量子霍尔效应
量子霍尔效应

量子霍尔效应霍尔效应是一种发现、研究和应用都比较早的磁电效应,电子在导体中的定向流动形成电流,如果沿垂直于电流方向施加一稳恒磁场,则电子运动必然受到洛伦兹力影响而产生其他效应。
1879年Hall 发现了所谓的经典霍尔效应,恰好100年以后,K.vonKlitzing 于1980年发现了量子霍尔效应[1],并因此获得1985年诺贝尔物理学奖;1982年5月华裔物理学家崔琦、H.Stormer 和A.Gossard 发现了分数量子霍尔效应,并于1998年获得诺贝尔物理学奖。
霍尔效应从经典的到量子,从整数量子霍尔效应到分数量子霍尔效应,已经取得了不少的研究成果,本文就介绍霍尔效应的发展和量子模型理论。
一、 经典霍尔效应首先回顾一下经典霍尔效应。
给一个长方形导体两端(x 方向)施加一个静电场(如图1),则在导体中产生的电流密度为x j nqv (1)=其中,n 为载流子浓度,q 和v 分别为载流子电荷和速度。
在Z 方向上施加一个稳恒的磁场,则带电粒子会受到洛伦兹力的作用发生偏转,在Y 方向的两个面上放生电荷积累,形成电势差U H ,称为霍尔电压;随着电荷的不断积累,当场强E y 增大至vB/c (CGS 单位制)时,洛伦兹力与静电力平衡,载流子不在发生偏转,此时霍尔电压达到稳定值。
定义横向的电阻率(即霍尔电阻率):yH x E (2)j ρ=由于平衡时E y =vB/c ,结合上面两式有:H B (3)nqcρ= 设导体沿y 方向的宽度为L y ,则x yH y y Bj L U E L (4)nqc ==通过测量U H 、B 、j x ,就可以知道载流子电荷和浓度。
可以利用这个很容易分辨半导体是N 型还是P 型的,知道了载流子种类,计算载流子浓度,对半导体研究意义很大;同时,由于霍尔电导跟磁场有关系,可以制作各种传感器,应用到测量技术、电子技术、自动化技术等,其中高斯计就是很重要的一个应用。
图1.经典霍尔效应经典霍尔效应是容易理解的,但我们在不同极限条件下发现了一些新的霍尔效应,比如在一些铁磁材料中,不加磁场时也存在霍尔效应,但原理有根本的不同,被称作反常霍尔效应,当在低温强磁场下,霍尔电阻率不再随B 成比例关系,而是表现出台阶,这就是下面要谈的量子霍尔效应。
强磁场下的量子霍尔效应

强磁场下的量子霍尔效应量子霍尔效应(Quantum Hall Effect,简称QHE)是一种令人着迷的物理现象,它在强磁场下发生。
本文将介绍强磁场下的量子霍尔效应及其相关原理、实验验证以及应用领域。
1. 引言量子霍尔效应是1980年由生于美国的物理学家克劳斯·冯·克里茨弗尔德和霍拉米·阿哈罗诺夫(Klaus von Klitzing and Horst L. Störmer)以及德国物理学家陶尔·普林兹(Theodor W. Hänsch)通过实验发现的。
他们因此成果而于1985年共同获得诺贝尔物理学奖。
2. 量子霍尔效应原理量子霍尔效应的基础是电子在二维电子气中受到磁场的约束运动。
在强磁场下,电子的能级会发生分立的变化,这种能级在确定的填充因子下会出现量子化。
量子霍尔效应中最重要的参量是霍尔电导,其可用于衡量系统的导电性。
3. 量子霍尔效应的实验验证为了验证量子霍尔效应的存在,科学家们进行了一系列的实验观测。
其中最具代表性的实验是通过测量霍尔电阻来确认电子在强磁场下表现出量子霍尔效应。
实验结果显示,在特定的填充因子条件下,霍尔电阻将会出现为精确的整数倍数。
4. 量子霍尔效应的应用领域量子霍尔效应在实际中找到了广泛的应用领域。
其中最重要的应用是在电阻标准和精确测量领域。
由于量子霍尔效应具有精确的整数倍性质,可以用于制造精密的电阻器,用于标定电流和电压的标准。
此外,量子霍尔效应还在电子学、凝聚态物理学以及拓扑量子计算中具有重要意义。
总结:强磁场下的量子霍尔效应是一项具有重要物理意义的现象。
它引起了科学界的广泛关注,不仅揭示了量子化现象的本质,还在实际应用中发挥了重要作用。
通过对量子霍尔效应的研究,我们可以更好地理解和应用于其他领域的量子效应。
尽管还有许多未解决的问题,但量子霍尔效应无疑是现代物理学的一大突破,为我们揭示了宇宙中微小尺度的奥秘。
量子霍尔效应的物理意义

量子霍尔效应的物理意义摘要:1.量子霍尔效应的定义和发现2.量子霍尔效应的物理意义3.量子霍尔效应在实际应用中的重要性4.我国在量子霍尔效应研究方面的进展5.量子霍尔效应的未来发展趋势正文:量子霍尔效应是凝聚态物理学中的一种重要现象,它揭示了量子力学与固体物理的深刻联系。
本文将从量子霍尔效应的定义、物理意义、实际应用、我国研究进展和未来发展趋势等方面进行详细阐述。
量子霍尔效应是由德国物理学家霍尔斯特发现的一种电子输运现象。
在低温、强磁场条件下,某些半导体或金属材料的电阻随磁场强度呈量子化变化。
这种现象违反了经典霍尔效应的线性关系,体现了量子力学的特性。
量子霍尔效应的物理意义在于,它揭示了电子在固体中的输运行为受到量子力学规律的严格控制。
在量子霍尔效应中,电子形成了一种称为“分数量子霍尔液体”的量子态,这种态具有分数化电荷和液态特性。
这为研究量子流体和量子固体提供了重要线索。
量子霍尔效应在实际应用中具有重要意义。
例如,在半导体器件、磁传感器和高温超导体等领域,量子霍尔效应可为新型材料的研发提供理论指导。
此外,分数量子霍尔液体在磁存储、磁随机存储器和磁传感器等方面具有广泛应用前景。
我国在量子霍尔效应研究方面取得了世界领先的成果。
科学家们通过实验和理论研究,不断深入探索量子霍尔效应的微观机制,为发展新型量子器件提供了有力支持。
在国家重点研发计划等项目的支持下,我国在量子霍尔效应研究方面将继续保持领先地位。
展望未来,量子霍尔效应研究将继续向纵深发展。
随着实验技术和理论方法的不断完善,科学家们将对量子霍尔效应有更为全面的认识,进而为量子计算、量子通信和量子信息等领域带来更多创新成果。
同时,量子霍尔效应在新型材料、能源转换等领域的应用前景也将日益凸显。
总之,量子霍尔效应作为凝聚态物理学的一个重要现象,不仅具有深刻的物理意义,还为实际应用和创新研究提供了广阔空间。
量子霍尔效应

量子霍尔效应霍尔效应,它实际上一种电磁效应的。
我们给一块半导体通电,在导体外面外加一个与电流方面垂直的磁场,磁场会使半导体中的电子与空穴(可以视为正电荷)受到不同方向的洛伦兹力而在不同方面上聚集,聚集起来的电子和空穴之间会产生电场,此时在半导体两侧产生了垂直于磁场和电流方向的电压,而且在此电压生成的电场力和磁场的洛伦兹力平衡以后,后来的电子和空穴就不在聚集,顺利通过不发生偏移。
这种现象是由美国物理学家霍尔于1879年研究金属导电机制的时候发现的,所以命名为“霍尔效应”,且在实际生活中产生了广泛的应用,根据霍尔效应做成的霍尔器件,就是以磁场为工作媒介,将物体的运动参数转变为数字电压的形式输出,使之具备传感和开关功能。
如:汽车的点火系统,设计人员将霍尔传感器放在分电器内取代机械断电器,用作机械断电器,用作点火脉冲发生器。
这种霍尔点火发生器随着转速变化的磁场在带电半导体内产生脉冲电压,控制电控单元的初级电流。
相对于机械断电器而言,霍尔式点火脉冲发生器无磨损免维护,能够适应恶劣的环境,同时能够精确的控制点火,具有明显的优势。
什么是量子霍尔效应(二维)我们上面所说的霍尔效应是在三维的导体中实现的,其中的电子可以在导体中自由运动。
现在科学家通过某些手段将电子限制在一个二维平面内,之后添加一个垂直于该平面的磁场,同时沿着二维电子平面一个方向通以电流,此时在二维平面的另一个方向上测量到电压。
这种现象称为量子霍尔效应,属于量子力学版的霍尔效应。
该现象是由德国物理学家冯•克利青发现,并因此获得1985年的诺贝尔物理学奖。
但是为何在霍尔效应提出100年后才有人发现量子霍尔效应。
主要原因是理想的二维电子气难以实现,在半导体技术高速发展之后,人们才能在“金属-氧化物-半导体场效应晶体管”中实现比较理想的二维电子气,而且想要观测到这种现象还需要提供极低温和强磁场环境。
量子霍尔效应与上一节提到的霍尔效应最大不同之处在于横向电压对磁场的响应不同。
量子霍尔效应

量子霍尔效应量子霍尔效应是一种在二维材料中观察到的量子输运现象,具有诸多重要的物理和应用意义。
本文将介绍量子霍尔效应的基本原理、实验观测以及相关应用领域。
一、量子霍尔效应的基本原理量子霍尔效应是指当在二维电子气体中施加一弱的磁场时,电子在垂直于磁场方向的平面内沿着边界形成准连续的态,而趋于不散射。
这种不散射的现象可以通过霍尔电阻测量,即电子在横向电场下的电流在垂直方向的电压降。
量子霍尔效应的本质是由于二维系统中的电子受到磁场的束缚,导致电子只能运动在垂直磁场方向的能级上,形成了称为“朗道能级”的能带结构。
在这个结构中,电子的态密度非常紧凑且高度定域,导致电子不易发生散射,从而实现了量子霍尔效应。
二、量子霍尔效应的实验观测量子霍尔效应最早由物理学家冯·克莱因在量子霍尔材料中实验观测到,并因此获得了诺贝尔物理学奖。
他们使用了非常低温以及超高纯度的半导体材料,以观察到这一现象。
实验观测量子霍尔效应的关键在于霍尔电阻的测量。
在二维电子气体中,施加横向电场后,由于电子发生霍尔效应,沿垂直方向会产生电压差。
通过测量这个电压差和施加电场的比值,即得到了霍尔电阻。
当温度趋近于绝对零度时,霍尔电阻呈现出量子化的特征,即呈现为离散的平台。
这种离散的霍尔电阻是量子霍尔效应的直接证据。
三、量子霍尔效应的应用领域量子霍尔效应在凝聚态物理学以及纳米电子学领域具有重要的应用。
其中最重要的应用之一是准粒子和拓扑能带的研究。
在量子霍尔系统中,由于存在较强的相互作用效应以及拓扑性质,准粒子如磁极子、准粒子夸克等得以在这个平面上实现。
这种拓扑态准粒子的研究对于理解凝聚态物理和发展新的量子计算技术具有重要的意义。
另外,量子霍尔效应还在纳米电子器件中有广泛的应用。
由于量子霍尔效应使得电子传输在边界上趋于无散射,因此可以用于构建更加稳定和可控的纳米电子器件。
例如,在量子霍尔体系中可以实现高精度的电流标准以及高灵敏度的传感器,这对于电子技术的发展具有重要的作用。
量子霍尔效应解析

量子霍尔效应解析量子霍尔效应是一种奇特的量子现象,它在凝聚态物理领域中具有重要的地位。
本文将对量子霍尔效应进行解析,从基本概念、实验观测到理论解释等方面进行详细阐述。
量子霍尔效应是指在低温和强磁场下,二维电子气体在横向电场作用下出现的电导率量子化现象。
这一现象首次由德国物理学家冯·克尔门于1980年观测到,他发现在非常低温下,当二维电子气体受到强磁场垂直作用时,电导率会出现突变,而且其值只能取整数或分数。
这种奇特的现象引起了科学界的广泛关注。
实验观测方面,量子霍尔效应可以通过霍尔电阻的测量来进行。
霍尔电阻是指在二维电子气体受到垂直磁场作用时,横向电场和电流之间的关系。
实验中,通过在样品上施加横向电场和测量横向电流,可以得到霍尔电阻的数值。
当样品温度较低且强磁场作用下,霍尔电阻会出现明显的量子化现象,即只能取整数或分数值。
理论解释方面,量子霍尔效应可以通过拓扑物理的概念来解释。
拓扑物理是一门研究物质的几何结构和拓扑性质之间关系的学科。
在量子霍尔效应中,二维电子气体的能带结构具有非平凡的拓扑性质,即存在能隙和不同的拓扑不变量。
这些拓扑不变量决定了电子在强磁场下的行为,使得电导率只能取整数或分数值。
量子霍尔效应的深入研究不仅推动了凝聚态物理的发展,也对新型电子器件的设计和制备具有重要意义。
例如,基于量子霍尔效应的量子阻挡器可以在电子输运中实现无能量损耗的传输,这对于未来低功耗电子器件的发展具有巨大潜力。
另外,量子霍尔效应还可以用于研究拓扑绝缘体和拓扑超导体等新颖物态,这些物态在量子计算和量子通信等领域具有广阔的应用前景。
总结起来,量子霍尔效应是一种重要的量子现象,它在凝聚态物理中具有广泛的应用和研究价值。
通过实验观测和理论解释,我们可以更好地理解量子霍尔效应的本质和特性。
未来随着技术的进步和研究的深入,相信量子霍尔效应将会在更多领域发挥作用,为人类带来更多的科学和技术进步。
量子霍尔效应详解

量子霍尔效应是过去二十年中,凝体物理研究里最重要的成就之一。
要解释这个效应,需要用上许多量子物理中最微妙的概念。
1998年的诺贝尔物理奖,由美国普林斯顿大学的崔琦(Daniel C. Tsui)、哥伦比亚大学的史特莫(Horst L. Stormer)及史丹佛大学的劳夫林(Robert B. Laughlin)三人获得。
得奖理由是“他们发现了一种新形态的量子流体,其中有带分数电荷的激发态”。
在他们三位的新发现之前,物理学者认为除了夸克一类的粒子之外,宇宙中的基本粒子所带的电荷皆为一个电子所带的电荷-e(e=1.6×10-19库伦)的整数倍。
而夸克依其类别可带有±1e/3或±2e/3电荷。
夸克在一般状况下,只能存在于原子核中,它们不像电子可以自由流动。
所以物理学者并不期待在普通凝体系统中,可以看到如夸克般带有分数电子电荷的粒子或激发态。
这个想法在1982年崔琦和史特莫在二维电子系统中,发现分数霍尔效应后受到挑战。
一年后劳夫林提出一新颖的理论,认为二维电子系统在强磁场下由于电子之间的电力库伦交互作用,可以形成一种不可压缩的量子液体(incompressible quantum fluid),会展现出分数电荷。
分数电荷的出现可说是非常神秘,而且出人意表,其实却可以从已知的量子规则中推导出来。
劳夫林还曾想利用他的理论,解释夸克为什么会带分数电子电荷,虽然这样的想法还没有成功。
劳夫林的理论出现后,马上被理论高手判定是正确的想法。
不过对很多人而言,他的理论仍很难懂。
在那之后五、六年间,许多重要的论文陆续出现,把劳夫林理论中较隐晦的观念阐释得更清楚,也进一步推广他的理论到许多不同的物理状况,使整个理论更为完备。
以下扼要说明什么是分数量子霍尔效应,以及其理论解释。
霍尔电导系数编辑我们研究的对象是二维电子系统。
假设电子仅能活动于x-y平面上,而在z轴方向有一均匀磁场B,如图一所示。
霍尔效应就是当x轴方向有电流I时,在y轴方向就会有电位差VH。
量子霍尔效应

量子霍尔效应
由式(11- 64b)可得
这一比值具有电阻的量纲,因而被定义为霍尔电阻RH.此式表明,霍尔电阻应正比磁场B. 1980年,在研究半导体在极低温度下和强磁场中的霍尔效应时,德国物理学家克里青(Klaus vonKlitzing)发现霍尔电阻和磁场的关系并不是线性的,而是有一系列台阶式的改变, 如图11- 51所示(该图数据是在1. 39 K的温度下取得的,电流保持在25.
52 FiA不变).这一效应叫量子霍尔效应,克里青因此获得1985年诺贝尔物理学奖.
量子霍尔效应只能用量子理论解释,该理论指出
图11-51址子犠尔效应
式申岛叫做克里青常氐它和基本常用h和(•有关,即
R, = g = 25 813<0>. (11-66) 由于Rk的测定值可以准确到10-io,所以量子霍尔效应被用来定义电
阻的标准,从1990年开始,“欧姆”就根据霍尔电阻精确地等于25
812. 80 n来定义了.
克里青当时的测量结果显示,式(11-65)中的N为整数,其后美籍华裔物理学家崔琦(D. C. Tsui, 19 39-)和施特默(H. L. Stomer, 19 49-)等人研究量子霍尔效应时,发现在更强的磁场(如20甚至30 T)下,式(11- 65)中的”可以是分数,如1/3, 1/5, 1/2, 1/4 等,这种现象叫分数量子霍尔效应,这一发现和理论研究使人们对宏观量子现象的认识更深入了一步.崔琦、施特默和劳克林(R_珏Laughlin, 1950-)等人也因此而获得了1998年诺贝尔物理学奖.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子霍尔效应霍尔效应是电磁效应的一种,这一现象是美国物理学家霍尔(E.H.Hall,1855-1938)于1879年在研究金属的导电机制时发现的。
当电流垂直于外磁场通过半导体时,载流子发生偏转,垂直于电流和磁场的方向会产生一附加电场,从而在半导体的两端产生电势差,这一现象就是霍尔效应,这个电势差也被称为霍尔电势差。
霍尔效应使用左手定则判断。
发现霍尔效应在1879年被物理学家霍尔发现,它定义了磁场和感应电压之间的关系,这种效应和传统的电磁感应完全不同。
当电流通过一个位于磁场中的导体的时候,磁场会对导体中的电子产生一个垂直于电子运动方向上的作用力,从而在垂直于导体与磁感线的两个方向上产生电势差。
虽然这个效应多年前就已经被人们知道并理解,但基于霍尔效应的传感器在材料工艺获得重大进展前并不实用,直到出现了高强度的恒定磁体和工作于小电压输出的信号调节电路。
根据设计和配置的不同,霍尔效应传感器可以作为开/关传感器或者线性传感器,广泛应用于电力系统中。
解释在半导体上外加与电流方向垂直的磁场,会使得半导体中的电子与空穴受到不同方向的洛伦兹力而在不同方向上聚集,在聚集起来的电子与空穴之间会产生电场,电场力与洛伦兹力产生平衡之后,不再聚集,此时电场将会使后来的电子和空穴受到电场力的作用而平衡掉磁场对其产生的洛伦兹力,使得后来的电子和空穴能顺利通过不会偏移,这个现象称为霍尔效应。
而产生的内建电压称为霍尔电压。
方便起见,假设导体为一个长方体,长度分别为a、b、d,磁场垂直ab平面。
电流经过ad,电流I=nqv(ad),n为电荷密度。
设霍尔电压为VH,导体沿霍尔电压方向的电场为VH/a。
设磁感应强度为B。
洛伦兹力F=qE+qvB/c(Gauss单位制)电荷在横向受力为零时不再发生横向偏转,结果电流在磁场作用下在器件的两个侧面出现了稳定的异号电荷堆积从而形成横向霍尔电场由实验可测出E=UH/W定义霍尔电阻为RH=UH/I=EW/jW=E/jj=qnvRH=-vB/c/(qnv)=-B/(qnc)UH=RHI=-BI/(qnc)本质固体材料中的载流子在外加磁场中运动时,因为受到洛仑兹力的作用而使轨迹发生偏移,并在材料两侧产生电荷积累,形成垂直于电流方向的电场,最终使载流子受到的洛仑兹力与电场斥力相平衡,从而在两侧建立起一个稳定的电势差即霍尔电压。
正交电场和电流强度与磁场强度的乘积之比就是霍尔系数。
平行电场和电流强度之比就是电阻率。
大量的研究揭示:参加材料导电过程的不仅有带负电的电子,还有带正电的空穴。
应用霍尔效应在应用技术中特别重要。
霍尔发现,如果对位于磁场(B)中的导体(d)施加一个电流(Iv),该磁场的方向垂直于所施加电压的方向,那么则在既与磁场垂直又和所施加电流方向垂直的方向上会产生另一个电压(UH),人们将这个电压叫做霍尔电压,产生这种现象被称为霍尔效应。
好比一条路,本来大家是均匀的分布在路面上,往前移动。
当有磁场时,大家可能会被推到靠路的右边行走。
故路(导体)的两侧,就会产生电压差。
这个就叫“霍尔效应”。
根据霍尔效应做成的霍尔器件,就是以磁场为工作媒体,将物体的运动参量转变为数字电压的形式输出,使之具备传感和开关的功能。
迄今为止,已在现代汽车上广泛应用的霍尔器件有:在分电器上作信号传感器、ABS系统中的速度传感器、汽车速度表和里程表、液体物理量检测器、各种用电负载的电流检测及工作状态诊断、发动机转速及曲轴角度传感器、各种开关,等等。
例如汽车点火系统,设计者将霍尔传感器放在分电器内取代机械断电器,用作点火脉冲发生器。
这种霍尔式点火脉冲发生器随着转速变化的磁场在带电的半导体层内产生脉冲电压,控制电控单元(ECU)的初级电流。
相对于机械断电器而言,霍尔式点火脉冲发生器无磨损免维护,能够适应恶劣的工作环境,还能精确地控制点火正时,能够较大幅度提高发动机的性能,具有明显的优势。
用作汽车开关电路上的功率霍尔电路,具有抑制电磁干扰的作用。
许多人都知道,轿车的自动化程度越高,微电子电路越多,就越怕电磁干扰。
而在汽车上有许多灯具和电器件,尤其是功率较大的前照灯、空调电机和雨刮器电机在开关时会产生浪涌电流,使机械式开关触点产生电弧,产生较大的电磁干扰信号。
采用功率霍尔开关电路可以减小这些现象。
霍尔器件通过检测磁场变化,转变为电信号输出,可用于监视和测量汽车各部件运行参数的变化。
例如位置、位移、角度、角速度、转速等等,并可将这些变量进行二次变换;可测量压力、质量、液位、流速、流量等。
霍尔器件输出量直接与电控单元接口,可实现自动检测。
如今的霍尔器件都可承受一定的振动,可在零下40摄氏度到零上150摄氏度范围内工作,全部密封不受水油污染,完全能够适应汽车的恶劣工作环境。
发展在霍尔效应发现约100年后,德国物理学家克利青(KlausvonKlitzing,1943-)等在研究极低温度和强磁场中的半导体时发现了量子霍尔效应,这是当代凝聚态物理学令人惊异的进展之一,克利青为此获得了1985年的诺贝尔物理学奖。
之后,美籍华裔物理学家崔琦(DanielCheeTsui,1939-)和美国物理学家劳克林(ughlin,1950-)、施特默(HorstL.Strmer,1949-)在更强磁场下研究量子霍尔效应时发现了分数量子霍尔效应,这个发现使人们对量子现象的认识更进一步,他们为此获得了1998年的诺贝尔物理学奖。
如今,复旦校友、斯坦福教授张首晟与母校合作开展了“量子自旋霍尔效应”的研究。
“量子自旋霍尔效应”最先由张首晟教授预言,之后被实验证实。
这一成果是美国《科学》杂志评出的2007年十大科学进展之一。
如果这一效应在室温下工作,它可能导致新的低功率的“自旋电子学”计算设备的产生。
工业上应用的高精度的电压和电流型传感器有很多就是根据霍尔效应制成的,误差精度能达到0.1%以下。
由清华大学薛其坤院士领衔,清华大学、中科院物理所和斯坦福大学研究人员联合组成的团队在量子反常霍尔效应研究中取得重大突破,他们从实验中首次观测到量子反常霍尔效应,这是中国科学家从实验中独立观测到的一个重要物理现象,也是物理学领域基础研究的一项重要科学发现。
相关效应量子霍尔效应:1.1整数量子霍尔效应:量子化电导e2/h被观测到,为弹道输运(ballistictransport)这一重要概念提供了实验支持。
1.2分数量子霍尔效应:劳赫林与J·K·珍解释了它的起源。
两人的工作揭示了涡旋(vortex)和准粒子(quasi-particle)在凝聚态物理学中的重要性。
热霍尔效应:垂直磁场的导体会有温度差。
Corbino效应:垂直磁场的薄圆碟会产生一个圆周方向的电流。
自旋霍尔效应量子反常霍尔效应研究前景整数量子霍尔效应的机制已经基本清楚,而仍有一些科学家,如冯·克利青和纽约州立大学石溪分校的V·J·Goldman,还在做一些分数量子效应的研究。
一些理论学家指出分数量子霍尔效应中的某些平台可以构成非阿贝尔态(Non-AbelianStates),这可以成为搭建拓扑量子计算机的基础。
石墨烯中的量子霍尔效应与一般的量子霍尔行为大不相同,称为异常量子霍尔效应(AnomalousQuantumHallEffect)。
此外,Hirsh、张首晟等提出自旋量子霍尔效应的概念,与之相关的实验正在吸引越来越多的关注。
中国科学家发现量子反常霍尔效应《科学》杂志在线发文,宣布中国科学家领衔的团队首次在实验上发现量子反常霍尔效应。
这一发现或将对信息技术进步产生重大影响。
这一发现由清华大学教授、中国科学院院士薛其坤(原曲阜师范大学物理工程学院教师)领衔,清华大学、中国科学院物理所和斯坦福大学的研究人员联合组成的团队历时4年完成。
在美国物理学家霍尔1880年发现反常霍尔效应133年后,终于实现了反常霍尔效应的量子化,这一发现是相关领域的重大突破,也是世界基础研究领域的一项重要科学发现。
美国科学家霍尔分别于1879年和1880年发现霍尔效应和反常霍尔效应。
1980年,德国科学家冯·克利青发现整数量子霍尔效应,1982年,美国科学家崔琦和施特默发现分数量子霍尔效应,这两项成果分别于1985年和1998年获得诺贝尔物理学奖。
由中国科学院物理研究所和清华大学物理系的科研人员组成的联合攻关团队,经过数年不懈探索和艰苦攻关,成功实现了“量子反常霍尔效应”。
这是国际上该领域的一项重要科学突破,该物理效应从理论研究到实验观测的全过程,都是由我国科学家独立完成。
量子霍尔效应是整个凝聚态物理领域最重要、最基本的量子效应之一。
它是一种典型的宏观量子效应,是微观电子世界的量子行为在宏观尺度上的一个完美体现。
1980年,德国科学家冯·克利青(KlausvonKlitzing)发现了“整数量子霍尔效应”,于1985年获得诺贝尔物理学奖。
1982年,美籍华裔物理学家崔琦(DanielCheeTsui)、美国物理学家施特默(HorstL.Stormer)等发现“分数量子霍尔效应”,不久由美国物理学家劳弗林(ughlin)给出理论解释,三人共同获得1998年诺贝尔物理学奖。
在量子霍尔效应家族里,至此仍未被发现的效应是“量子反常霍尔效应”--不需要外加磁场的量子霍尔效应。
“量子反常霍尔效应”是多年来该领域的一个非常困难的重大挑战,它与已知的量子霍尔效应具有完全不同的物理本质,是一种全新的量子效应;同时它的实现也更加困难,需要精准的材料设计、制备与调控。
1988年,美国物理学家霍尔丹(F.DuncanM.Haldane)提出可能存在不需要外磁场的量子霍尔效应,但是多年来一直未能找到能实现这一特殊量子效应的材料体系和具体物理途径。
2010年,中科院物理所方忠、戴希带领的团队与张首晟教授等合作,从理论与材料设计上取得了突破,他们提出Cr或Fe磁性离子掺杂的Bi2Te3、Bi2Se3、Sb2Te3族拓扑绝缘体中存在着特殊的V.Vleck铁磁交换机制,能形成稳定的铁磁绝缘体,是实现量子反常霍尔效应的最佳体系[Science,329,61(2010)]。
他们的计算表明,这种磁性拓扑绝缘体多层膜在一定的厚度和磁交换强度下,即处在“量子反常霍尔效应”态。
该理论与材料设计的突破引起了国际上的广泛兴趣,许多世界顶级实验室都争相投入到这场竞争中来,沿着这个思路寻找量子反常霍尔效应。
在磁性掺杂的拓扑绝缘体材料中实现“量子反常霍尔效应”,对材料生长和输运测量都提出了极高的要求:材料必须具有铁磁长程有序;铁磁交换作用必须足够强以引起能带反转,从而导致拓扑非平庸的带结构;同时体内的载流子浓度必须尽可能地低。
中科院物理所何珂、吕力、马旭村、王立莉、方忠、戴希等组成的团队和清华大学物理系薛其坤、张首晟、王亚愚、陈曦、贾金锋等组成的团队合作攻关,在这场国际竞争中显示了雄厚的实力。