2017年安徽省沪科版中考考点一轮复习第一单元《数与式》第4讲 二次根式
中考数学热点总复习(第4讲:二次根式)含解析

第4讲 二次根式二次根式的有关概念 二次根式 一般地,形如a(①________)的式子叫做二次根式.最简二次根式必须同时满足:(1)被开方数中不含能开得尽方的因数或因式;(2)被开方数的因数是整数,因式是整式(分母中不应含有根号).二次根式的性质两个重要的性质 (a)2=a(a ②________).a 2=|a|={③ (a ≥0),④ (a <0).积的算术平方根 ab =a ·b(a ≥0,b ≥0). 商的算术平方根a b =ab(a ≥0,b>0). 二次根式的运算二次根式的加减 先将各根式化为⑤____________,然后合并被开方数⑥________的二次根式.二次根式的乘法 a ·b =⑦________(a ≥0,b ≥0) 二次根式的除法 a b=⑧________(a ≥0,b >0)二次根式的混合运算与实数的运算顺序相同,先算乘方,再算⑨________,最后算加减,有括号的先算括号里面的(或先去括号).绝对值:|a|;偶次幂:a 2n;非负数的算术平方根:a (a≥0)是常见的三种非负数形式.非负数具有以下两条重要性质:(1)非负数形式有最小值为零;(2)几个非负数的和等于零,那么每个非负数都等于零.(·绵阳)要使代数式2-3x 有意义,则x 的() A .最大值是23 B .最小值是23C .最大值是32D .最小值是321.(·宜昌)下列式子没有意义的是()A.-3B.0C. 2D.(-1)22.(·株洲)x取下列各数中的哪个数时,二次根式x-3有意义() A.-2 B.0 C.2 D.43.(·内江)函数y=2-x+1x-1中自变量x的取值范围是() A.x≤2 B.x≤2且x≠1C.x<2且x≠1 D.x≠14.(·乐山)函数y=x-2的自变量x的取值范围是________.(·广元)计算:27-12-3-12.【解答】对于二次根式的混合运算,其运算顺序同实数的运算顺序,即是先乘方,再乘除,最后加减.在二次根式的乘法运算中,若能使用整式乘法公式则尽量使用公式可使计算简便.运算结果一定要是最简二次根式.1.(·安徽)计算8×2的结果是()A.10 B.4 C. 6 D.22.(·凉山)下列根式中,不能与3合并的是()A.13B.13C.23D.123.(·眉山)计算:22-18=________.4.(·滨州)计算(2+3)(2-3)的结果为________.(·资阳)已知:(a+6)2+b2-2b-3=0,则2b2-4b-a的值为________.【思路点拨】首先根据非负数的性质可求出a的值和b2-2b=3,进而可求出2b2-4b-a的值.本题主要考查非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.1.(·攀枝花)已知实数x,y,m满足x+2+|3x+y+m|=0,且y为负数,则m的取值范围是() A.m>6 B.m<6 C.m>-6 D.m<-62.(·巴中)若a、b、c为三角形的三边,且a、b满足a2-9+(b-2)2=0,则第三边c的取值范围是________.3.(·巴中)若直角三角形的两直角边长为a、b,且满足a2-6a+9+|b-4|=0,则该直角三角形的斜边长为________.1.(·重庆A 卷)化简12的结果是()A .4 3B .2 3C .3 2D .2 6 2.(·重庆B 卷)计算32-2的值是()A .2B .3 C. 2 D .2 23.(·金华)在式子1x -2、1x -3、x -2、x -3中,x 可以取2和3的是()A.1x -2B.1x -3C.x -2D.x -34.(·宁夏)下列计算正确的是()A.3+2= 5B.12÷3=2C .(5)-1= 5D .(3-1)2=25.(·济宁)如果ab >0,a +b <0,那么下面各式:①a b =a b,②ab·ba=1,③ab ÷ab=-b ,其中正确的是()A .①②B .②③C .①③D .①②③6.(·南京)计算5×153的结果是________. 7.(原创)若最简二次根式2a -b +4与3a +24a +3b 是同类二次根式,则a =________,b =________.8.(·临沂)计算:(3+2-1)(3-2+1).9.已知a 、b 、c 满足||a -18+b -7+(c -32)2=0.(1)求a 、b 、c 的值;(2)试问以a 、b 、c 为边能否构成三角形?如果能构成三角形,请求出三角形的周长;如果不能,请说明理由.10.(·随州)若代数式1x-1+x有意义,则实数x的取值范围是() A.x≠1 B.x≥0C.x≠0 D.x≥0且x≠111.(·孝感)已知x=2-3,则代数式(7+43)x2+(2+3)x+3的值是() A.0 B. 3 C.2+ 3 D.2- 312.(原创)对于任意不相等的两个实数a、b,定义运算※如下:a※b=a+ba-b,如3※2=3+23-2= 5.那么8※4=________.13.观察下面的变形规律:12+1=2-1,13+2=3-2,14+3=4-3,15+4=5-4,…解答下面的问题:(1)若n为正整数,请你猜想1n+1+n=________;(2)计算(12+1+13+2+14+3+…12 015+ 2 014)×( 2 016+1).参考答案考点解读考点1①a≥0②≥0③a④-a考点2⑤最简二次根式⑥相同⑦ab ⑧ab⑨乘除各个击破例1 A题组训练 1.A 2.D 3.B 4.x≥2例2原式=33-2+3(2-3)(2+3)-23=33-(2+3)-23=33-2-3-23=-2.题组训练 1.B 2.C 3.- 2 4.-1例312题组训练 1.A 2.1<c<5 3.5整合集训基础过关1.B 2.D 3.C 4.B 5.B 6.5 7.0 18.原式=[3+(2-1)][3-(2-1)]=(3)2-(2-1)2=3-(2-22+1)=2 2.9.(1)由非负数的性质求得:a=32,b=7,c=4 2.(2)因为a+c=32+42=72,所以a+c>b,因为c-a=42-32= 2.所以c-a<b.所以以a、b、c为边能构成三角形.三角形的周长为72+7.能力提升10.D 11.C 12. 313.(1)n+1-n(2)原式=[(2-1)+(3-2)+(4-3)+…+( 2 016- 2 015)]( 2 016+1) =( 2 016-1)( 2 016+1)=( 2 016)2-12=2 016-1=2 015.。
中考数学总复习第一章数与式第4课时二次根式课件

第一章
第四课时 二次根式
第4课时金二次牌根式中考总复习
第4课时 二次根式
1 …考……点…考…查..… 2 …课……前…小…练..… 3 …考……点…梳…理..… 4 …重…难……点…突.…破…… 5 …广…东……真…题..…
第4课时 二次根式
考点考查
考题年 份
考点与考查内容
考题呈现 题型
第4课时 二次根式
举一反三
重难点突破
12 a-b
第4课时 二次根式
举一反三
重难点突破
B
A
第4课时 二次根式
广东真题
1.(2016·广东) 9的算术平方根为___3_______.
2.(2012·广东) 若x,y为实数,且满足
=0,
的值是___1_______.
3.(2012·广东) 计算:
感谢聆听
重难点突破
举一反三 5.比较大小:
___>_______
6.设n为正整数,且n< A.5 B.6
<n+1,则n的值为( D )
C.7 D.8
第4课时 二次根式
计算:
重难点突破
方法点拨 二次根式的混合运算,正确观察式子的特点是关键.
第4课时 二次根式
重难点突破
方法点拨 根据数轴化简二次根式,关键是根据数轴上点的位 置确定数的正负和大小,然后根据 = 化简.
全的人,主要是担心漏掉重要内容,影响以后的复习与思考.,这样不仅失去了做笔记的意义,也将课堂“听”与“记”的关系本末倒置了﹙太忙于记录, 便无暇紧跟老师的思路﹚。 如果只是零星记下一些突出的短语或使你感兴趣的内容,那你的笔记就可能显得有些凌乱。 做提纲式笔记因不是自始至终全都埋头做笔记,故可在听课时把时间更多地用于理解所听到的内容.事实上,理解正是做好提纲式笔记的关键。 课堂笔记要注意这五种方法:一是简明扼要,纲目清楚,首先要记下所讲章节的标题、副标题,按要点进行分段;二是要选择笔记语句,利用短语、数 字、图表、缩写或符号进行速记;三是英语、语文课的重点词汇、句型可直接记在书页边,这样便于复习时查找﹙当然也可以记在笔记本上,前提是你 能听懂﹚;四是数理化生等,主要记老师解题的新思路、补充的定义、定理、公式及例题;五是政治、历史等,着重记下老师对问题的综合阐述。
中考数学一轮复习20讲:第4讲二次根式

【知识归纳】1.二次根式的有关概念⑴ 式子)0(≥a a 叫做二次根式.注意被开方数a 只能是 .(要使二次根式a 有意义,则a ≥0.)⑵ 最简二次根式被开方数所含因数是 ,因式是 ,不含能 的二次根式,叫做最简二次根式. (3) 同类二次根式化成最简二次根式后,被开方数 几个二次根式,叫做同类二次根式.2.二次根式的性质(1(a ≥0);(2))0()(2≥=a a a )0(≥a a(3)==a a 2)0(<-a a(4))0,0(≥≥•=b a b a ab(5))0,0(≥≥=b a ba b a 3.二次根式的运算(1).二次根式的加减法合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有 二次根式,可把同类二次根式合并成一个二次根式.(2).二次根式的乘除法二次根式的乘法:a ·b = (a ≥0,b ≥0).二次根式的除法:a b= (a ≥0,b >0). 【知识归纳答案】1.⑴非负数.⑵ 整数,因式是整式,不含能开得尽方的因数或因式(3)相同的二次根式的性质 (1)a ≥ 0(a ≥0);(2))0()(2≥=a a a )0(≥a a(3)==a a 2)0(<-a a(4))0,0(≥≥•=b a b a ab(5))0,0(≥≥=b a b ab a3.(1(2).ab b a2.二次根式中,x 的取值范围是( )A .x ≥1B .x >1C .x ≤1D .x <1【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x ﹣1≥0,∴x ≥1,3.下列运算正确的是()A.= B.2×=C.=a D.|a|=a(a≥0)【考点】73:二次根式的性质与化简;15:绝对值;83:等式的性质.【分析】直接利用分式的基本性质以及绝对值的性质、二次根式的性质分别化简求出答案.【解答】解:A、无法化简,故此选项错误;B、2×=,故此选项错误;C、=|a|,故此选项错误;D、|a|=a(a≥0),正确.故选:D.4.下列说法中正确的是()A.8的立方根是±2B.是一个最简二次根式C.函数y=的自变量x的取值范围是x>1D.在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称【考点】74:最简二次根式;24:立方根;E4:函数自变量的取值范围;P5:关于x轴、y轴对称的点的坐标.【分析】根据开立方,最简二次根式的定义,分母不能为零,关于原点对称的点的坐标,可得答案.【解答】解:A、8的立方根是2,故A不符合题意;B、不是最简二次根式,故B不符合题意;C、函数y=的自变量x的取值范围是x≠1,故C不符合题意;D、在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称,故D 符合题意;5.下列根式是最简二次根式的是()A.B.C.D.【考点】74:最简二次根式.【分析】根据最简二次根式是被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【解答】解:A、该二次根式的被开方数中含有分母,不是最简二次根式,故本选项错误;B、该二次根式的被开方数中含有小数,不是最简二次根式,故本选项错误;C、该二次根式符合最简二次根式的定义,故本选项正确;D、20=22×5,该二次根式的被开方数中含开的尽的因数,不是最简二次根式,故本选项错误;故选:C.6.已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元50年)给出求其面积的海伦公式S=,其中p=;我国南宋时期数学家秦九韶(约1202﹣1261)曾提出利用三角形的三边求其面积的秦九韶公式S=,若一个三角形的三边长分别为2,3,4,则其面积是()A.B.C.D.【考点】7B:二次根式的应用.【分析】根据题目中的秦九韶公式,可以求得一个三角形的三边长分别为2,3,4的面积,从而可以解答本题.【解答】解:∵S=,∴若一个三角形的三边长分别为2,3,4,则其面积是:S==,故选B.7.下列计算:(1)=2,(2)=2,(3)(﹣2)2=12,(4)(+)(﹣)=﹣1,其中结果正确的个数为()A.1 B.2 C.3 D.4【考点】79:二次根式的混合运算.【分析】根据二次根式的性质对(1)、(2)、(3)进行判断;根据平方差公式对(4)进行判断.【解答】解::(1)=2,(2)=2,(3)(﹣2)2=12,(4)(+)(﹣)=2﹣3=﹣1.故选D.二.填空题(共3小题)8.若在实数范围内有意义,则x的取值范围是x≥3.【考点】72:二次根式有意义的条件.【分析】根据被开方数大于等于0列式进行计算即可求解.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.9.计算﹣6的结果是.【考点】78:二次根式的加减法.【分析】先将二次根式化简即可求出答案.【解答】解:原式=3﹣6×=3﹣2=故答案为:10.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=,现已知△ABC的三边长分别为1,2,,则△ABC的面积为1.【考点】7B:二次根式的应用.【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,的面积,从而可以解答本题.【解答】解:∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.三.解答题(共8小题)11.计算:(﹣)×+|﹣2|﹣()﹣1.【考点】79:二次根式的混合运算;6F:负整数指数幂.【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】解:原式=﹣+2﹣﹣2=﹣2﹣=﹣312.计算:﹣16×cos45°﹣20170+3﹣1.【考点】79:二次根式的混合运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】直接利用特殊角的三角函数值结合零指数幂的性质以及负指数幂的性质分别化简求出答案.【解答】解:﹣16×cos45°﹣20170+3﹣1=﹣1+2×﹣1+=.13.(1)计算:×﹣4××(1﹣)0;(2)先化简,再求值:( +)÷,其中a,b满足+|b﹣|=0.【考点】79:二次根式的混合运算;16:非负数的性质:绝对值;23:非负数的性质:算术平方根;6D:分式的化简求值;6E:零指数幂.【分析】(1)根据二次根式的乘法法则和零指数幂的意义得到原式=﹣4××1=2﹣,然后合并即可;(2)先把分子和分母因式分解和除法运算化为乘法运算,再计算括号内的运算,然后约分得到原式=,再根据非负数的性质得到a+1=0,b﹣=0,解得a=﹣1,b=,然后把a和b的值代入计算即可.【解答】解:(1)原式=﹣4××1=2﹣=;14.计算:﹣12017﹣丨1﹣丨+×()﹣2+0.【考点】79:二次根式的混合运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】直接利用绝对值的性质以及负指数幂的性质以及零指数幂的性质分别化简求出答案.【解答】解:原式=﹣1﹣|1﹣×|+2×4+1=﹣1﹣0+8+1=8.15.计算:(1)|﹣2|﹣(2)(3﹣)(3+)+(2﹣)【考点】79:二次根式的混合运算.【分析】(1)根据负整数指数幂的意义和绝对值的意义计算;(2)利用平方差公式和二次根式的乘法法则运算.【解答】解:(1)原式=2﹣3=﹣1;(2)原式=9﹣7+2﹣2=2.16.计算、求值:(1)计算:|﹣2|+()﹣1﹣(+1)(﹣1);(2)已知单项式2x m﹣1y n+3与﹣x n y2m是同类项,求m,n的值.【考点】79:二次根式的混合运算;34:同类项;6F:负整数指数幂.【分析】(1)利用绝对值的定义结合平方差公式计算得出答案;(2)直接利用同类项的定义分析得出答案.【解答】解:(1)|﹣2|+()﹣1﹣(+1)(﹣1)=2﹣+2﹣(5﹣1)=﹣;学科网(2)∵单项式2x m﹣1y n+3与﹣x n y2m是同类项,∴,解得:.17.请你参考黑板中老师的讲解,运用平方差公式简便计算:(1)×;(2)(﹣).【考点】79:二次根式的混合运算;4F:平方差公式.【分析】(1)把19化为20﹣1,把21化为20+1,然后利用平方差公式计算;(2)把第1个括号内提2017,然后利用平方差公式计算.【解答】解:(1)原式===;(2)原式=2017()(﹣)=2017×(3﹣2)=2017.18.如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.2m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过估算说明.(参考数据:≈1.7)【分析】首先在AB之间找一点F,且BF=2.5,过点F作GF⊥AB交CD于点G,只要求得GF的数值,进一步与货车高相比较得出答案即可.【解答】解:如图,在AB之间找一点F,使BF=2.5m,过点F作GF⊥AB交CD于点G,∵AB=3.2m,CA=0.7m,BF=2.5m,∴CF=AB﹣BF+CA=1.4m,∵∠ECA=60°,∴tan60°=,∴GF=CAtan60°=1.4≈2.38m,∵2.38<3∴这辆货车在不碰杆的情况下,不能从入口内通过.11。
2017中考数学专题复习数与式因式分解+分式+二次根式

第四讲 因式分解【基础知识回顾】 一、因式分解的定义:1、把一个 式化为几个整式 的形式,叫做把一个多项式因式分解。
2、因式分解与整式乘法是运算,即:多项式 整式的积【名师提醒:判断一个运算是否是因式分解或判断因式分解是否正确,关键看等号右边是否为 的形式。
】 二、因式分解常用方法: 1、提公因式法:公因式:一个多项式各项都有的因式叫做这个多项式各项的公因式。
提公因式法分解因式可表示为:ma+mb+mc= 。
【名师提醒:1、公因式的选择可以是单项式,也可以是 ,都遵循一个原则:取系数的 ,相同字母的 。
2、提公因式时,若有一项被全部提出,则括号内该项为 ,不能漏掉。
3、提公因式过程中仍然要注意符号问题,特别是一个多项式首项为负时,一般应先提取负号,注意括号内各项都要 。
】 2、运用公式法:将乘法公式反过来对某些具有特殊形式的多项式进行因式分解,这种方法叫做公式法。
①平方差公式:a 2-b 2= , ②完全平方公式:a 2±2ab+b 2= 。
【名师提醒:1、运用公式法进行因式分解要特别掌握两个公式的形式特点, 找准里面的a 与b 。
如:x 2-x+14符合完全平方公式形式,而x 2- x+12就不符合该公式的形式。
】三、因式分解的一般步骤1、 一提:如果多项式的各项有公因式,那么要先 。
2、 二用:如果各项没有公因式,那么可以尝试运用 法来分解。
3、 三查:分解因式必须进行到每一个因式都不能再分解为止。
【名师提醒:分解因式不彻底是因式分解常见错误之一,中考中的因式分解题目一般为两步,做题时要特别注意,另外分解因式的结果是否正确可以用整式乘法来检验】 【重点考点例析】考点一:因式分解的概念对应训练1.(2015•河北)下列等式从左到右的变形,属于因式分解的是( ) A .a (x-y )=ax-ay B .x 2+2x+1=x (x+2)+1 C .(x+1)(x+3)=x 2+4x+3 D .x 3-x=x (x+1)(x-1) 考点二:因式分解例2 (2015•无锡)分解因式:2x 2-4x= . 例3 (2015•南昌)下列因式分解正确的是( ) A .x 2-xy+x=x (x-y ) B .a 3-2a 2b+ab 2=a (a-b )2 C .x 2-2x+4=(x-1)2+3 D .ax 2-9=a (x+3)(x-3) 例4 (2015•湖州)因式分解:mx 2-my 2.( )( )对应训练2.(2015•温州)因式分解:m2-5m= .3.(2015•西宁)下列分解因式正确的是()A.3x2-6x=x(3x-6)B.-a2+b2=(b+a)(b-a)C.4x2-y2=(4x+y)(4x-y)D.4x2-2xy+y2=(2x-y)24.(2015•北京)分解因式:ab2-4ab+4a= .考点三:因式分解的应用例5 (2015•宝应县一模)已知a+b=2,则a2-b2+4b的值为.对应训练5.(2015•鹰潭模拟)已知ab=2,a-b=3,则a3b-2a2b2+ab3= .【2016中考名题赏析】1.(2016•台湾)已知a、b、c 为三正整数,且a、b的最大公因子为12,a、c的最大公因子为18.若a介于50与100之间,则下列叙述何者正确?()A.8是a的因子,8是b的因子B.8是a的因子,8不是b的因子C.8不是a的因子,8是c的因子D.8不是a的因子,8不是c的因子2.(2016•自贡)把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣4 3.(2016•长春)把多项式x2﹣6x+9分解因式,结果正确的是()A.(x﹣3)2B.(x﹣9)2C.(x+3)(x﹣3)D.(x+9)(x﹣9)4.(2016•聊城)把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2D.2a(2a+1)2 5.(2016•台湾)多项式77x2﹣13x﹣30可因式分解成(7x+a)(bx+c),其中a、b、c均为整数,求a+b+c之值为何?()A.0 B.10 C.12 D.226.(2016•滨州)把多项式x2+ax+b分解因式,得(x+1)(x﹣3)则a,b的值分别是()A.a=2,b=3 B.a=﹣2,b=﹣3 C.a=﹣2,b=3 D.a=2,b=﹣3【真题过关】一、选择题1.(2015•张家界)下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1 B.x2+2x-1 C.x2-1 D.x2-6x+9 2.(2015•佛山)分解因式a3-a的结果是()A.a(a2-1)B.a(a-1)2C.a(a+1)(a-1)D.(a2+a)(a-1)3.(2015•恩施州)把x2y-2y2x+y3分解因式正确的是()A.y(x2-2xy+y2)B.x2y-y2(2x-y)C.y(x-y)2D.y(x+y)2二、填空题4.(2015•自贡)多项式ax2-a与多项式x2-2x+1的公因式是.5.(2015•太原)分解因式:a2-2a= .6.(2015•广州)分解因式:x2+xy= .7.(2015•盐城)因式分解:a2-9= .8.(2015•厦门)x2-4x+4=()2.第五讲分式【基础知识回顾】一、分式的概念若A,B表示两个整式,且B中含有那么式子就叫做分式【名师提醒:①若则分式AB无意义②若分式AB=0,则应且】二、分式的基本性质分式的分子分母都乘以(或除以)同一个的整式,分式的值不变。
中考数学一轮复习 第一章 数与式 第4讲 二次根式及其运算课件

第4讲 二次根式(gēnshì)及其运算
考点1 二次根式的概念(gàiniàn)及 6年1考
性质
概念
一般地,形如① 叫做被开方数
(a≥0)的式子叫做二次根式.a
有意义的条件 要使二次根式有意义,则②_a_≥__0_
同类二次根式 最简二次根式
几个二次根式化为最简二次根式后,如果③_被_开__方__数__ 相一同般,地那 ,么 被这 开几 方个 数二 不次 含根 ④式_分_就_母_叫_,做也同不类含二⑤次_能根_(fbā_开èn式_iɡ得_ks_尽āh_iù方_)_ 的因数或因式,这样的二次根式称为最简二次根式
≥0
(a≥0)
第一页,共六页。
最简二次根式
(gēnshì)
同类(tó nglèi)二 次根式
第二页,共六页。
考情分析►二次根式单独考查的频率低,一般与整式或分式的运算,在运用勾股定理或锐角三角 函数求线段长度(chángdù)时一并考查. 预测►结合分式的化简求值考查,或整合在图形与几何中一并考查.
D
x≥3
第四页,共六页。
类型2 二次根式(gēnshì)的运算
B
D
第五页,共六页。
内容(nèiróng)总结
第4讲 二次根式及其运算。考点1 二次根式的概念及性质。一般地,形如① (a≥0)的 式子叫做二次根式.a叫做被开方数。几个二次根式化为最简二次根式后,如果③________相 同,那么这几个二次根式就叫做同类二次根式。考情分析►二次根式单独考查的频率(pínlǜ)低 ,一般与整式或分式的运算,在运用勾股定理或锐角三角函数求线段长度时一并考查.。预 测►结合分式的化简求值考查,或整合在图形与几何中一并考查.。D
命题点1 二次根式的性质(xìngzhì)
中考数学一轮教材梳理复习课件:第4课二次根式

首页
下一页
最简二次根式3】(2019·河池)下列式子中,为最简二次根式的 是( B )
1 A. 2
B. 2
C. 4
D. 12
首页
下一页
10.(2020·上海)下列二次根式中,与 3 是同类二 次根式的是( C )
A. 6
B. 9
C. 12
D. 18
首页
下一页
首页
下一页
5.(2020·济宁)下列各式是最简二次根式 的是( A )
A. 13
B. 12
C. a3
D.
5 3
首页
下一页
5.二次根式的性质与运算
(1)双重非负性: a ≥0 且 a≥0;
(2)( a )2=a(a≥0), a2 =|a| (a 取全体实数);
(3) ab = a · b (a≥0,b≥0);
(4)
a b
=
a b
(a≥0,b>0).
首页
下一页
6. (1)计算:
52 =___5___;( 5 )2=___5___;
(-5)2 =__5____.
(2)计算:
1 2
×
8 =___2____.
(3)计算: 63 ÷ 7 =____3____.
首页
下一页
考点精炼
二次根式有意义的条件(7 年 6 考)
【例 1】(2020·武汉)式子 x-2 在实数范围内有
意义,则 x 的取值范围是( D )
A.x≥0
B.x≤2
C.x≥-2
D.x≥2
首页
下一页
7.(2020·常德)若代数式
2 在实数范围内有 2x-6
意义,则 x 的取值范围是___x_>_3___.
中考数学高分一轮复习 第一部分 教材同步复习 第一章 数与式 课时4 二次根式课件

12/7/2021
2
第二页,共二十页。
3.确定最简二次根式的条件
(1)被开方数③__不__含____分母,也就是说分母中不含根式,如 简二次根式;
13,
1 均不是最 3
(2)被开方数中不含能开得尽方的因数或因式,如 8, a2b2(a>0)均不是最简二次
根式.
12/7/2021
3
第三页,共二十页。
二次根式估值的基本步骤: 1.先对二次根式平方,如( 7)2=7; 2.找出与二次根式平方后所得数字相邻的两个开得尽方的整数,如 4 和 9; 3.对以上两个整数开方,如 4=2, 9=3; 4.确定这个二次根式的值在开方后所得的两个整数之间,如 2< 7<3; 5.对于求二次根式的整数部分,可先用以上步骤确定二次根式 a介于两个整数 m,n 之间,即 m< a<n,从而得 a的整数部分为 m. 【注意】对于一些常见的二次根式,记住其近似值,在解决估值问题时会更方 便,如 2≈1.414, 3≈1.732, 5≈2.236.
4.同类二次根式 几个二次根式化为最简二次根式以后,如果它们的被开方数相同,那么这几个 二次根式就叫做同类二次根式,如 2和 8=2 2是同类二次根式. 5.二次根式的性质 (1) a④___≥ ___0(a≥0). (2)( a)2=⑤___a___(a≥0). (3) a2=⑥____|_a|_____=⑦⑧______a-__a_____a_≥a0<0,.
12/7/2021
8
第八页,共二十页。
【夯实基础】
5.下列等式一定成立的是
A. 9- 4= 5
B. 5× 3= 15
C. 12÷3=2
D.- -92=9
中考数学第一轮复习资料(超全)

中考一轮复习第一部分数与代数第一章数与式第1讲实数第2讲代数式第3讲整式与分式第1课时整式第2课时因式分解第3课时分式第4讲二次根式第二章方程与不等式第1讲方程与方程组第1课时一元一次方程与二元一次方程组第2课时分式方程第3课时一元二次方程第2讲不等式与不等式组第三章函数第1讲函数与平面直角坐标系第2讲一次函数第3讲反比例函数第4讲二次函数第二部分空间与图形第四章三角形与四边形第1讲相交线和平行线第2讲三角形第1课时三角形第2课时等腰三角形与直角三角形第3讲四边形与多边形第1课时多边形与平行四边形第2课时特殊的平行四边形第3课时梯形第五章圆第1讲圆的基本性质第2讲与圆有关的位置关系第3讲与圆有关的计算第六章图形与变换第1讲图形的轴对称、平移与旋转第2讲视图与投影第3讲 尺规作图 第4讲 图形的相似 第5讲 解直角三角形第三部分 统计与概率第七章 统计与概率 第1讲 统计 第2讲 概率第一部分 数与代数第一章 数与式 第1讲 实数考点一、实数的概念及分类 (3分) 1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分) 1、相反数实数与它的相反数时一对数(零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a= -b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲二次根式
基础过关
1.(2016·自贡)下列根式中,不是最简二次根式的是( B ) A.10 B.8 C. 6 D. 2
2.(2016·巴中)下列二次根式中,与3是同类二次根式的是( B ) A.18 B.1
3 C.2
4 D.0.3
3.与无理数3最接近的整数是( B )
A .1
B .2
C .3
D .4
4.(2016·桂林)计算35-25的结果是( A )
A. 5 B .2 5 C .3 5 D .6
5.(2016·海南)面积为2的正方形的边长在( B )
A .0和1之间
B .1和2之间
C .2和3之间
D .3和4之间
6.(2016·南充)下列计算正确的是( A )
A.12=2 3
B.32=3
2
C.-x 3=-x x
D.x 2=x
7.(2016·合肥六大名校一模)下面用数轴上的点P 表示实数(6-2)正确的是( B )
8.(2016·阜阳二模)能够使代数式x +1x 2+1
有意义的x 的取值范围是x ≥-1. 9.已知a ,b 为两个连续整数,且a <11<b ,则a +b =7.
10.(2016·金华)能够说明“x 2=x 不成立”的x 的值是-2(答案不唯一,保证x <0即
可)(写出一个即可).
11.(2016·乐山)在数轴上表示实数a 的点如图所示,化简(a -5)2+|a -2|的结果为3.
12.(2016·盐城)计算:(3-7)×(3+7)+2×(2-2).
解:原式=9-7+22-2
=2 2.
能力提升
13. 化简:(5-2)2 015·(5+2)2 016
14. (2016·荆州)当a =2+1,b =2-1时,代数式a 2-2ab +b 2a 2-b 2
的值是2 15.(2016·亳州蒙城模拟)计算:(-3)0-327+|1-2|+2×6+2×(2-1).
解:原式=1-3+2-1+23+2- 2
=23-1.
易错易混题
16.计算(-12)2的结果是( A )
A.12 B .-12 C .-|12| D .(12)2。