列条件的四边形,不一定是平行四边形的是()A.两组对边分别平行B.两组对边分别相等C.一组对边平行且相等D.一组对边平行,另一组对边相等3.如果把分式aa b中的a、b都扩大2倍,那么分式的值一定()A.是原来的2倍B.是原来的4倍C.是原来的12D.不变4.如图,已知正方形ABCD,对角线的交点M(2,2).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M的坐标变为()A.(﹣2012,2)B.(﹣2012,﹣2)C.(﹣2013,﹣2)D.(﹣2013,2)5.如图,在平面直角坐标系中,菱形OABC的顶点A的坐标为(4,3),点D是边OC上的一点,点E在直线OB上,连接DE、CE,则DE+CE的最小值为()A.5B7+1C.5D.24 56.为了解我市八年级10000名学生的身高,从中抽取了500名学生,对其身高进行统计分析,以下说法正确的是()A.每个学生的身高是个体B.本次调查采用的是普查C.样本容量是500名学生D.10000名学生是总体7.下列条件中,不能..判定平行四边形ABCD 为矩形的是( ) A .∠A =∠C B .∠A =∠B C .AC =BD D .AB ⊥BC8.我们把顺次连接四边形各边中点所得的四边形叫做中点四边形.若一个任意..四边形的面积为a ,则它的中点四边形面积为( )A .12aB . 23aC .34aD .45a 9.在□ ABCD 中,∠A =4∠D ,则∠C 的大小是( )A .36°B .45°C .120°D .144°10.某校共有2000名学生,为了解学生对“七步洗手法”的掌握情况,现采用抽样调查,如果按10%的比例抽样,则样本容量是( )A .2000B .200C .20D .2二、填空题11.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.12.不透明的袋子里装有6只红球,1只白球,这些球除颜色外都相同.搅匀后从中任意摸出1只球.摸出的是红球的可能性_____摸出的是白球的可能性(填“大于”、“小于”或“等于”).13.如图,在ABCD 中,对角线AC 、BD 相交于点O .如果AC =6,BD =8,AB =x ,那么x 的取值范围是__________.14.为了了解我市八年级男生的体重分布情况,市教育局从各学校共随机抽取了500名八年级男生进行了测量.在这个问题中,样本是指_____.15.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是_____.16.在函数y =1x x +中,自变量x 的取值范围是_____. 17.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p (kPa )是气体体积()3m V 的反比例函数,其图像如图所示.则其函数解析式为_________.18.如图,在菱形ABCD中,若AC=24 cm,BD=10 cm,则菱形ABCD的高为________cm.19.如果用A表示事件“三角形的内角和为180°”,那么P(A)=_____.20.▱ABCD的周长是32cm,∠ABC的平分线交AD所在直线于点E,且AE:ED=3:2,则AB的长为_____.三、解答题21.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是16cm,AC的长为8cm,求线段AB的长度.22.如图,在平面直角坐标系中,点O为坐标原点,AB// OC,点B,C的坐标分别为(15,8),(21,0),动点M从点A沿A→B以每秒1个单位的速度运动;动点N从点C沿C→O以每秒2个单位的速度运动.M,N同时出发,设运动时间为t秒.(1)在t=3时,M点坐标,N点坐标;(2)当t为何值时,四边形OAMN是矩形?(3)运动过程中,四边形MNCB能否为菱形?若能,求出t的值;若不能,说明理由.23.如图,在△ABC中,AB=AC,点D是边AB的点,DE∥BC交AC于点E,连接BE,点F、G、H分别为BE、DE、BC的中点.(1)求证:FG=FH;(2)当∠A为多少度时,FG⊥FH?并说明理由.24.在Rt△AEB中,∠AEB=90°,以斜边AB为边向Rt△AEB形外作正方形ABCD,若正方形ABCD的对角线交于点O(如图1).(1)求证:EO平分∠AEB;(2)猜想线段OE与EB、EA之间的数量关系为(直接写出结果,不要写出证明过程);(3)过点C作CF⊥EB于F,过点D作DH⊥EA于H,CF和DH的反向延长线交于点G(如图2),求证:四边形EFGH为正方形.25.在矩形纸片ABCD中,AB=6,BC=8.(1)将矩形纸片沿BD折叠,点A落在点E处(如图①),设DE与BC相交于点F,求BF 的长;(2)将矩形纸片折叠,使点B与点D重合(如图②),求折痕GH的长.26.如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(-6,0),D(-7,3),点B、C在第二象限内.(1)点B的坐标;(2)将正方形ABCD以每秒1个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请求出符合题意的点P、Q的坐标;若不存在,请说明理由.27.如图,已知一次函数y=x+2的图象与x轴、y轴分别交于点A,B两点,且与反比例函数y=mx的图象在第一象限交于点C,CD⊥x轴于点D,且OA=OD.(1)求点A的坐标和m的值;(2)点P是反比例函数y=mx在第一象限的图象上的动点,若S△CDP=2,求点P的坐标.28.(发现)(1)如图1,在▱ABCD中,点O是对角线的交点,过点O的直线分别交AD,BC于点E,F.求证:△AOE≌△COF;(探究)(2)如图2,在菱形ABCD中,点O是对角线的交点,过点O的直线分别交AD,BC于点E,F,若AC=4,BD=8,求四边形ABFE的面积.(应用)(3)如图3,边长都为1的5个正方形如图摆放,试利用无刻度的直尺,画一条直线平分这5个正方形组成的图形的面积.(要求:保留画图痕迹)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A.调查长江中现有鱼的种类,调查的难度大,范围广,适合抽样调查;B.调查八年级(1)班36名学生的身高,难度不大,适合普查;C.调查某品牌灯泡的使用寿命,调查带有破坏性,适合抽样调查;D.调查某品牌饮料的质量,调查带有破坏性,适合抽样调查;故选:B.【点睛】本题考查的是普查与抽样调查的含义与运用,掌握以上知识是解题的关键.2.D解析:D【分析】根据平行四边形的判定分别对各个选项进行判断,即可得出结论.【详解】A 、∵两组对边分别平行的四边形是平行四边形,∴选项A 不符合题意;B 、∵两组对边分别相等的四边形是平行四边形,∴选项B 不符合题意;C 、∵一组对边平行且相等的四边形是平行四边形,∴选项C 不符合题意;D 、∵一组对边平行,另一组对边相等的四边形可能是等腰梯形或平行四边形, ∴选项D 符合题意;故选:D .【点睛】本题考查了平行四边形的判定,熟记平行四边形的判定方法是解题的关键.3.D解析:D【分析】把2a 、2b 代入分式,然后进行分式的化简计算,从而与原式进行比较得出结论.【详解】解:把2a 、2b 代入分式可得22222()a a a a b a b a b==---, 由此可知分式的值没有改变,故选:D .【点睛】本题主要考查了分式的性质,分式的分子和分母同时扩大或者缩小相同的倍数,分式的值不变.4.A解析:A【分析】根据题意求得第1次、2次、3次变换后的对角线交点M 的对应点的坐标,即可得规律:第n 次变换后的点M 的对应点的为:当n 为奇数时为(2﹣n ,﹣2),当n 为偶数时为(2﹣n ,2),继而求得结果.【详解】解:∵对角线交点M 的坐标为(2,2),根据题意得:第1次变换后的点M 的对应点的坐标为(2﹣1,﹣2),即(1,﹣2),第2次变换后的点M的对应点的坐标为:(2﹣2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2﹣3,﹣2),即(﹣1,﹣2),第n次变换后的点M的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(﹣2012,2).故选:A.【点睛】此题考查了点的坐标变化,对称与平移的性质.得到规律:第n次变换后的对角线交点M 的对应点的坐标为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2)是解此题的关键.5.D解析:D【解析】【分析】首先根据菱形的对角线性质得到DE+CE的最小值=CF,再利用菱形的面积列出等量关系即可解题.【详解】解:如下图,过点C作CF⊥OA与F,交OB于点E,过点E作ED⊥OC与D,∵四边形OABC是菱形,由菱形对角线互相垂直平分可知EF=ED,∴DE+CE的最小值=CF,∵A的坐标为(4,3),∴对角线分别是8和6,OA=5,∴菱形的面积=24,(二分之一对角线的乘积),即24=CF×5,解得:CF= 24 5,即DE+CE的最小值=24 5,故选D.【点睛】本题考查了菱形的性质,图形中的最值问题,中等难度,利用菱形的对称性找到点E的位置并熟悉菱形面积的求法是解题关键.6.A解析:A【分析】由总体、个体、样本、样本容量的概念,结合题意进行分析,即可得到答案.【详解】解:A、每个学生的身高是个体,故A正确;B、本次调查是抽样调查,故B错误;C、样本容量是500,故C错误;D、八年级10000名学生的身高是总体,故D错误;故选:A.【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.7.A解析:A【分析】根据矩形的判定定理再结合平行四边形的性质对选项逐一进行推理即可.【详解】A、∠A=∠C不能判定这个平行四边形为矩形,故此项错误;B、∵∠A=∠B,∠A+∠B=180°,∴∠A=∠B=90°,可以判定这个平行四边形为矩形,故此项正确;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故此项正确;D、AB⊥BC,即∠B=90°,可以判定这个平行四边形为矩形,故此项正确;故选:A.【点睛】本题考查了平行四边形的性质和矩形的判定,掌握知识点是解题关键.8.A解析:A【分析】由E为AB中点,且EF平行于AC,EH平行于BD,得到△BEK与△ABM相似,△AEN与△ABM相似,利用面积之比等于相似比的平方,得到△EBK面积与△ABM面积之比为1:4,且△AEN与△EBK面积相等,进而确定出四边形EKMN面积为△ABM的一半,同理得到四边形KFPM面积为△BCM面积的一半,四边形QGPM面积为△DCM面积的一半,四边形HQMN面积为△DAM面积的一半,四个四边形面积之和即为四个三角形面积之和的一半,即为四边形ABCD面积的一半,即可得出答案.【详解】解:如图,画任意四边形ABCD,设AC与EH,FG分别交于点N,P,BD与EF,HG分别交于点K,Q,则四边形EFGH即为它的中点四边形,∵E 是AB 的中点,EF//AC ,EH//BD ,∴△EBK ∽△ABM ,△AEN ∽△ABM , ∴EBK ABM S S ∆∆=14,S △AEN =S △EBK , ∴EKMNABM S S ∆四边形=12, 同理可得:KFPMBCMS S ∆四边形=12,QGPM DCM S S ∆四边形=12,HQMN DAM S S ∆四边形=12, ∴EFGHABCD S S 四边形四边形=12, ∵四边形ABCD 的面积为a , ∴四边形EFGH 的面积为12a ,故选:A .【点睛】本题考查了三角形中位线的性质,相似三角形的判定和性质,掌握知识点是解题关键.9.D解析:D【解析】【分析】由四边形ABCD 是平行四边形可知∠A +∠D =180°,结合∠A =4∠D ,可求出∠D 的值,从而可求出∠C 的大小.【详解】∵四边形ABCD 是平行四边形,∴∠A +∠D =180°,∵∠A =4∠D ,∴4∠D +∠D =180°,∴∠D =36°,∴∠C =180°-36°=144°.故选D.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边行的性质是解答本题的关键.平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.10.B解析:B【分析】某校共有2000名学生,按10%的比例抽样,用总数乘以10%即可得出样本容量【详解】解:2000×10%=200,故样本容量是200.故选:B.【点睛】本题考查了样本容量,一个样本包括的个体数量叫做样本容量,等于总数乘以抽取的比例.二、填空题11.20【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有=,解得,x=20,解析:20【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有1010x=1030,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.12.大于【分析】分别计算出摸出的是红球和白球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸出1只球.摸出的是红球的概率=,摸出的是白球的概率=,所以摸出的是红球的可能性大于摸出的解析:大于【分析】分别计算出摸出的是红球和白球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸出1只球.摸出的是红球的概率=67,摸出的是白球的概率=17,所以摸出的是红球的可能性大于摸出的是白球的可能性.故答案为:大于.【点睛】本题考查的是概率的意义,以及求简单随机事件的概率,掌握以上知识是解题的关键.13.1<x<7【解析】因为平行四边形的对角线互相平分,所以OA=OC=3,OB=OD=4,所以4-3<x<4+3,即1<x<7,故答案为1<x<7.解析:1<x<7【解析】因为平行四边形的对角线互相平分,所以OA=OC=3,OB=OD=4,所以4-3<x<4+3,即1<x<7,故答案为1<x<7.14.从各学校共随机抽取的500名八年级男生体重.【分析】所有考查对象的全体就是总体,而组成总体的每一个考查对象称为个体.研究中实际观测或调查的一部分个体称为样本,依据定义即可解答.【详解】解:在解析:从各学校共随机抽取的500名八年级男生体重.【分析】所有考查对象的全体就是总体,而组成总体的每一个考查对象称为个体.研究中实际观测或调查的一部分个体称为样本,依据定义即可解答.【详解】解:在这个问题中,样本是指从各学校共随机抽取的500名八年级男生体重,故答案为:从各学校共随机抽取的500名八年级男生体重.【点睛】本题考查统计中的总体与样本,属于基本题型.15.【解析】【分析】根据菱形的性质得出BO 、CO 的长,在RT△BOC 中求出BC ,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE 的长度【详解】∵四边形ABCD 是菱形,∴CO=A 解析:245【解析】【分析】根据菱形的性质得出BO 、CO 的长,在RT △BOC 中求出BC ,利用菱形面积等于对角线乘积的一半,也等于BC×AE ,可得出AE 的长度【详解】∵四边形ABCD 是菱形,∴CO =12AC =3cm ,BO =12BD =4cm ,AO ⊥BO ,∴BC 5cm ,∴S 菱形ABCD =2BD AC ⋅==12×6×8=24cm 2, ∵S 菱形ABCD =BC ×AE ,∴BC ×AE =24, ∴AE =24245BC =cm . 故答案为:245 cm . 【点睛】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.16.x≠﹣1【分析】根据分母不能为零,可得答案.【详解】解:由题意,得x+1≠0,解得x≠﹣1,故答案为:x≠﹣1.【点睛】本题考查了函数自变量取值范围的求法.要使得本题式子有意义,必解析:x≠﹣1【分析】根据分母不能为零,可得答案.【详解】解:由题意,得x+1≠0,解得x≠﹣1,故答案为:x≠﹣1.【点睛】本题考查了函数自变量取值范围的求法.要使得本题式子有意义,必须满足分母不等于0.17.【分析】根据“气压×体积=常数”可知:先求得常数的值,再表示出气体体积V和气压p的函数解析式.【详解】设,那么点(1.6,60)在此函数解析式上,则k=1.6×60=96,∴.故答案为:解析:96 PV =【分析】根据“气压×体积=常数”可知:先求得常数的值,再表示出气体体积V和气压p的函数解析式.【详解】设kPV=,那么点(1.6,60)在此函数解析式上,则k=1.6×60=96,∴96PV =.故答案为:96PV =.【点睛】解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.18.【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB于E,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=1解析:120 13【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB于E,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=10,∴AC⊥BD,OA=12AC=12,OB=12BD=5,菱形ABCD的面积=12AC·BD=12×24×10=120,2212+5,又∵菱形ABCD的面积=AB·DE=120,∴DE=120 13,故答案为:120 13.【点睛】本题考查了菱形的性质、勾股定理、菱形面积的计算;根据菱形的性质由勾股定理求出边长是解题的关键.19.1【分析】先判断出事件A是必然事件,再根据必然事件、随机事件及不可能事件的概率可得答案.【详解】解:∵事件“三角形的内角和为180°”是必然事件,∴P(A)=1,故答案为:1.【点睛】解析:1【分析】先判断出事件A是必然事件,再根据必然事件、随机事件及不可能事件的概率可得答案.【详解】解:∵事件“三角形的内角和为180°”是必然事件,∴P(A)=1,故答案为:1.【点睛】本题考查必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.20.6cm或12cm.【分析】证△ABE是等腰三角形,分“点E在线段AD上” 和“点E在AD的延长线上”两种情况,分别求得答案即可.【详解】解:分两种情况:①点E在线段AD上,如图1,∵四边解析:6cm或12cm.【分析】证△ABE是等腰三角形,分“点E在线段AD上” 和“点E在AD的延长线上”两种情况,分别求得答案即可.【详解】解:分两种情况:①点E在线段AD上,如图1,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴AB+AD=12×32=16(cm),∠AEB=∠CBE,∵∠ABC的平分线交AD所在的直线于点E,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∵AE:ED=3:2,∴AB:AD=3:5,∵平行四边形ABCD的周长为32cm.∴AB的长为:16×38=6(cm).②点E在AD的延长线上,如图2,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴AB+AD=12×32=16(cm),∠AEB=∠CBE,∵∠ABC的平分线交AD所在的直线于点E,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∵AE:ED=3:2,∴AB:AD=3:1,∵平行四边形ABCD的周长为32cm.∴AB的长为:16×34=12(cm);故答案为:6cm或12cm.【点睛】本题考查了平行四边形与角平分线线的综合应用,熟知以上知识点及应用是解题的关键.三、解答题21.(1)详见解析;(2)10cm【分析】(1)由三角形中位线定理推知BD∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,故BC=16﹣AB,然后根据勾股定理即可求得.【详解】(1)证明:∵D、E分别是AB、AC的中点,∴ED是Rt△ABC的中位线,∴ED∥BC.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形;(2)解:∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为16cm,AC的长8cm,∴BC=16﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(16﹣AB)2+82,解得:AB=10cm,【点睛】本题考查了平行四边形的判定和性质,三角形的中位线定理,直角三角形斜边中线的性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.22.(1)(3,8);(15,0);(2)t=7;(3)能,t=5.【分析】(1)根据点B、C的坐标求出AB、OA、OC,然后根据路程=速度×时间求出AM、CN,再求出ON,然后写出点M、N的坐标即可;(2)根据有一个角是直角的平行四边形是矩形,当AM=ON时,四边形OAMN是矩形,然后列出方程求解即可;(3)先求出四边形MNCB是平行四边形的t值,并求出CN的长度,然后过点B作BC⊥OC于D,得到四边形OABD是矩形,根据矩形的对边相等可得OD=AB,BD=OA,然后求出CD,再利用勾股定理列式求出BC,然后根据邻边相等的平行四边形是菱形进行验证.【详解】解:(1)∵B(15,8),C(21,0),∴AB=15,OA=8,OC=21,当t=3时,AM=1×3=3,CN=2×3=6,∴ON=OC-CN=21﹣6=15,∴点M(3,8),N(15,0);故答案为:(3,8);(15,0);(2)当四边形OAMN是矩形时,AM=ON,∴t=21-2t,解得t=7秒,故t=7秒时,四边形OAMN是矩形;(3)存在t=5秒时,四边形MNCB能否为菱形.理由如下:四边形MNCB是平行四边形时,BM=CN,∴15-t=2t,解得:t=5秒,此时CN=5×2=10,过点B作BD⊥OC于D,则四边形OABD是矩形,∴OD=AB=15,BD=OA=8,CD=OC-OD=21-15=6,在Rt△BCD中,BC=22BD CD=10,∴BC=CN,∴平行四边形MNCB是菱形,故,存在t=5秒时,四边形MNCB为菱形.【点睛】本题主要考查了四边形综合以及矩形的性质,平行四边形与菱形的关系,梯形的问题、勾股定理等知识,根据矩形、菱形与平行四边形的联系列出方程是解题的关键.23.(1)见解析;(2)当∠A=90°时,FG⊥FH.【分析】(1)根据等腰三角形的性质得到∠ABC=∠ACB,根据平行线的性质、等腰三角形的判定定理得到AD=AE,得到DB=EC,根据三角形中位线定理证明结论;(2)延长FG交AC于N,根据三角形中位线定理得到FH∥AC,FN∥AB,根据平行线的性质解答即可.【详解】(1)证明:∵AB=AC.∴∠ABC=∠ACB,∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴∠ADE=∠AED,∴AD=AE,∴DB=EC,∵点F、G、H分别为BE、DE、BC的中点,∴FG是△EDB的中位线,FH是△BCE的中位线,∴FG=12BD,FH=12CE,∴FG=FH;(2)解:延长FG交AC于N,∵FG是△EDB的中位线,FH是△BCE的中位线,∴FH∥AC,FN∥AB,∵FG⊥FH,∴∠A=90°,∴当∠A=90°时,FG⊥FH.【点睛】本题考查的是三角形中位线定理的应用、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.24.(1)求证见解析;(2)2OE=EB+EA;(3)见解析.【分析】(1)延长EA至点F,使AF=BE,连接OF,由SAS证得△OBE≌△OAF,得出OE=OF,∠BEO=∠AFO,由等腰三角形的性质与等量代换即可得出结论;(2)判断出△EOF是等腰直角三角形,根据勾股定理即可得出结论;(3)先根据ASA证得△ABE≌△ADH,△ABE≌△BCF,△ADH≌△DCG,△DCG≌△CBF,得出FG=EF=EH=HG,再由∠F=∠H=∠AEB=90°,由此可得出结论.【详解】(1)证明:延长EA至点F,使AF=BE,连接OF,如图所示:∵四边形ABCD是正方形,∴∠BOA=90°,OB=OA,∵∠AEB=90°,∴∠OBE+∠OAE=360°﹣90°﹣90°=180°,∵∠OAE+∠OAF=180°,∴∠OBE =∠OAE ,在△OBE 与△OAF 中,0OB A OBE OAF BE AF =⎧⎪∠=∠⎨⎪=⎩,∴△OBE ≌△OAF (SAS ),∴OE =OF ,∠BEO =∠AFO ,∴∠AEO =∠AFO ,∴∠BEO =∠AEO ,∴EO 平分∠AEB ;(2OE =EB +EA ,理由如下:由(1)得:△OBE ≌△OAF ,∴OE =OF ,∠BOE =∠AOF ,∵∠BOE +∠AOE =90°,∴∠AOF +∠AOE =90°,∴∠EOF =90°,∴△EOF 是等腰直角三角形,∴2OE 2=EF 2,∵EF =EA +AF =EA +EB ,∴2OE 2=(EB +EA )2,OE =EB +EA ,OE =EB +EA ;(3)证明:∵CF ⊥EB ,DH ⊥EA ,∴∠F =∠H =∠AEB =90°,∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =90°,∴∠EAB +∠DAH =90°,∠EAB +∠ABE =90°,∠ADH +∠DAH =90°,∴∠EAB =∠HDA ,∠ABE =∠DAH .在△ABE 与△ADH 中,EAB HDA AB ADABE DAH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△ADH (ASA ),∴BE =AH ,AE =DH ,同理可得:△ABE ≌△BCF ,△ADH ≌△DCG ,△DCG ≌△CBF ,∴BE =CF ,AE =BF ,AH =DG ,DH =CG ,DG =CF ,CG =BF ,∴CG +FC =BF +BE =AE +AH =DH +DG ,∴FG =EF =EH =HG ,∵∠F =∠H =∠AEB =90°,∴四边形EFGH 为正方形.【点睛】本题是四边形综合题,主要考查了正方形的判定与性质、全等三角形的判定与性质、等腰三角形的性质、等腰直角三角形的判定与性质、角平分线定义等知识;熟练掌握正方形的判定和性质,作辅助线构建全等三角形是解题的关键.25.(1)254 (2)152【分析】 (1)根据折叠的性质可得∠ADB=∠EDB ,再根据两直线平行,内错角相等可得∠ADB=∠DBC ,然后求出∠FBD=∠FDB ,根据等角对等边可得BF=DF ,设BF=x ,表示出CF ,在Rt △CDF 中,利用勾股定理列出方程求解即可;(2)根据折叠的性质可得DH=BH ,设BH=DH=x ,表示出CH ,然后在Rt △CDH 中,利用勾股定理列出方程求出x ,再连接BD 、BG ,根据翻折的性质可得【详解】(1) 由折叠得,∠ADB=∠EDB ,∵矩形ABCD 的对边AD ∥BC ,∴∠ADB=∠DBC ,∴∠FBD=∠FDB ,∴BF=DF ,设BF=x ,则CF=8−x ,在Rt △CDF 中,222+=CD CF DF即2226(8)x x +-=解得x=254故答案:254(2)由折叠得,DH=BH ,设BH=DH=x ,则CH=8−x ,在Rt △CDH 中, 222+=CD CH DH即2226(8)x x +-=解得x=254 连接BD 、BG ,由翻折的性质可得,BG=DG ,∠BHG=∠DHG ,∵矩形ABCD 的边AD ∥BC ,∴∠BHG=∠DGH ,∴∠DHG=∠DGH ,∴DH=DG ,∴BH=DH=DG=BG ,∴四边形BHDG 是菱形,在Rt △BCD 中,S 菱形BHDG =12BD ⋅GH=BH ⋅CD , 即12×10⋅GH=254×6,解得GH=152.故答案:152【点睛】 本题考查了翻折变换的性质,矩形的性质,勾股定理的应用,菱形的判定与性质,熟记翻折的性质并利用勾股定理列出方程是解题的关键.26.(1)(31-,);(2)t=9,6y x =;(3)点P 、Q 的坐标为:P (132,0)、Q (32,4)或P (7,0)、Q (3,2)或P (-7,0)、Q (-3,-2). 【分析】(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,由正方形的性质结合同角的余角相等即可证出△ADE ≌△BAF ,从而得出DE=AF ,AE=BF ,再结合点A 、D 的坐标即可求出点B 的坐标;(2)设反比例函数为k y x=,根据平行的性质找出点B ′、D ′的坐标,再结合反比例函数图象上点的坐标特征即可得出关于k 、t 的二元一次方程组,解方程组解得出结论;(3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n,6n).分B ′D ′为对角线或为边考虑,根据平行四边形的性质找出关于m 、n 的方程组,解方程组即可得出结论.【详解】解:(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,如图1所示.∵四边形ABCD 为正方形,∴AD=AB ,∠BAD=90°,∵∠EAD+∠ADE=90°,∠EAD+∠BAF=90°,∴∠ADE=∠BAF .在△ADE 和△BAF 中,有90AED BFA ADE BAF AD BA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BAF (AAS ),∴DE=AF ,AE=BF .∵点A (-6,0),D (-7,3),∴DE=3,AE=1,∴点B 的坐标为(-6+3,0+1),即(-3,1).故答案为:(-3,1).(2)设反比例函数为k y x=, 由题意得:点B ′坐标为(-3+t ,1),点D ′坐标为(-7+t ,3),∵点B ′和D ′在该比例函数图象上,∴33(7)k t k t =-+⎧⎨=⨯-+⎩, 解得:t=9,k=6,∴反比例函数解析式为6y x=. (3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n ,6n).以P、Q、B′、D′四个点为顶点的四边形是平行四边形分两种情况:①B′D′为对角线时,∵四边形B′PD′Q为平行四边形,∴63162nm n⎧-=⎪⎨⎪-=-⎩,解得:13232mn⎧=⎪⎪⎨⎪=⎪⎩,∴P(132,0),Q(32,4);②当B′D′为边时.∵四边形PQB′D′为平行四边形,∴626031m nn-=-⎧⎪⎨-=-⎪⎩,解得:73mn=⎧⎨=⎩,∴P(7,0),Q(3,2);∵四边形B′QPD′为平行四边形,∴626031n mn-=-⎧⎪⎨-=-⎪⎩,解得:73mn=-⎧⎨=-⎩.综上可知:存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形,符合题意的点P、Q的坐标为:P(132,0)、Q(32,4)或P(7,0)、Q(3,2)或P(-7,0)、Q(-3,-2).【点睛】本题考查了反比例函数图象上点的坐标特征、正方形的性质、全等三角形的判定及性质、平行四边形的性质以及解方程组,解题的关键是:(1)证出△ADE≌△BAF;(2)找出关于k、t的二元一次方程组;(3)分类讨论.本题属于中档题,难度不大,解决该题型题目时,找出点的坐标,利用反比例函数图形上点的坐标表示出来反比例函数系数k是关。

苏教版2012-2013八年级下数学期中试卷

苏教版2012-2013八年级下数学期中试卷

2012~2013学年度第二学期期中考试八年级数学试题考试时间:100分钟 卷面总分:120分 考试形式:闭卷命题:薛乾国 审阅:夏正军亲爱的同学们,经过半学期的努力你一定有不小的收获吧,现在就是展示你实力的时候,只要你认真审题,细心答题,就会有满意的收获! 放松一点,相信自己,祝你成功! 一、 选择题(每小题3分,共24分) 1.如果34a b =,那么bb a +等于 ( ) A .4:3 B .3:7 C .7:3 D .7:42.已知b a >,则下列不等式错误的是 ( )A .33->-b aB .b a 33>C .5353--<--b aD .0>ba3.若点)3,2(-A 在双曲线xky =经过点,则下列点一定在该曲线上的是( )A .)3,2(B .)3,2(--C .)2,3(-D .)2,3(4.两个相似三角形的相似比是2:3,其中较小的面积是12,则另一个面积是 ( )A .8B .16C .24D .27 5.反比例函数2y x=的两个点为11(,)x y 、22(,)x y ,且12x x >>0,则下式关系成立的是 ( ) A .12y y > B .12y y < C .12y y = D .不能确定6.某天同时同地,甲同学测得1 m 的测竿在地面上影长为0.8 m ,乙同学测得国旗旗杆在地面上的影长为9.6 m ,则国旗旗杆的长为 ( )A .10 mB .12 mC .13 mD .15 m7.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是 ( )8.如图,等边△ABC 中,AB=3,P 为BC 上一点,D 为AC 上一点,若BP=1,23CD =, 则∠APD 等于 ( ) A .30° B .45° C .60° D .不确定ACBA .B .C .D .二、填空题(每小题2分,共20分) 9.若分式39+-a a 有意义,则a 的取值范围是 . 10.当比例尺为1:40000的盐城旅游地图上,某条道路的长为7cm ,则这条道路的实际长度为 km . 11.已知线段d 是线段a 、b 的比例中项,其中a =3cm ,b =2cm ,则线段d 的长是 . 12.不等式组⎩⎨⎧<->21x x 的整数解是________.13.如图,点A 是反比例函数图象上一点,过点A 作AB⊥y 轴于点B ,点P 在x 轴上,△ABP 的面积 为2,则这个反比例函数的解析式为 .15.若关于x 的分式方程828-+=-x mx x 有增根,则m = . 16.如图,一次函数b ax y +=1(a≠0)与反比例函数xky =2的图象交于A (1,4)、B (4,1)两点,若使y 1>y 2,则x 的取值范围是 .17.如图,9AB =,6AC =,点M 在AB 上,且AM =3,点N 在AC 上运动,连接MN ,若△AMN 与△ABC 相似,则AN = .18.如图,△AOB 中,C 是AB 的中点,反比例函数xky =(k >0)在第一象限的图象经过A 、C 两点,若△OAB 面积为6,则k 的值为 .三、解答题(本大题共10小题,共76分) 19.(本题5分)求不等式组⎩⎨⎧++≤--+<-5)1(3)1(211213x x x x 的解集,并在数轴上表示5-4-3-0第13题第14题第17题 第16题20.(本题5分)22416222-+=--+x x x x x -21.(本题6分)先化简:232224xx x x x x ⎛⎫-÷ ⎪-+-⎝⎭,然后请你在33<<-x 中择一个你喜欢的整数..(要合适哦!)代入求值.22.(本题8分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?23.(本题8分)已知:△ABC 在坐标平面内,三个顶点的坐标分别为A (0,3),B (3,4),C (2,2).(正方形网格中每个小正方形的边长是1个单位长度)(1)画出△ABC 向下平移4个单位得到的△A 1B 1C 1,并直接写出C 1点的坐标;(2)以点B 为位似中心,在网格中...画出△A 2BC 2,使△A 2BC 2与△ABC 位似,且位似比为2︰1,并直接写出C 2点的坐标及△A 2BC 2的面积.200400600 ()1.5400A ,/Pa p2/m S432.5 2 1.5 1 24.(本题6分)某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺了若干块木块,构筑成一条临时近道.木板对地面的压强()Pa p 是木板面积()2m S 的反比例函数,其图象如下图所示.(1)请直接写出这一函数表达式和自变量取值范围; (2)当木板面积为20.2m 时,压强是多少?(3)如果要求压强不超过6000Pa ,木板的面积至少要多大?25.(本题8分)如图所示,AD 、BC 为两路灯,身高相同的小明、小亮站在两路灯杆之间,两人相距6.5m ,小明站在P 处,小亮站在Q 处,小明在路灯C 下的影长为2m ,已知小明身高1.8m ,路灯BC 高9m .求:(1)小亮在路灯D 下的影子QB 的长;(2)建筑物AD 的高.26. (本题10分)如图,一次函数y =ax +b 与反比例函数y =xk的图象交于A 、B 两点,与x 轴交于点C ,与y 轴交于点D ,已知OA =10且点A 的横坐标是纵坐标的3倍,点B 的坐标为(m ,-2). (1)求反比例函数的解析式; (2)求一次函数的解析式;(3)在y 轴上存在一点P ,使得△PDC 与△ODC 相似,请你求出P 点的坐标.27. (本题10分)类比转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整原题:如图1,在□ABCD 中,点E 是BC 边的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G ,若31=AF EF ,求CG CD 的值.(1)尝试探究在图1中,过点E 作EH//AB 交BG 于点H ,则AB 和EH 的数量关系是 ,CG和EH 的数量关系是 ,所以CGCD的值是 . (2)类比延伸如图2,在原题的条件下,若)0(>=m m EF AF ,则CGCD的值是 (用含m 的代数式表示),试写出解答过程:E F CD BGA图1FD GA图2EFCD B图3(3)拓展迁移如图3,梯形ABCD 中,DC//AB ,点E 是BC 的延长线上一点,AE 和BD 相交于点F.若a CDAB=,)0,0(>>=b a b BE BC ,则EFAF的值是 (用含a ,b 的代数式表示) 28.(本题10分)如图,直线b x y +=(b≠0)交坐标轴于A 、B 两点,交双曲线xy 2=于点D ,过D 作两坐标轴的垂线DC 、DE ,连接OD .(1)求出点A 和点B 的坐标(用含有字母b 的代数式表示),并说明AD 平分∠CDE; (2)对任意的实数b (b≠0),AD ·BD 为定值;(3)是否存在直线AB ,使得四边形OBCD 为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.附加题:(共10分)29.如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,过点B 作射线BBl ∥AC.动点D 从点A 出发沿射线AC 方向以每秒5个单位的速度运动,同时动点E 从点C 出发沿射线AC 方向以每秒3个单位的速度运动.过点D 作DH⊥AB 于H ,过点E 作EF 上AC 交射线BB1于F ,G 是EF 中点,连结DG .设点D 运动的时间为t 秒.(1)当t 为何值时,AD=AB ,并求出此时DE 的长度; (2)当△DEG 与△ACB 相似时,求t 的值;(3)以DH 所在直线为对称轴,线段AC 经轴对称变换后的图形为A′C′. ①当35t 时,连结C′C,设四边形ACC′A ′的面积为S ,求S 关于t 的函数关系式; ②当线段A′C′与射线BB ,有公共点时,求t 的取值范围(写出答案即可).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二年级数学阶段性测试卷
班级 姓名 成绩
一. 细心选一选:(每题3分,共30分)
1.在式子1a ,2xy π,2334a b c ,56x +,78
x y +,109x y +中,分式的个数是 ( ) A .2 B .3 C .4 D .5
2. 高钙牛奶的包装盒上注明“每100克内含钙≥150毫克”,它的含义是指 ( )
A 、每100克内含钙150毫克
B 、每100克内含钙不低于150毫克
C 、每100克内含钙高于150毫克
D 、每100克内含钙不超过150毫克
3、如果把分式2xy x y
+中的x 和y 都扩大3倍,那么分式的值 ( ) A .扩大3倍 B.缩小3倍 C.缩小6倍 D.不变
4.在数轴上表示不等式x ≤-2的解集,正确的是 ( )
A .
B 。

C .
D 。

5.如果不等式组⎩
⎨⎧><m x x 8无解,那么m 的取值范围是 ( ) A m >8 B m≥8 C m <8 D m≤8
6、下列式子(1)y x y x y x -=--122;(2)c
a b a a c a b --=--;(3)1-=--b a a b ; (4)y
x y x y x y x +-=--+-中正确的有( ) A 、1个 B 、2 个 C 、3 个 D 、4 个
7.若分式22325
x x -+的值是负数,则x 的取值范围是 ( ) A .23x > B .23
x < C .x <0 D .不能确定
8.已知关于x 的不等式组⎩⎨⎧+<-≥-1
22b a x b a x 的解集为3≤x <5,则a b 的值为 ( ) A .-2 B .-
21 C .-4 D .-41 9、能使分式1
21
2+--x x x 的值为零的所有x 的值是( )
A 、1=x
B 、1-=x
C 、1=x 或1-=x
D 、2=x 或1=x
10、某种肥皂原零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法.第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售.你在购买相同数量肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买( )块肥皂.
A.5 B 4 C 3 D 2
二.仔细填一填:(每题3分,共30分) 11、化简13+a a -1
+a a = 12.若b a ,则2____2a b --(填"","",""= )
13.在直角坐标系中,点()26,5P x x --在第四象限,则x 的取值范围是 。

14.不等式组⎪⎩⎪⎨⎧≥->+1
4125x x 的非负整数解是__ ___。

15 若分式13x
-的值为整数,则整数x = 16.已知不等式:①1x >,②4x >,③2x <,④21x ->-,从这四个不等式中取两个,构成
正整数解是2的不等式组是 .(填写序号)
17、如果三角形三边分别为3、4、1a -,则a 的取值范围是 。

18. 若=++=+1
,31242
x x x x x 则__________。

19.已知
113x y -=,则代数式21422x xy y x xy y
----的值为_________
20.如果不等式3x -m ≤0的正整数解是1,2,3,那么m 的范围是__ ___。

三.解答题:(共90分)
21.(10分)解下列不等式,并把它的解集在数轴上表示出来。

(1)2(x +1)-3(x +2)<0 (2)31-x <4
1+x -2
22.(10分)解下列不等式组,并把它的解集在数轴上表示出来。

(1)⎩⎨⎧>+<-07403x x (2)12(1)1,1.23
x x x -->⎧⎪⎨-≥⎪⎩
23.计算或化简:(20分)
(1)x y x y 2211-+- (2)22224421y
xy x y x y x y x ++-÷+--
(3)2222142442a a a a a a a a a +--⎛⎫-÷
⎪--+-⎝⎭
(4).先化简,再求值:22222442a b a ab b a b a b +++-÷+-,其中a=一1,b=12
24.(10分)已知方程组⎩⎨⎧--=++=-a
y x a y x 731的解x 为非正数,y 为负数.
(1)求a 的取值范围;
(2)在a 的取值范围中,当a 为何整数时,不等式2ax +x>2a+1的解集为x <1.
25. (10分)已知函数y1=kx—2和y2=—3x+b相交于点A(2,—1)
(1)求k、b的值,在同一坐标系中画出两个函数的图象
.................
(2)利用图象求出:当x取何值时有:①y1<y2;②y1≥y2
(3)利用图象求出:当x取何值时有:①y1<0且y2<0;②y1>0且y2<0.
26.(10分)为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维持交通秩序.若每一个路口安排4
人,那么还剩下78人;若每个路口安排8人,•那么最后一个路口
......不足8人,但不少于4人.求这个中学共选派值勤学生多少人?•共在多少个交通路口安排值勤?
27、若x 为整数,且分式
3
13+-x x 的值也为整数,求满足要求的所有x 的和。

(10分)
28、(本题满分10分) 现有一个种植总面积为540m 2的矩形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它们的占地面积、产量、利润分别如下:
(1)若设草莓共种植了x 垄,通过计算说明共有几种种植方案?分别是哪几种?
(2)若设种植草莓和西红柿获得的总利润为y,请求出y 与x 的函数关系式,并利用函数的性质说明在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?。

相关文档
最新文档