概率论与数理统计试卷(含答案)

合集下载

《概率论与数理统计》考试题(含答案)

《概率论与数理统计》考试题(含答案)

《概率论与数理统计》考试题一、填空题(每小题2分,共计60分)1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)A (p ==,则a )、若B A ,互斥,则=)B -A (p 0.5 ;b )若B A ,独立,则=)B A (p 0.65 ;c )、若2.0)(=⋅B A p ,则=)B A (p 3/7 . 2、袋子中有大小相同的红球7只,黑球3只,(1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为: 7/15 。

(2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为: 21/50 。

(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 21/55 . 3、设随机变量X 服从泊松分布}8{}7{),(===X P X p λπ,则{}=X E 8 .4、设随机变量X 服从B (2,0. 8)的二项分布,则{}==2X p 0.64 , Y 服从B (8,0. 8)的二项分布, 且X 与Y 相互独立,则}1{≥+Y X P =1- 0.210,=+)(Y X E 8 。

5 设某学校外语统考学生成绩X 服从正态分布N (75,25),则该学校学生的及格率为 0.9987 ,成绩超过85分的学生占比}85{≥X P 为 0.0228 。

其中标准正态分布函数值9987.0)3(,9772.0)2(,8413.0)1(=Φ=Φ=Φ. 6、设二维随机向量),(Y X 的分布律是有 则=a _0.1_,X的数学期望=)(X E ___0.4___,Y X 与的相关系数=xy ρ___-0.25______。

7、设161,...,X X 及81,...,Y Y 分别是总体)16,8(N 的容量为16,8的两个独立样本,Y X ,分别为样本均值,2221,S S 分别为样本方差。

则:~X N(8,1) ,~Y X - N(0,1.5) ,{}5.12>-Y X p = 0.0456 ,~161521S )15(2χ,~2221S S F(15,7) 。

概率论与数理统计(经管类)(有答案)

概率论与数理统计(经管类)(有答案)

实用文档04183概率论与数理统计(经管类)一、单项选择题1.若E(XY)=E(X))(Y E ⋅,则必有( B )。

A .X 与Y 不相互独立B .D(X+Y)=D(X)+D(Y)C .X 与Y 相互独立D .D(XY)=D(X)D(Y2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 A 。

A .0.1B .0.2C .0.3D .0.43.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。

A .1)(=+∞FB .0)(=-∞FC .1)(0≤≤x FD .)(x F 连续4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。

A .nk k m q p CB .kn k k n q p C -C .k n pq -D .k n k q p -5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则(23)D X Y ++= CA .8B .16C .20D .246.设n X X X 21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中心极限定理得()1n i i P X a a =⎧⎫≥⎨⎬⎩⎭∑为常数的近似值为 B 。

A .1a n n μσ-⎛⎫-Φ⎪⎝⎭ B.1-Φ C .a n n μσ-⎛⎫Φ ⎪⎝⎭ D.Φ7.设二维随机变量的联合分布函数为,其联合分布律为则(0,1)F = C 。

A .0.2B .0.4C .0.6D .0.88.设k X X X ,,,21 是来自正态总体)1,0(N 的样本,则统计量22221k X X X ++服从( D )分布A .正态分布B .t 分布C .F 分布D .2χ分布9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。

A .21)0(=≤+Y X PB .21)1(=≤+Y X P实用文档C .21)0(=≤-Y X PD .21)1(=≤-Y X P10.设总体X~N (2,σμ),2σ为未知,通过样本n x x x 21,检验00:μμ=H 时,需要用统计量( C )。

概率论和数理统计试题及答案

概率论和数理统计试题及答案

概率论和数理统计试题及答案概率论和数理统计试题及答案⼀、填空题:1、设A 与B 相互独⽴,P(A) =31, P(B) =21, 则P (B-A) = . 解:111()()[1()](1)233P B A P B P A -=-=?-=2、设~[1,3]X U (均匀分布),则2()E X = ,(2)D X = .(52)E X -= ,解:()2;()1/3E X D X ==22()()()13/3E X D X E X =+= (2)4()4/3D X D X ==(52)5()21028E X E X -=-=-=3、设随机变量X 服从指数分布,即 ~(2),X E 定义随机变量2,31,31,3X Y X X >??==??-则 Y 的分布列为。

解:3322620()()(1)(3)21Y x xF Y P Y y P Y P X e dx e e σσσ-----+=≤=≤-=<==-=-?33226()()(11)(3)21Y x xF Y P Y y P Y P X e dx e e ---=≤=-<≤=≤==-=-?3322620()()(12)(3)21Y xx F Y P Y y P Y P X edx ee σσσ++----=≤=<≤=>==-=-?其中σ是与y ⽆关的量4、设~(200,0.1)X B ~(3)Y P ,2~(3,2)Z N ,且X ,,Y Z 相互独⽴, 则(235)E X Y Z --+= , (235)D X Y Z --+=解:(235)2()3()()522000.1333533E X Y Z E X E Y E Z --+=--+=??-?-+=(235)4()9()()72274103D X Y Z D X D Y D Z --+=++=++=5、设总体2~(,)X N µσ,123,,x x x 为来⾃X 的样本,123?0.50.1x x ax µ=+-是未知参数µ的⽆偏估计,则a =。

概率论与数理统计考试试卷与答案

概率论与数理统计考试试卷与答案

一.填空题(每空题2分,共计60分)1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)(,4.0)A (p ===A B P ,则=)B A (p Y 0.6 ,=)B -A (p 0.1 ,)(B A P ⋅= 0.4 , =)B A (p 0.6。

2、一个袋子中有大小相同的红球6只、黑球4只。

(1)从中不放回地任取2只,则第一次、第二次取红色球的概率为: 1/3 。

(2)若有放回地任取2只,则第一次、第二次取红色球的概率为: 9/25 。

(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为: 21/55 。

3、设随机变量X 服从B (2,0.5)的二项分布,则{}=≥1X p 0.75, Y 服从二项分布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从 B(100,0.5),E(X+Y)= 50 ,方差D(X+Y)= 25 。

4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。

(1)抽到次品的概率为: 0.12 。

(2)若发现该件是次品,则该次品为甲厂生产的概率为: 0.5 . 5、设二维随机向量),(Y X 的分布律如右,则=a 0.1, =)(X E 0.4,Y X 与的协方差为: - 0.2 ,2Y X Z +=的分布律为:6、若随机变量X ~)4 ,2(N 且8413.0)1(=Φ,9772.0)2(=Φ,则=<<-}42{X P 0.815 ,(~,12N Y X Y 则+= 5 , 16 )。

7、随机变量X 、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则:=-)2(Y X E - 4 ,=-)2(Y X D 6 。

8、设2),(125===Y X Cov Y D X D,)(,)(,则=+)(Y X D 30 9、设261,,X X Λ是总体)16,8(N 的容量为26的样本,X 为样本均值,2S 为样本方差。

概率论与数理统计试题及答案(自考)

概率论与数理统计试题及答案(自考)

概率论与数理统计试题及答案(自考)一、单选题1.如果D(X)=3,令Y=2X+5,则D(Y)为A、12B、18C、7D、11【正确答案】:A解析:D(C)=0,D(X+C)=D(X),D(CX)=C2D(X),因此D(Y)=D(2X+5)=D(2X)=4D(X)=4×3=12,因此选A。

2.设总体X~N(μ1,σ12),Y~N(μ2,σ22),σ12=σ22未知,关于两个正态总体均值的假设检验为H0:μ1≤μ2,H1:μ1 > μ2,则在显著水平α下,H0的拒绝域为A、B、C、D、【正确答案】:B解析:无3.设总体为来自X的样本,为样本值,s为样本标准差,则的无偏估计量为( )。

A、sB、C、D、【正确答案】:C解析:样本均值是总体均值的无偏估计量。

故选C.4.设随机变量X的方差D(X)=2,则利用切比雪夫不等式估计概率P{|X-E(X)|≥8}的值为( )。

A、B、C、D、【正确答案】:B解析:5.如果D(X)=2,令Y=3X+1,则D(Y)为A、2B、18C、3D、4【正确答案】:B解析:D(C)=0,D(X+C)=D(X),D(CX)=C2D(X),因此D(Y)=D(3X+1)=D(3X)=9D(X)=9×2=18,因此选B。

6.在假设检验中,H0为原假设,则显著性水平的意义是A、P{拒绝H0| H0为真}B、P {接受H0| H0为真}C、P {接受H0| H0不真}D、P {拒绝H0| H0不真}【正确答案】:A解析:本题考察假设检验“两类错误”内容。

选择A。

7.则k=A、0.1B、0.2C、0.3D、0.4【正确答案】:D解析:本题考察一维离散型随机变量分布律的性质:。

计算如下0.2 + 0.3 + k + 0.1=1,k=0.4故选择D。

8.掷四次硬币,设A表示恰有一次出现正面,则P(A)=A、1/2B、1/4C、3/16D、1/3【正确答案】:B解析:样本空间Ω={正正正正,正正正反,正正反正,正反正正,反正正正,正正反反,正反正反,反正正反,正反反正,反正反正,反反正正,正反反反,反反正反,反正反反,反反反正,反反反反};其中恰有一次正面向上的样本点是{正反反反,反反正反,反正反反,反反反正}所以概率就是1/4。

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。

把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。

概率论与数理统计试卷及参考答案

概率论与数理统计试卷及参考答案

概率论与数理统计 试卷及其答案一、填空题(每空4分,共20分)1、设随机变量ξ的密度函数为2(0,1)()0ax x x φ⎧∈=⎨⎩其它,则常数a =3 。

2、设总体2(,)XN μσ,其中μ与2σ均未知,12,,,n X X X 是来自总体X 的一个样本,2σ的矩估计为211()i ni i X X n ==-∑ 。

3、已知随机变量X 的概率分布为{},1,2,3,4,5,15kP X k k ===则1()15P X E X ⎧⎫<=⎨⎬⎩⎭___ 0.4___。

4、设随机变量~(0,4)X U ,则(34)P X <<= 0.25 。

5、某厂产品中一等品的合格率为90%,二等品合格率80%,现将二者以1:2的比例混合,则混合后产品的合格率为 5/6 。

二、计算题(第1、2、3题每题8分,第4题16分,第5题16分,共56分)1、一批灯泡共20只,其中5只是次品,其余为正品。

做不放回抽取,每次取一只,求第三次才取到次品的概率。

解:设i A 表示第i 次取到次品,i=1,2,3,B 表示第三次才取到次品, 则123121312()()()()()1514535201918228P B P A A A P A P A A P A A A ===⨯⨯=2、设X 服从参数为λ的指数分布,其概率密度函数为0()00xe xf x x λλ-⎧≥=⎨<⎩,求λ的极大似然估计。

解:由题知似然函数为:11()(0)i niii x i nx ni i L eex λλλλλ==-=-=∑=∏=≥对数似然函数为:1ln ()ln i ni i L n x λλλ===-∑由1ln ()0i ni i d L n x d λλλ===-=∑,得:*11i nii nxxλ====∑ 因为ln ()L λ的二阶导数总是负值,故*1Xλ=3、设随机变量X 与Y 相互独立,概率密度分别为:,0()0,0x X e x f x x -⎧>=⎨≤⎩,1,01()0,Y y f y <<⎧=⎨⎩其他, 求随机变量Z X Y =+的概率密度解:()()()Z X Y f z f x f z x dx +∞-∞=-⎰1,01,10,0z x z x ze dy z e dy z z ---⎧<<⎪⎪=≥⎨⎪≤⎪⎩⎰⎰ 11,01,10,0z z z e z e e z z ---⎧-<<⎪=-≥⎨⎪≤⎩4、 设随机变量X 的密度函数为,01,()2,12,0,x x f x x x <≤⎧⎪=-<≤⎨⎪⎩其它.求(),()E X D X 。

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题:(每题4分,共24分)1.已知事件A 与B 相互独立,()0.4P A =,()0.7P A B +=,则概率()P B A 为 。

2.某次考试中有4个单选选择题,每题有4个答案,某考生完全不懂,只能在4个选项中随机选择1个答案,则该考生至少能答对两题的概率为 , 3.若有 ξ~(0,1)N ,η=21ξ-,则η~N ( , )4.若随机变量X 服从参数为λ的泊松分布,且DX EX -=4,则参数λ=5.设连续型随机变量ξ的概率密度为2(1)01()0x x f x -<<⎧=⎨⎩其他,且2ηξ=,则η的概率密度为 。

6.设总体2~(,)X N μσ的分布,当μ已知,12,,n X X X 为来自总体的样本,则统计量∑=-ni i X 12)(σμ服从 分布。

二、选择题:(每小题4分,共20分)1. 设事件,,A B C 是三个事件,作为恒等式,正确的是( ) A.()ABC AB CB = B.A BC A B C =C.()A B A B -=D.()()()A B C AC BC =2.n 张奖券有m 张有奖的,k 个人购买,每人一张,其中至少有一人中奖的概率是( )。

A.11k m n mknC C C -- B. k n m C C. k n k mn C C --1 D. 1r nm k r nC C =∑3. 设EX μ=,2DX σ=,则由切比雪夫不等式知(4)P X μσ-≤≥( ) A.1416 B. 1516 C. 15 D. 16154. 如果随机向量),(ηξ的联合分布表为:则协方差),cov(ηξ=( )A.-0.2B. –0.1C.0D. 0.1 5. 设总体 ξ~2(,)N μσ ,(12,,n X X X )是 ξ 的简单随机样本,则为使1211ˆ()n i i i C XX θ-+==-∑为2σ的无偏估计,常数C 应为( )A.1n B. 11n - C. 12(1)n - D. 12n -三、计算题:待用数据(0.9750.9750.950.95(35) 2.0301,(36) 2.0281,(35) 1.6896,(36) 1.6883t t t t ====,8413.0)1(=Φ,9772.0)2(=Φ975.0)96.1(=Φ,95.0)645.1(=Φ)1.三个人同时射击树上的一只鸟,设他们各自射中的概率分别为0.5,0.6,0.7。

若无人射中鸟不会坠地;只有一人射中的鸟坠地的概率为0.2;两人射中的鸟坠地的概率为0.6;三人射中的鸟一定坠地的; (1) 当三个人同时向鸟射击实,问分别有一人、两人、三人射中鸟的概率?(2) 三人同时向鸟射击一次,求鸟坠地的概率?2.已知随机变量ξ的概率密度为()xx Ae ϕ-= ,x -∞<<+∞求:(1)系数A ;(2)求概率(01)P ξ<<;(3) ξ的分布函数。

3.已知随机变量(,)X Y 的概率密度(34)0,012(,)0x y x y e f x y -+≤≤⎧=⎨⎩其他求(1)二维随机变量(,)X Y 的边缘概率密度; (2)Y X + 的概率密度。

4.设总体ξ~],0[θU ,待定参数0>θ。

12,,n X X X 是来自总体的样本。

(1)求θ的极大似然估计;(2)求θ的矩估计θˆ;(3)证明:矩估计量θˆ为参数θ的无偏估计。

(14分)5.(共10分)某中学入学考试中,设考生的数学考试成绩服从正态分布,从中任取36位考生的成绩,其平均成绩为66.5分,标准差为15分。

(1) 问在0.05的显著性水平下,是否认为全体考生的数学平均成绩为70分? (2) 给出全体考生的数学平均成绩在置信水平为0.95下的置信区间。

答案一.1. 0.5 ; 2. 25667; 3 . (-1,4); 4. 2; 5. ⎪⎩⎪⎨⎧<<-=其他,,0,10,11)(y yy p6. 2()n χ.二.1. B; 2. C; 3. B; 4. B; 5. C.三.1 解:设{}i A i =第个人射中,(i=1,2,3),由题意知 123()0.5,()0.6;()0.7P A P A P A ===(1)又设B 0={三人都射不中};B 1={一人射中};B 2={恰有两人射中};B 3={三人同时射中},C={鸟坠地}0123()0,()0.2,()0.6,()1,P C B P C B P C B P C B ====0()0.06,P B =1()0.29,P B = 2()0.44,P B = 3()0.21P B =(2)由全概公式30()()()02.53(2i i i P C P B P C B ===∑分)2.解:(1)由于()1xX dx Ae dx ϕ+∞+∞--∞-∞==⎰⎰21x A e dx +∞-=⎰ 故12A =(2)(01)P ξ<<11100111()221211x xe e dx e ----==-=⎰(分)(分)(分) (3)0110122()111210222222x xx x x x x x x x e dx e x F x e dx e dx e dx e x -∞--∞---∞⎧=<⎪⎪==⎨⎪+=-≥⎪⎩⎰⎰⎰⎰(分)(分)(分)3.(1)(34)300123()(,11)01x y x x x edy e f x f x y dy +∞-+-+∞-∞⎧≤=⎪==⎨⎪⎩⎰⎰(分)(分)(分)其他(34)400124()(,1101)x y y y yedx e f x f x y dy +∞-+-+∞-∞⎧≤=⎪==⎨⎪⎩⎰⎰其他(分)(分)(分)(4)0,0()(,)12,022z z x z f z f x z x dx e dx z +∞---∞<⎧⎪=-=⎨≥⎪⎩⎰⎰(分)(分) ⎩⎨⎧≥-<=--0,12120,043z e e z zz 4.似然函数为nL θθ1)(=, θθln )(ln n L -=令0)(ln <-=θθθn d L d 解得in i X ≤≤=1max ˆθ (2) 因为2θ=EX ,故矩估计量得X 2ˆ=θθθθ====∑∑==n i n i i n EX n X E E 112222ˆ。

5.解:(1)设考生的数学考试成绩作为总体2~(,)X N μσ,由题意知66.5,15X S ==。

01:70,:70.H H μμ=≠构造统计量T =且4.13615|705.66|||=⋅-=T 而0.97512(1)(35) 2.0301tn t α--==,即12(1)T tn α-<-故可以认为这次全体考生的数学平均成绩为70分。

(2)因为X T =~(1)t n -故查表满足{}12(1)1X P tn αα-≤-=-的临界值得到置信水平为0.95的区间1122((X t n X t n αα--⎡⎤--+-⎢⎣ 即区间]57525.71,42475.61[。

一、 填空题(共20分,每小题4分)1. 设事件,A B 仅发生一个的概率为0.3,且()()0.5,P A P B +=则,A B 至少有一个发生的概率为 。

2. 设离散型随机变量X 的分布函数为022()23513x F x x x<-⎧⎪⎪=-≤<⎨⎪⎪≤⎩ 则X 的分布律为3. 设随机变量X 服从参数为3的泊松分布,用切比雪夫不等式估计得到(|3|4)P X -≥≤ 。

4. 若随机变量~[1,6]U ξ,则方程210x x ξ++=有实根的概率为 。

5. 设1234,,,X X X X 是来自正态总体)4,0(N 的一个简单随机样本, 则当a = ,b = ,时统计量221234(2)(34)X a X X b X X =-+-服从2χ分布。

二、 选择题(共20分,每小题4分)1.若对任意的随机变量X ,EX 存在,则))((EX E E 等于( ) 。

A .0B .XC .EXD .2)(EX 2.设A 和B 是任两个概率不为0的不相容事件,则下列结论中肯定正确的是( ) (A )A 和B 不相容(B )A 和B 相容(C )()()()P AB P A P B =(D )()()P A B P A -=3. 设袋中有a 只黑球,b 只白球,每次从中取出一球,取后不放回,从中取两次,则第二次取出白球的概率为( )。

A .22)(b a b + B .)1)(()1(-++-b a b a b b C .11-+-b a b D .)(b a b +4. 在下列函数中,可以作为随机变量的概率密度函数的是( )A. 2,01()0,x x f x <<⎧=⎨⎩其他B .2,01()0,x x f x ⎧<<=⎨⎩其他C .cos ,0()0,x x f x π≤≤⎧=⎨⎩其他D .2,0()0,0x e x f x x -⎧>=⎨≤⎩5.若21),5,2(~),3(~,-=Y X N Y P X ρ,且22+-=Y X Z ,则DZ=( )A .158-B .1528+C .1513-D .15223+三、 计算证明题 ( 共60分 )1.(10分) 设有2台机床加工同样的零件,第一台机床出废品的概率为0.03,第二台机床出废品的概率为0.06,加工出来的零件混放在一起,并且已知第一台机床加工的零件比第二台机床多一倍。

(1) 求任取一个零件是废品的概率(2) 若任取的一个零件经检查后发现是废品,则它是第二台机床加工的概率。

2.(14分)若D 是以点(0,0),(-1,1),(1,1)为顶点的三角形内部区域,二维随机变量(,X Y )在区域D 内服从均匀分布 (1) 求出(,X Y )的联合概率密度函数(4分) (2) 1()2P Y x ≤ (4分)(3) 求Z X Y =+概率密度的函数 (6分)3.(12分)假设生产线上组装每件产品的时间服从指数分布,统计资料表明该生产线每件产品的组装时间平均为5分钟,各件产品的组装时间彼此独立。

试用中心极限定理求:(1) 组装100件产品需要6到10小时的概率;(6分)(2) 以95%的概率在8个小时之内最多可以组装多少件产品?(6分) (9974.0)8.2(=Φ,(1)0.8413,(2)0.9772,(1.65)0.95,(3)0.9987)Φ=Φ=Φ=Φ=4.设总体X 的概率密度为⎪⎩⎪⎨⎧<<-=--其他,,01011),(12x x x f θθθθ 其中1>θ是未知参数,),,,(21n x x x 是总体X 的样本观测值, 求:(1) θ的矩估计 (4分)(2) θ的极大似然估计L ^θ,并问L ^θ是θ的无偏估计吗?请说明理由。

相关文档
最新文档