统计与概率 题及答案
九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。
从班级中随机选取一个学生,男生和女生被选到的概率相等。
那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。
从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。
2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。
3. 一枚硬币抛掷,正面向上的概率是_________。
三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。
从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。
从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。
计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。
计算抽取奇数的概率。
答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。
初三数学统计与概率试题答案及解析

初三数学统计与概率试题答案及解析1.某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球;B乒乓球;C羽毛球;D足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)【答案】(1)200;(2)补图见解析;(3).【解析】(1)由喜欢篮球的人数除以所占的百分比即可求出总人数;(2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可;(3)根据题意列出表格,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.试题解析:(1)根据题意得:20÷=200(人),则这次被调查的学生共有200人;(2)补全图形,如图所示:(3)列表如下:甲乙丙丁所有等可能的结果为12种,其中符合要求的只有2种,则P=.【考点】1.条形统计图;2.扇形统计图;3.列表法与树状图法.2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生.某镇统计了该镇今年1-5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1-5月新注册小型企业一共有家.请将折线统计图补充完整.(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业.现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.【答案】(1)15,将折线统计图补充完整见解析;(2).【解析】(1)根据3月份有4家,占25%,可求出某镇今年1-5月新注册小型企业一共有的家数,再求出1月份的家数,进而将折线统计图补充完整.(2)设该镇今年3月新注册的小型企业为甲、乙、丙、丁,其中甲、乙为餐饮企业,根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙2家企业恰好被抽到的情况,再利用概率公式求解即可求得答案.试题解析:(1)根据统计图可知,3月份有4家,占25%,所以某镇今年1-5月新注册小型企业一共有:4÷25%=16(家),1月份有:16-2-4-3-2=5(家).折线统计图补充如下:(2)设该镇今年3月新注册的小型企业为甲、乙、丙、丁,其中甲、乙为餐饮企业.画树状图得:∵共有12种等可能的结果,甲、乙2家企业恰好被抽到的有2种情况,∴所抽取的2家企业恰好都是餐饮企业的概率为:.【考点】1.折线统计图;2.扇形统计图;3.频数、频率和总量的关系;4.列表法或树状图法;5.概率.3.小伟调查了某校八年级学生和家长对“中学生不穿校服”现象的看法,制作了如下的统计图学生及家长对“中学生不穿校服”的态度统计图家长对“中学生不穿校服”的态度统计图(1)求参加这次调查的家长人数;(2)求图2中表示家长“反对”的圆心角的度数;(3)小伟随机调查了表示“赞成”的10位学生的成绩,其各科平均分如下:57,88,72,60,58,80,78,78,91,65,请写出这组数据的中位数和众数;(4)小伟从表示“赞成”的4位同学中随机选择2位进行深入调查,其中包含小明和小亮,请你利用树状图或列表的方法,求出小明和小亮被同时选中的概率.【答案】(1)400;(2)252°;(3)75,78;(4).【解析】(1)根据条形统计图,无所谓的家长有80人,根据扇形统计图,无所谓的家长占20%,据此即可求出家长总人数;(2)根据反对人数和(1)中求出的家长总人数,算出“反对”家长的百分比,即可得到表示家长“反对”的圆心角的度数;(3)先把数据从小到大排列,第五与第六个数的平均数即为这组数据的中位数,众数就是出现次数最多的数;(4)设小明和小亮分别用A、B表示,另外两个同学用C、D表示,画出树状图即可.(1)∵由条形统计图,无所谓的家长有80人,根据扇形统计图,无所谓的家长占20%,∴家长人数是80÷20%=400人;(2)表示家长“反对”的圆心角的度数为×360=252°;(3)把数据从小到大排列为,57,58,60,65,72,78,78,80,88,91,中位数是,众数是78;(4)设小明和小亮分别用A、B表示,另外两个同学用C、D表示,列树状图如下:∴一共有12种等可能的结果,同时选中小明和小亮有2种情况,∴P(小明和小亮同时被选中)=.【考点】1.条形统计图;2.扇形统计图;3.中位数;4.众数;5.列表法与树状图法.4.某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?【答案】解:(1)补全频数分布直方图如下:,中位数位于第三组。
概率与统计习题精选及答案

概率与统计题目精选及答案1. 某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话; (2)拨号不超过3次而接通电话.解:设A 1={第i 次拨号接通电话},i =1,2,3.(1)第3次才接通电话可表示为321A A A 于是所求概率为;1018198109)(321=⨯⨯=A A A P (2)拨号不超过3次而接通电话可表示为:A 1+32121A A A A A +于是所求概率为P (A 1+32121A A A A A +)=P (A 1)+P (21A A )+P (321A A A )=.103819810991109101=⨯⨯+⨯+2. 一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是.31(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率;(2)求这位司机在途中遇到红灯数ξ的期望和方差解:(1)因为这位司机第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以 P =.27431311311(=⨯-- (2)易知).31,6(~B ξ ∴.2316=⨯=ξE .34311(316=-⨯⨯=ξD 3. (理科)摇奖器有10个小球,其中8个小球上标有数字2,2个小球上标有数字5,现摇出3个小球,规定所得奖金(元)为这3个小球上记号之和,求此次摇奖获得奖金数额的数学期望解:设此次摇奖的奖金数额为ξ元,当摇出的3个小球均标有数字2时,ξ=6;当摇出的3个小球中有2个标有数字2,1个标有数字5时,ξ=9;当摇出的3个小球有1个标有数字2,2个标有数字5时,ξ=12所以,157)6(31038===C C P ξ 157)9(3101228===C C C P ξ 151)12(3102218===C C C P ξ……9分 E ξ=6×539151121579157=⨯+⨯+(元)答:此次摇奖获得奖金数额的数字期望是539元 ……………………12分 4. 某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为0.9,数学为0.8,英语为0.85,问一次考试中(Ⅰ)三科成绩均未获得第一名的概率是多少?(Ⅱ)恰有一科成绩未获得第一名的概率是多少解:分别记该生语、数、英考试成绩排名全班第一的事件为A 、B 、C ,则P (A )=0.9 P (B )=0.8,P (C )=0.85 …………………………2分(Ⅰ))()()()(C P B P A P C B A P ⋅⋅=⋅⋅=[1-P (A )]·[1-P (B )]·[1-P (C )]=(1-0.9)×(1-0.8)×(1-0.85)=0.003答:三科成绩均未获得第一名的概率是0.003………………6分(Ⅱ)P (C B A C B A C B A ⋅⋅+⋅⋅+⋅⋅)= P ()()()C B A p C B A P C B A ⋅⋅+⋅⋅+⋅⋅=)()()()()()()()()(C P B P A P C P B P A P C P B P A P ⋅⋅+⋅⋅+⋅⋅=[1-P (A )]·P (B )·P (C )+P (A )·[1-P (B )]·P (C )+P (A )·P (B )·[1-P (C )]=(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329答:恰有一科成绩未获得第一名的概率是0.329……………………12分5. 如图,A 、B 两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4.现从中任取三条网线且使每条网线通过最大的信息量.(I )设选取的三条网线由A 到B 可通过的信息总量为x ,当x ≥6时,则保证信息畅通.求线路信息畅通的概率;(I I )求选取的三条网线可通过信息总量的数学期望.解:(I )411)6(,6321411361212=⋅+==∴=++=++C C C x P )6(431012034141)6()4(101202)9(,9432203)8(,842243141205)7(,7322421分分=+++=≥∴===∴=++==∴=++=++===∴=++=++x P x P x P x P (I I ))8(203)5(,5221311,101)4(,4211分===++=++===++x P x P ∴线路通过信息量的数学期望5.61019203841741620351014=⨯+⨯+⨯+⨯+⨯+⨯= (11分)答:(I )线路信息畅通的概率是43. (I I )线路通过信息量的数学期望是6.5.(12分) 6. 三个元件T 1、T 2、T 3正常工作的概率分别为,43,43,21将它们中某两个元件并联后再和第三元件串联接入电路.(Ⅰ)在如图的电路中,电路不发生故障的概率是多少?(Ⅱ)三个元件连成怎样的电路,才能使电路中不发生故障的概率最大?请画出此时电路图,并说明理由.解:记“三个元件T 1、T 2、T 3正常工作”分别为事件A 1、A 2、A 3,则.43)(,43)(,21)(321===A P A P A P (Ⅰ)不发生故障的事件为(A 2+A 3)A 1.(2分)∴不发生故障的概率为32152141411[)()]()(1[)4)(()(])[(1321311321=⨯⨯-=⋅⋅-=⋅+=+=A P A P A P A P A A P A A A P P 分(Ⅱ)如图,此时不发生故障的概率最大.证明如下:图1中发生故障事件为(A 1+A 2)·A 3∴不发生故障概率为 3221)()]()(1[)()(])[(3213213212=⋅-=⋅+=+=A P A P A P A P A A P A A A P P )11(12分P P >∴ 图2不发生故障事件为(A 1+A 3)·A 2,同理不发生故障概率为P 3=P 2>P 1(12分)说明:漏掉图1或图2中之一扣1分7. 要制造一种机器零件,甲机床废品率为0.05,而乙机床废品率为0.1,而它们 的生产是独立的,从它们制造的产品中,分别任意抽取一件,求:(1)其中至少有一件废品的概率;(2)其中至多有一件废品的概率.解:设事件A =“从甲机床抽得的一件是废品”;B =“从乙机床抽得的一件是废品”. 则P (A )=0.05, P (B )=0.1,(1)至少有一件废品的概率)7(145.090.095.01)()(1)2)((1)(分分=⨯-=⋅-=+-=+B P A P B A P B A P(2)至多有一件废品的概率)12(995.09.095.01.095.09.005.0)(分=⨯+⨯+⨯=⋅+⋅+⋅=B A B A B A P P8. (理科)甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92.(1)求该题被乙独立解出的概率;(2)求解出该题的人数ξ的数学期望和方差 解:(1)记甲、乙分别解出此题的事件记为A 、B .设甲独立解出此题的概率为P 1,乙为P 2.(2分)则P (A )=P 1=0.6,P (B )=P 2:48.08.06.0)()()2(44.08.04.02.06.0)()()()()1(08.02.04.0)()()0()2()7(8.032.04.092.06.06.092.0)1)(1(1)(1)(2222212121的概率分布为分即则ξξξξ=⨯=⋅===⨯+⨯=+===⨯=⋅=====-+∴=-+=---=⋅-=+B P A P P B P A P B P A P P B P A P P P P P P P P P P P P B A P B A P)12(4.096.136.2)()(4.01728.00704.01568.048.0)4.12(44.0)4.11(08.0)4.10(4.196.044.048.0244.0108.0022222分或利用=-=-==++=⋅-+⋅-+⋅-==+=⨯+⨯+⨯=ξξξξξE E D D E 9. (理科考生做) 某保险公司新开设了一项保险业务,若在一年内事件E 发生,该公司要赔偿a 元.设在一年内E 发生的概率为p ,为使公司收益的期望值等于a 的百分之十,公司应要求顾客交多少保险金?解:设保险公司要求顾客交x 元保险金,若以ξ 表示公司每年的收益额,则ξ是一个随机变量,其分布列为:6分因此,公司每年收益的期望值为E ξ =x (1-p )+(x -a )·p =x -a p .8分为使公司收益的期望值等于a 的百分之十,只需E ξ =0.1a ,即x -a p =0.1a , 故可得x =(0.1+p )a . 10分即顾客交的保险金为 (0.1+p )a 时,可使公司期望获益10%a . 12分10. 有一批食品出厂前要进行五项指标检验,如果有两项指标不合格,则这批食品不能出厂.已知每项指标抽检是相互独立的,且每项抽检出现不合格的概率都是0.2.(1)求这批产品不能出厂的概率(保留三位有效数字);(2)求直至五项指标全部验完毕,才能确定该批食品是否出厂的概率(保留三位有效数字).解:(1)这批食品不能出厂的概率是: P =1-0.85-15C ×0.84×0.2≈0.263. 4分 (2)五项指标全部检验完毕,这批食品可以出厂的概率是:P 1=14C ×0.2×0.833×0.8 8分五项指标全部检验完毕,这批食品不能出厂的概率是:P 2=14C ×0.2×0.83×0.2 10分由互斥事件有一个发生的概率加法可知,五项指标全部检验完毕,才能确定这批产品是否出厂的概率是:P =P 1+P 2=14C ×0.2×0.83=0.4096. 12分11. 高三(1)班、高三(2)班每班已选出3名学生组成代表队,进行乒乓球对抗赛. 比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,不得参加两盘单打比赛.已知每盘比赛双方胜出的概率均为.21(Ⅰ)根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容? (Ⅱ)高三(1)班代表队连胜两盘的概率是多少?解:(I )参加单打的队员有23A 种方法. 参加双打的队员有12C 种方法.……………………………………………………2分所以,高三(1)班出场阵容共有121223=⋅C A (种)………………………5分 (I I )高三(1)班代表队连胜两盘,可分为第一盘、第二盘胜或第一盘负,其余两盘胜,………………………………………………………………………7分所以,连胜两盘的概率为.832121212121=⨯⨯+⨯………………………………10分 12. 袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.(1)摸出2个或3个白球 (2)至少摸出一个黑球.解: (Ⅰ)设摸出的4个球中有2个白球、3个白球分别为事件A 、B ,则73)(,73)(481325482325=⋅==⋅=C C C B P C C C A P ∵A 、B 为两个互斥事件 ∴P (A +B )=P (A )+P (B )=76即摸出的4个球中有2个或3个白球的概率为76…………6分 (Ⅱ)设摸出的4个球中全是白球为事件C ,则 P (C )=1414845=C C 至少摸出一个黑球为事件C 的对立事件 其概率为14131411=-………………12分 13. 一名学生骑自行车上学,从他的家到学校的途中有6个交通岗,假设他在各交通岗遇到红灯的事件是独立的,并且概率都是31.(I )求这名学生首次遇到红灯前,已经过了两个交通岗的概率;(I I )求这名学生在途中遇到红灯数ξ的期望与方差.解:(I )27431311311(=--=P …………………………………………4分 (I I )依题意ξ~31,6(B ……………………………………………………7分 2316=⋅=∴ξE ……………………………………………………………9分 34)311(316=-⋅⋅=ξD ……………………………………………………12分 14. 一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是.31(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率;(2)求这位司机在途中遇到红灯数ξ的期望和方差解:(1)因为这位司机第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以 P =.27431311311(=⨯-- (2)易知31,6(~B ξ ∴.2316=⨯=ξE .34)311(316=-⨯⨯=ξD。
概率统计习题带答案

概率论与数理统计习题及题解沈志军 盛子宁第一章 概率论的基本概念1.设事件B A ,及B A 的概率分别为q p ,及r ,试求)(),(),(B A P B A P AB P 及)(AB P2.若C B A ,,相互独立,试证明:C B A ,,亦必相互独立。
3.试验E 为掷2颗骰子观察出现的点数。
每种结果以),(21x x 记之,其中21,x x 分别表示第一颗、第二颗骰子的点数。
设事件}10|),{(2121=+=x x x x A , 事件}|),{(2121x x x x B >=。
试求)|(A B P 和)|(B A P4.某人有5把钥匙,但忘了开房门的是哪一把,只得逐把试开。
问:(1)恰好第三次打开房门锁的概率?(2)三次内打开的概率?(3)如果5把里有2把房门钥匙,则在三次内打开的概率又是多少?5.设有甲、乙两袋,甲袋中装有n 个白球、m 个红球,乙袋中装有N 个白球、M 个红球。
今从甲袋中任意取一个放入乙袋中,再从乙袋中任意取一个,问取到白球的概率是多少?6.在时间间隔5分钟内的任何时刻,两信号等可能地进入同一收音机,如果两信号进入收音机的间隔小于30秒,则收音机受到干扰。
试求收音机不受干扰的概率?7.甲、乙两船欲停靠同一码头,它们在一昼夜内独立地到达码头的时间是等可能的,各自在码头上停留的时间依次是1小时和2小时。
试求一船要等待空出码头的概率?8.某仓库同时装有甲、乙两种警报系统,每个系统单独使用的有效率分别为0.92,0.93,在甲系统失灵的条件下乙系统也失灵的概率为0.15。
试求下列事件的概率:(1)仓库发生意外时能及时发出警报;(2)乙系统失灵的条件下甲系统亦失灵?9.设B A ,为两随机变量,试求解下列问题:(1) 已知6/1)|(,3/1)()(===B A P B P A P 。
求:)|(B A P ; (2) 已知2/1)|(,3/1)|(,4/1)(===B A P A B P A P 。
高二数学概率与统计练习题及答案

高二数学概率与统计练习题及答案1. 如下是一个班级学生的数学成绩表:75, 60, 92, 80, 85, 70, 90, 55, 78, 82计算这组数据的平均数。
解答:平均数即为所有数据的总和除以数据的个数。
计算该组数据的平均数:(75 + 60 + 92 + 80 + 85 + 70 + 90 + 55 + 78 + 82) / 10 = 787 / 10 = 78.7因此,班级学生的数学成绩的平均数为78.7。
2. 一副扑克牌中有52张牌,其中有4种花色(黑桃、红心、梅花、方块),每种花色有13张牌(分别是A、2、3、4、5、6、7、8、9、10、J、Q、K)。
从这副扑克牌中随机抽取一张牌,请问抽到的牌是红心的概率是多少?解答:红心牌的数量为13张,整副牌共有52张。
使用概率的定义,即事件发生的次数除以可能发生的总次数。
因此,抽到红心牌的概率为:13/52 = 1/4 = 0.253. 一个骰子有六个面,上面的点数分别为1、2、3、4、5、6。
现在将这个骰子掷三次,请问恰好掷出两次点数为4的概率是多少?解答:掷三次恰好掷出两次点数为4,意味着有两次点数为4,第三次不是点数为4。
第一次掷出点数4的概率为1/6,第二次掷出点数4的概率同样为1/6,而第三次不是4的概率为5/6。
因此,恰好掷出两次点数为4的概率为:(1/6) * (1/6) * (5/6) = 5/2164. 有一个装有20个球的箱子,其中5个球是红色,8个球是蓝色,剩下的是白色。
现在从箱子中随机取出两个球,不放回,问两个球都是红色的概率是多少?解答:第一次取出红色的概率为5/20,取出后不放回,第二次取出红色的概率为4/19。
因此,两个球都是红色的概率为:(5/20) * (4/19) = 1/19 ≈ 0.05265. 在一次考试中,某班级中的学生考试成绩的频数分布如下所示:成绩范围频数60-70 570-80 1280-90 1090-100 3请问这些学生中考试成绩在80分以上的概率是多少?解答:考试成绩在80分以上的学生数为10+3=13人。
概率与统计【题集】-讲义(教师版)

概率与统计【题集】1. 条件概率与相互独立事件1.盒子中有个白球和个红球,现从盒子中依次不放回地抽取个球,那么在第一次抽出白球的条件下,第二次抽出红球的概率是 .【答案】【解析】设事件为第一次抽取的为白球;设事件为第二次抽到红球,∴;∴第一次抽到白球条件下,第二次抽到红球的概率为.故答案为:.【标注】【知识点】超几何分布;条件概率A.B.C.D.2.甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛.若赛完局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.则甲在局以内(含局)赢得比赛的概率为( ).【答案】A【解析】用表示“甲在局以内(含局)赢得比赛”,表示“第局甲胜”,表示“第局乙胜”,则,,,,,,,∴.故选项.【标注】【知识点】相互独立事件的概率乘法公式;互斥事件的概率加法公式2. 离散型随机变量的分布列、期望与方差A.B.C.D.3.设是一个服从两点分布的离散型随机变量,其分布列为:则的值为().【答案】A 【解析】,∴,∴.故选.【标注】【知识点】离散型随机变量的数学期望;离散型随机变量的分布列A.B.C.D.4.已知随机变量的分布列如表(其中为常数)则等于( ).【答案】C【解析】由概率之和等于可知,∴.故选.【标注】【知识点】离散型随机变量的分布列;概率的基本性质5.若随机变量的概率分布如表,则表中的值为 .【答案】【解析】由随机变量的概率分布表得:,解得.故答案为:.【标注】【知识点】概率的基本性质;互斥事件的概率加法公式A. B.C.D.6.设离散型随机变量的分布列为().若离散型随机变量满足,则下列结果正确的有( ).【答案】AC【解析】由离散型随机变量的分布列的性质得︰,则,,即,离散型随机变量满足,∴,故结果正确的有.故选.【标注】【知识点】期望与方差的性质3. 两点分布7.已知随机变量服从两点分布,且,设,那么.【答案】【解析】∵随机变量服从两点分布,且,∴,∴,设,则.【标注】【知识点】离散型随机变量的数学期望;两点分布A. B. C. D.8.设某项试验的成功率是失败率的倍,用随机变量去描述次试验的成功次数,则().【答案】C【解析】设失败率为,则成功率为.∴的分布列为:则“”表示试验失败,“”表示试验成功,∴由,得,即.故选.【标注】【知识点】离散型随机变量的分布列9.若的分布列为:其中,则,.【答案】 ;【解析】,,故答案为:,.【标注】【知识点】离散型随机变量的分布列A.和 B.和 C.和 D.和10.若随机变量服从两点分布,其中,则和的值分别是().【答案】D【解析】∵随机变量服从两点分布,且,∴,∴,,∴,.故选.【标注】【知识点】离散型随机变量的数学期望;离散型随机变量的方差A. B. C. D.11.某电视台夏日水上闯关节目中的前三关的过关率分别为,,,只有通过前一关才能进入下一关,且通过每关相互独立.一选手参加该节目,则该选手只闯过前两关的概率为().【答案】D【解析】某电视台夏日水上闯关节目中的前三关的过关率分别为,,,只有通过前一关才能进入下一关,且通过每关相互独立.一选手参加该节目,则该选手只闯过前两关的概率为:.故选:.【标注】【知识点】两点分布;离散型随机变量的分布列;相互独立事件的概率乘法公式4. 次独立重复实验与二项分布A.,B.,C.,D.,12.已知随机变量服从二项分布,即,且,,则二项分布的参数,的值为().【答案】D【解析】由二项分布的期望和方差公式,,则,∴,,∴,∴.故选.【标注】【知识点】n次独立重复试验与二项分布A. B. C. D.13.已知服从二项分布的随机变量满足,则()的值为().【答案】B【解析】.故选.【标注】【知识点】n次独立重复试验与二项分布14.一批产品的次品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的次品件数,则.【答案】【解析】∵一批产品的次品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的次品件数,∴,∴,故答案为:.【标注】【知识点】n次独立重复试验与二项分布15.某大厦的一部电梯从底层出发后只能在第,,层停靠,若该电梯在底层载有位乘客,且每位乘客在这三层的每一层下电梯的概率均为,用表示这位乘客在第层下电梯的人数,则.【答案】【解析】服从二项分布,即,∴.【标注】【知识点】n次独立重复试验与二项分布A. B. C. D.16.新冠肺炎病毒可以通过飞沫传染,佩戴口罩可以预防新冠肺炎病毒传染,已知,,三人与新冠肺炎病人甲近距离接触,由于,,三人都佩戴了某种类型的口罩,若佩戴了该种类型的口罩,近距离接触病人被感染的概率为,记,,三人中被感染的人数为,则的数学期望().【答案】B【解析】,,,,故.故选.【标注】【知识点】n 次独立重复试验与二项分布;离散型随机变量的数学期望(1)(2)17.在天猫进行大促期间,某店铺统计了当日所有消费者的消费金额(单位:元),如图所示:人数消费金额元将当日的消费金额超过元的消费者称为“消费达人”,现从所有“消费达人”中随机抽取人,求至少有位消费者,当日的消费金额超过元的概率.该店铺针对这些消费者举办消费返利活动,预设有如下两种方案:方案:按分层抽样从消费金额在不超过元,超过元且不超过元,元以上的消费者中总共抽取位“幸运之星”给予奖励金,每人分别为元、元和元.方案:每位会员均可参加线上翻牌游戏,每轮游戏规则如下:有张牌,背面都是相同的喜羊羊头像,正面有张笑脸、张哭脸,将张牌洗匀后背面朝上摆放,每次只能翻一张且每翻一次均重新洗牌,共翻三次.每翻到一次笑脸可得元奖励金.如果消费金额不超过元的消费者均可参加轮翻牌游戏;超过元且不超过元的消费者均可参加轮翻牌游戏;元以上的消费者均可参加轮翻牌游戏(每次、每轮翻牌的结果相互独立).以方案的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.【答案】(1)(2).方案投资较少;证明见解析.【解析】(1)记“在抽取的人中至少有位消费者消费超过元”为事件,由图可知,去年消费金额在内的有人,在内的有人,消费金额超过元的“消费达人”共有(人),从这人中抽取人,共有种不同方法,其中抽取的人中没有位消费者消费超过元,(2)共有种不同方法,所以.方案按分层抽样从消费金额在不超过元,超过元且不超过元,元以上的消费者中总共抽取位“幸运之星”,则“幸运之星”中的人数分别为:,,,按照方案奖励的总金额为:(元),方案设表示参加一轮翻牌游戏所获得的奖励金,则的可能取值为,,,,由题意,每翻牌次,翻到笑脸的概率为:,所以,,,,所以的分布列为:数学期望为:(元),按照方案奖励的总金额为:(元),因为由,所以施行方案投资较少.【标注】【知识点】组合;离散型随机变量的分布列;n次独立重复试验与二项分布;古典概型18.(1)(2)(3)年月,我国武汉地区爆发了新冠肺炎疫情,为了预防疫情蔓延,全国各地的学校都推迟年的春季线下开学,并采取了“停课不停学”的线上授课措施,某校为了解学生对线上课程的满意程度,随机抽取了学校中的名学生对线上课程进行评价打分,其得分情况的频率分布直方图如下:若根据频率分布直方图得到的评分不低于分的概率估计值为.频率组距评分求直方图中的,值,若评分的平均值不低于分视为满意,判断该校学生对线上课程是否满意?并说明理由.若采用分层抽样的方法,从评分在和内的学生中共抽取人,再从这人中随机抽取人检验他们的网课学习效果,求抽取到的人中至少一人评分在内的概率.若从该校学生中随机抽取人,记评分标准在的人数为,用频率估计概率,求随机变量的分布列与数学期望.【答案】(1)(2)(3)满意,证明见解析..的分布列为:.【解析】(1)(2)由已知得,解得,又,∴,评分的平均值为:,因此该校学生对线上课程满意.由题知评分在和内的频率分别为和,则抽取的人中,评分在内的为人,评分在的有人,记评分在的位学生为 , , ,(3)评分在内的位学生为,,则从人中任选人的所有可能结果为:,,,,,,,,,,共种,其中,评分在内的可能结果为,,,共种,∴这人中至少一人评分在的概率为.学生在分的频率为,用频率估计概率,则每个学生评分在分的概率为,据题意知,的可能取值为,,,,所以,,,,,那么的分布列为:则数学期望,或知.【标注】【知识点】离散型随机变量的分布列;n次独立重复试验与二项分布;离散型随机变量的数学期望;古典概型;用样本的数字特征估计总体的数字特征问题;众数、中位数、平均数;频率分布直方图;分层随机抽样19.改革开放年来,体育产业蓬勃发展反映了“健康中国”理念的普及.下图是我国年至年体育产业年增加值及年增速图.其中条形图为体育产业年增加值(单位:亿元),折线图为体育产业年增长率().(1)(2)(3)体育产业增加值体育产业年增长率从年至年随机选择年,求该年体育产业年增加值比前一年的体育产业年增加值多亿元以上的概率.从年至年随机选择年,设是选出的三年中体育产业年增长率超过的年数,求的分布列与数学期望.由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)【答案】(1)(2)(3).分布列为:期望值.从年或年开始连续三年的体育产业年增长率方差最大.从年开始连续三年的体育产业增加值方差最大.【解析】(1)(2)设表示事件“从年至年随机选出年,该年体育产业年增加值比前一年的体育产业年增加值多亿元以上”.由题意可知,年,年,年,年满足要求,故.由题意可知,的所有可能取值为,,,,且;;;.(3)所以的分布列为:故的期望值.从年或年开始连续三年的体育产业年增长率方差最大.从年开始连续三年的体育产业增加值方差最大.【标注】【知识点】离散型随机变量的数学期望;离散型随机变量的分布列(1)(2)20.已知某同学每次投篮的命中率为,且每次投篮是否命中相互独立,该同学投篮次.求至少有次投篮命中的概率.设投篮命中的次数为,求的分布列和期望.【答案】(1)(2).的分布列为:.【解析】(1)(2)设次投篮至少有次投篮命中为事件,则,∴至少有次投篮命中的概率为.由题意知的可能取值为,,,,,,,,,,,,∴的分布列为:∵,∴.【标注】【知识点】离散型随机变量的分布列;n次独立重复试验与二项分布;离散型随机变量的数学期望5. 超几何分布A. B. C. D.21.某小组有名男生,名女生,从中任选名同学参加活动,若表示选出女生的人数,则().【答案】C【解析】名男生,名女生中任选名参加活动,则女生人数为人时,女生人数为人时,,∴,∴故答案选.【标注】【素养】数学运算;逻辑推理【知识点】超几何分布(1)(2)22.已知箱中装有个白球和个黑球,且规定:取出一个白球得分,取出一个黑球得分.现从该箱中任取(无放回,且每球取到的机会均等)个球,记随机变量为取出球所得分数之和.求的分布列;求的数学期望.【答案】(1)(2)分布列为.【解析】(1)(2)的可能取值有:45.,故所求的分布列为所求的数学期望为.【标注】【知识点】超几何分布,,,(1)(2)23.某学校组织一项益智游戏,要求参加该益智游戏的同学从道题目中随机抽取道回答,至少答对道可以晋级.已知甲同学能答对其中的道题.设甲同学答对题目的数量为,求的分布列及数学期望.求甲同学能晋级的概率.【答案】(1)(2)的分布列为数学期望..【解析】(1)(2)可取,,,,则,,,,的分布列为.甲同学能晋级的概率.【标注】【知识点】离散型随机变量的数学期望;离散型随机变量的分布列(1)(2)24.在某年级的联欢会上设计一根摸奖游戏,在一个口袋中装有个红球和个白球,这些球除颜色外完全相同,一次从中摸出个球,表示摸出红球的个数.求的分布列.(用数字作答)至少摸到个红球就中奖,求中奖的概率.(用数字作答)【答案】(1)(2).【解析】(1)(2)的取值为,,,,设摸出个红球的概率为,,,,.中奖的概率为.【标注】【知识点】超几何分布;离散型随机变量的数学期望;离散型随机变量的分布列25.年突如其来的新冠疫情,不仅是一场危机,更是一场考验,给人民的生命财产,身体健康和经济社会发展都带来了巨大的挑战.在党中央的坚强领导下,国内疫情防控取得了阶段性的成果.某企业在此期间积极应对疫情带来的影响,拓展线上经营业务,创造就业机会.该企业招聘员工,其中、、、、五种岗位的应聘人数、录用人数和录用比例(精确到)如下:岗位男性应聘人数男性录用人数男性录用比例女性应聘人数女性录用人数女性录用比例(1)(2)(3)总计从表中所有应聘人员中随机选择人,试估计此人被录用的概率.从应聘岗位的人中随机选择人.记为这人中被录用的人数,求的分布列和数学期望.表中、、、、各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)【答案】(1)(2)(3).的分布列为:.,,,【解析】(1)(2)(3)由表可得:应聘人员总数为:,被录用的人数为:,所以从表中所有应聘人员中随机选择人,此人被录用的概率为:.可能的取值为,,,∵岗位的人中,被录用的有人,未被录用的有人,∴,,,∴的分布列为:∴.取掉岗位,男性录用比例为:,女性录用比例为:,∴去掉岗位后,男女比例接近,∴这四种岗位是:,,,.【标注】【知识点】离散型随机变量的分布列;古典概型;分层随机抽样频率组距重量克(1)(2)(3)26.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的件产品作为样本并称出它们的重量(单位:克),重量的分组区间为,,,,,由此得到样本的频率分布直方图,如图所示.求的值.在上述抽取的件产品中任取件,设为重量超过克的产品数量,求的分布列.用这件产品组成的样本中各组产品出现的频率估计概率,现在从流水线上任取件产品,求恰有件产品的重量超过克的概率.【答案】(1)(2)(3)..【解析】(1)(2)频率分布直方图中每个矩形面积之和为,可得,解得.件产品中任取件重量超过克的产品数量为:,的所有取值为,,;,(3),,从流水线上任取件产品,重量超过克的概率为,重量不超过克的概率为,恰有件产品的重量超过克的概率.【标注】【知识点】离散型随机变量的分布列;n 次独立重复试验与二项分布;频率分布直方图(1)(2)27.从名演员中选人参加表演.求甲在乙前表演的概率.若甲参加表演,门票收入会增长万元,若乙参加表演,门票收入会增长万元,若甲乙都参加演出,门票收入会增加万元,记门票增长为(万元),求的分布列和数学期望.【答案】(1)(2)..【解析】(1)(2)记“甲在乙前表演”为事件,∴,∴甲在乙前表演的概率是.可能取值有,,,,∴,,,,∴的分布列为:∴.【标注】【知识点】离散型随机变量的数学期望;古典概型(1)(2)(3)28.新生婴儿性别比是指在某段时间内新生儿中男婴人数与女婴人数的比值的倍.下表是通过抽样调查得到的某地区年到年的年新生婴儿性别比.年份新生婴儿性别比根据样本数据,估计从该地区年的新生儿中随机选取人为女婴的概率(精确到).从年到年这五年中,随机选取两年,用表示该地区的新生婴儿性别比高于的年数,求的分布列和数学期望.根据样本数据,你认为能否否定“生男孩和生女孩是等可能的”这个判断?并说明理由.【答案】(1)(2)(3).的分布列为的数学期望.可以否定,证明见解析;不能否定,证明见解析;无法判断,证明见解析.【解析】(1)(2)设“从该地区年的新生儿中随机选取人为女婴”为事件,则.的可能取值为,,,,,,所以的分布列为(3)所以的数学期望.答案一:可以否定;从样本数据看这五年的男婴在新生儿中的比例都高于,由样本估计总体,所以可以否定“生男孩和生女孩是等可能的”这个判断;答案二:不能否定;尽管从样本数据看这五年的男婴在新生儿中的比例都高于,但由于抽样调查本身存在一定的随机性,且从数据上看,男女婴在新生儿中的比例都近似于,所以不能否定“生男孩和生女孩是等可能的”这个判断;答案三:无法判断;由于样本容量未知,如果样本容量较小,那么通过样本数据不能“否定生男孩和生女孩是等可能的”这个判断,如果样本容量足够大,那么根据样本数据,可以否定“生男孩和生女孩是等可能的”这个判断.【标注】【知识点】古典概型;离散型随机变量的数学期望;超几何分布;离散型随机变量的分布列(1)(2)(3)29.年月份,我国湖北武汉出现了新型冠状病毒,人感染后会出现发热、咳嗽、气促和呼吸困难等,严重的可导致肺炎甚至危及生命.为了增强居民防护意识,增加居民防护知识,某居委会利用网络举办社区线上预防新冠肺炎知识答题比赛,所有居民都参与了防护知识网上答卷,最终甲、乙两人得分最高进入决赛,该社区设计了一个决赛方案:①甲、乙两人各自从个问题中随机抽个.已知这个问题中,甲能正确回答其中的个,而乙能正确回答每个问题的概率均为,甲、乙两人对每个问题的回答相互独立、互不影响;②答对题目个数多的人获胜,若两人答对题目个数相同,则由乙再从剩下的道题中选一道作答,答对则判乙胜,答错则判甲胜.求甲、乙两人共答对个问题的概率.试判断甲、乙谁更有可能获胜?并说明理由.求乙答对题目数的分布列和期望.【答案】(1)(2)(3).乙胜出的可能性更大,证明见解析.分布列为:期望.【解析】(1)(2)(3)推出两人共答题,甲答对个,乙答对个,两人共答题,甲答对个,乙答对个.然后求解甲、乙两名学生共答对个问题的概率.甲、乙共答对个问题分别为:两人共答题,甲答对个,乙答对个,两人共答题,甲答对个,乙答对个,所以甲、乙两名学生共答对个问题的概率﹔.故答案为:.设甲获胜为事件,则事件包含“两人共答题甲获胜”和“两人共答题甲获胜”两类情况,其中第一类包括甲乙答对题个数比为,,,,,六种情况,第二类包括前三题甲乙答对题个数比为,,三种情况,然后求解概率;设乙获胜为事件,则,为对立事件,求出的概率,得到结论.设甲获胜为事件,则事件包含“两人共答题甲获胜”和“两人共答题甲获胜”两类情况,其中第一类包括甲乙答对题个数比为,,,,,六种情况,第二类包括前三题甲乙答对题个数比为,,三种情况,所以甲胜的概率,设乙获胜为事件,则,为对立事件,所以,,所以乙胜出的可能性更大.设学生乙答对的题数为,则的所有可能取值为,,,,,求出概率,得到随机变量的分布列,然后求解期望.设学生乙答对的题数为,则的所有可能取值为,,,,,,,,,,所以随机变量的分布列为:所以期望.【标注】【知识点】离散型随机变量的分布列;离散型随机变量的数学期望;古典概型的概率计算(涉及计数原理)6. 正态分布A. B. C. D.30.已知随机变量,若,,则=().【答案】D【解析】根据题意,,∵随机变量,∴,故选:.【标注】【知识点】正态分布31.已知随机变量服从正态分布,若,则.【答案】【解析】因为,所以.【标注】【知识点】正态分布A.B.C.D.32.下列有关说法正确的是( ).的展开式中含项的二项式系数为的展开式中含项的系数为已知随机变量 服从正态分布,,则已知随机变量 服从正态分布,,则【答案】ACD【解析】、选项:对于二项式的展开式中项为,∴系数为,二次项系数为,故正确,错误;、选项:对于随机变量服从正态分布,∵,∴,∴,又∵对于随机变量服从正态分布且正态分布为∴,故正确、正确.故选.【标注】【知识点】求二项式展开式的特定项;求项的系数或二项式系数;正态分布33.在某市年月份的高三质量检测考试中,所有学生的数学成绩服从正态分布,现任取一名学生,则他的数学成绩在区间内的概率为 .(附:若,则,.)【答案】【解析】∵学生的数学成绩服从正态分布,∴,.故答案为.【标注】【知识点】正态分布A.B.C.D.34.在一次数学测验中,学生的成绩服从正态分布,其中分为及格线,分为优秀线.下面说法正确的是( ).附:;;.学生数学成绩的期望为学生数学成绩的标准差为学生数学成绩及格率超过学生数学成绩不及格的人数和优秀的人数大致相等【答案】AC 【解析】,,∴,显然正确,错误;.,故正确;.,故错误.故选.【标注】【知识点】正态分布35.已知随机变量,,其正态分布的密度曲线如图所示,则下列说法错误的是( ).A.B.C.D.的取值比的取值更集中于平均值左右两支密度曲线与轴之间的面积均为【答案】B【解析】A 选项:B 选项:C 选项:D 选项:因为,,故正确;由图可知,故错误;因为正态分布曲线越瘦高,数据越集中,故正确;根据正态分布曲线的性质可知,故正确.故选 B .【标注】【知识点】正态分布(1)(2)(3)36.某市需对某环城快速道路进行限速,为了调查该道路的车速情况,于某个时段随机对辆车的速度进行取样,根据测量的车速制成下表:车速频数经计算,样本的平均值,标准差,以频率作为概率的估计值.已知车速过慢与过快都被认为是需矫正速度,现规定车速小于或车速大于需矫正速度.从该快速车道上的所有车辆中任取辆,求该车辆需矫正速度的概率.从样本中任取辆车,求这辆车均需矫正速度的概率.从该快速车道上的所有车辆中任取辆,记其中需矫正速度的车辆数为.求的分布列和数学期望.【答案】(1).(2)(3).分布列:,.【解析】(1)(2)(3),,∴小于有辆,大于有辆,∴所求概率..,,,∴,,,∴分布列:,∴.【标注】【知识点】正态分布;离散型随机变量的数学期望;古典概型(1)1(2)37.为了解某市高三数学复习备考情况,该市教研机构组织了一次检测考试,并随机抽取了部分高三理科学生数学成绩绘制如图所示的频率分布直方图:分数频率组距根据频率分布直方图,估计该市此次检测理科数学的平均成绩.精确到个位)研究发现,本次检测的理科数学成绩近似服从正态分布(,约为),按以往的统计数据,理科数学成绩能达到自主招生分数要求的同学约占.2估计本次检测成绩达到自主招生分数要求的理科数学成绩大约是多少分?(精确到个位)从该市高三理科学生中随机抽取人,记理科数学成绩能达到自主招生分数要求的人数为,求的分布列及数学期望.(说明:表示的概率.参考数据(,)【答案】(1)12(2)..分布列为:∴.【解析】(1)12(2).设本次检测成绩达到自主招生分数要求的理科数学成绩为,则,∴,∴,解得.由题意可知,∴,,,,,,∴的分布列为:∴.【标注】【知识点】n 次独立重复试验与二项分布;离散型随机变量的数学期望38.《山东省高考改革试点方案》规定:从年秋季高中入学的新生开始,不分文理科;年高考总成绩由语数外三门统考科目和物理,化学等六门选考科目组成,将每门选考科目的考生原始成绩从高到低划分为、,,,、、、共个等级,参照正态分布原则,确定各等级人。
高中概率统计试题及答案

高中概率统计试题及答案一、选择题(每题3分,共30分)1. 如果一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?A. 1/3B. 1/2C. 3/5D. 2/5答案:C2. 一枚均匀的硬币连续抛掷两次,出现至少一次正面的概率是多少?A. 1/2B. 3/4C. 1/4D. 1/8答案:B3. 一个班级有30个学生,其中15个男生和15个女生。
随机抽取3名学生,抽到至少1名男生的概率是多少?A. 2/3B. 3/4C. 1/2D. 5/6答案:D4. 一个骰子投掷一次,得到偶数点数的概率是多少?A. 1/2B. 1/3C. 1/6D. 2/3答案:A5. 一个袋子里有3个白球和2个黑球,不放回地连续抽取两次,抽到一白一黑的概率是多少?A. 1/5B. 3/5C. 2/5D. 4/5答案:B6. 一个袋子里有2个红球,3个蓝球和5个绿球,随机抽取一个球,抽到蓝球的概率是多少?A. 1/5B. 3/10C. 1/2D. 1/4答案:B7. 一个班级有50名学生,其中20名是优秀学生。
随机抽取5名学生,抽到至少2名优秀学生的概率是多少?A. 0.7B. 0.3C. 0.5D. 0.9答案:A8. 一个袋子里有5个红球和5个蓝球,随机抽取3个球,抽到至少2个红球的概率是多少?A. 1/2B. 2/3C. 1/3D. 1/4答案:B9. 一个骰子投掷两次,两次都是6点的概率是多少?A. 1/6B. 1/36C. 1/12D. 1/24答案:B10. 一个班级有40名学生,其中10名是优秀学生。
随机抽取4名学生,抽到至少1名优秀学生的概率是多少?A. 1B. 3/4C. 2/5D. 1/4答案:A二、填空题(每题4分,共20分)1. 一个袋子里有10个球,其中4个是红球,6个是蓝球。
随机抽取一个球,抽到红球的概率是________。
答案:2/52. 一个班级有50名学生,其中25名是女生。
高中数学概率统计专题练习题及答案

高中数学概率统计专题练习题及答案一、选择题1. 掷一枚骰子,结果为奇数的概率是多少?A. 1/2B. 1/6C. 2/3D. 1/32. 从1至20这20个数字中随机选出一个数,选出的数是素数的概率是多少?A. 1/5B. 1/4C. 1/2D. 2/53. 一只盒子中有5张红牌和3张蓝牌,从中随机抽取2张牌,同时放回,再随机抽取2张牌,求两次抽取都是红牌的概率是多少?A. 1/16B. 3/8C. 1/4D. 1/8二、计算题1. 一次考试中,甲乙丙三位同学都有70%的概率通过考试。
求三位同学中至少有一位通过考试的概率。
答案:1 - (1 - 0.7)^3 = 0.9732. 从1至100这100个数字中随机选出一个数,选出的数是2的倍数且小于等于50的概率是多少?答案:50/100 = 0.53. 有A、B两个车站,A车站开往B车站的列车间隔是15分钟,B车站开往A车站的列车间隔是10分钟。
现在一个人随机到达A车站,请问他至少要等待几分钟才能搭乘到开往B车站的列车?答案:最小公倍数(15, 10) = 30分钟三、应用题1. 每个学生参加一次足球比赛的概率是0.4,问一个班级20个同学中至少有10个学生参加比赛的概率是多少?答案:利用二项分布公式,计算P(X≥10),其中n=20,p=0.4,k≥10。
答案约为0.599。
2. 一批产品有10%的次品率,现从中随机抽取20个产品,求其中恰好有3个次品的概率。
答案:利用二项分布公式,计算P(X=3),其中n=20,p=0.1,k=3。
答案约为0.201。
3. 一支篮球队最近10场比赛中获胜的概率是0.8,在下一场比赛中,求该队至少获胜8次的概率。
答案:利用二项分布公式,计算P(X≥8),其中n=10,p=0.8,k≥8。
答案约为0.967。
以上为高中数学概率统计专题练习题及答案。
希望对您的学习有所帮助!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计与概率
限时:45分钟满分:100分
一、选择题
1.下列调查中,最适宜采用普查方式的是()
A.对我国初中学生视力状况的调查
B.对量子科学通信卫星上某种零部件的调查
C.对一批节能灯管使用寿命的调查
D.对“最强大脑”节目收视率的调查
2.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()
A.1
6B.1
3
C.1
2
D.2
3
3.如图D8-1是根据某市某七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是()
图D8-1
A.30,28
B.26,26
C.31,30
D.26,22
4.已知一组数据1,2,3,x,5,它们的平均数是3,则这一组数据的方差为()
A.1
B.2
C.3
D.4
5.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图D8-2所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()
图D8-2
A.π-2
2B.π-2
4
C.π-2
8
D.π-2
16
6.三名初三学生坐在仅有的三个座位上,起身后重新就座,恰好有两名同学没有坐回原位的概率是()
A.1
9B.1
6
C.1
4
D.1
2
二、填空题
7.一组数据:2,5,3,1,6,则这组数据的中位数是.
8.在一个不透明的口袋中放入6个红球,2个黑球,n个黄球,这些球除颜色不同外,其他无任何差别.若搅匀后随机从中摸出
,则放入口袋中的黄球总数n=.
一个恰好是黄球的概率为1
3
9.已知一包糖果共有5种颜色(糖果只有颜色差别),如图D8-3是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.
图D8-3
10.一次数学考试中,九年级(1)班和(2)班的学生人数和平均分如表所示,则这两个班的平均成绩为分.
班级人数平均分
(1)班5285
(2)班4880
11.经过某十字路口的汽车,可直行,也可向左转或向右转,如果三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是.
12.两组数据3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为.
三、解答题
13.(10分)一只不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字1,2,3,4.
(1)搅匀后从中任意摸出1个球,求摸出的乒乓球球面数字为1的概率;
(2)搅匀后先从中摸出1个球(不放回),再从余下的3个球中任意摸出1个球,求两次摸出的乒乓球球面上数字之和为偶数的概率.
14.(14分)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.
抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师从中随机抽取一张卡片,记下姓名,再从剩下的3张卡片中随机抽取第二张,记下姓名.
(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片,“小悦被抽中”的概率为;
(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.
15.(16分)某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球,B.乒乓球,C.跳绳,D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图(如图D8-4①①),请回答下列问题:
(1)这次被调查的学生共有人;
(2)请你将条形统计图补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).
图D8-4
参考答案
1.B
2.C
3.B [解析] 把这7个数按照从小到大排列为22,22,23,26,28,30,31,则这7个数的中位数是最中间的数:26;平均数是(22+22+23+26+28+30+31)÷7=26,故选B .
4.B [解析] 根据平均数为3,可求得x 的值为4,则方差为1
5[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2.
5.A [解析] 因为正方形ABCD 的面积为4,阴影部分的面积为四个半圆的面积与正方形ABCD 的面积之差,即4×12π×
22
2-4=2π-4,所以米粒落在阴影部分的概率为2π-44=π-22
.
6.D [解析] 利用列举法可知,三人全部坐法有6种,其中恰好有两名同学没坐回原位的情况有3种,因此恰好有两名同学没有坐回原位的概率是36=1
2.故选D .
7.3 [解析] 把这组数据按从小到大排列为1,2,3,5,6.第3个数是3,①中位数是3.故填3. 8.4
9.1
2 [解析] 棕色糖果所占的百分比为1-20%-15%-30%-15%=1-80%=20%,所以P (糖果的颜色为绿色或棕色)=30%+20%=50%=1
2.故答案为1
2.
10.82.6 [解析] 根据题意得52
52+48×85+48
52+48×80=44.2+38.4=82.6(分),①这两个班的平均成绩为82.6分,故答案为82.6. 11.1
9 [解析] 依题意,画树状图如下:
由树状图可知,两辆汽车经过十字路口共有9种结果,每种结果出现的可能性相等,其中两车都直行的结果只有1种,所以所求概率P=1
9
.
12.6 [解析] 由题意,得{3+a+2b+5
4
=6,
a+6+b
3
=6,
解得{a =8,b =4,
①这组新数据是3,4,5,6,8,8,8,其中位数是6.
13.解:(1)P (摸出的乒乓球球面数字为1)=14
. (2)画树状图如下:
共有12种等可能的结果,两次摸出的乒乓球球面上的数字和为偶数的有4种情况,所以P (球面数字之和为偶数)=4
12=1
3.
14.解:(1)不可能 随机 1
4
(2)将“小悦被抽中”记作事件A,“小惠被抽中”记作事件B,“小艳被抽中”记作事件C,“小倩被抽中”记作事件D . 根据题意,可画出如下树状图:
从树状图可以看出,共有12种结果,它们都是等可能情况,“小惠被抽中”的情况有6种, ①P (小惠被抽中)=6
12=1
2.
15.解:(1)由扇形统计图可知,A 所在扇形的圆心角度数是36°,所以喜欢A 项目的人数占被调查人数的百分比为
36360
×100%=10%.
由条形统计图可知:喜欢A 项目的人数有20人,所以被调查的学生共有20÷10%=200(人). (2)喜欢C 项目的人数为200-(20+80+40)=60(人),因此补全条形统计图如下:
(3)画树状图如下:
或者列表如下:
从树状图或表格中可知,从四名同学中任选两名共有12种结果,每种结果出现的可能性相等,其中选中甲、乙两位同学(记为事件M )有2种结果,所以P (M )=2
12=1
6.。