概率统计试题及答案

合集下载

概率统计基础知识试题和答案

概率统计基础知识试题和答案

第一章 概率统计基础知识第一节 概率基础知识一、单项选择题(每题的备选项中,只有1个最符合题意)ZL1A0001.已知5.0)(=A P ,6.0)(=B P ,8.0)(=⋃B A P ,可算得=)(AB P ( )。

A.0.2B.0.3C.0.4D.0.5ZL1A0002.已知已知3.0)(=A P ,7.0)(=B P ,9.0)(=⋃B A P ,则事件A 与B ( )。

A.互不兼容B.互为对立事件C.互为独立事件D.同时发生的概率大于0ZL1A0003.某种动物能活到20岁的概率为0.8,活到25岁的概率为0.4,如今已活到到20岁的这种动物至少能再活5年的概率是( )。

A. 0.3B. 0.4C. 0.5D. 0.6ZL1A0004.关于随机事件,下列说法正确的是( )。

A.随机事件的发生有偶然性与必然性之分,而没有大小之别B.随机事件发生的可能性虽有大小之别,但无法度量C.随机事件发生的可能性的大小与概率没有必然联系D.概率愈大,事件发生的可能性就愈大,相反也成立ZL1A0005.( )成为随机现象。

A.在一定条件下,总是出现相同结果的现象B.出现不同结果的现象C.在一定条件下,并不总是出现相同结果的现象D.不总是出现相同结果的现象ZL1A0006.关于样本空间,下列说法不正确的是( )。

A.“抛一枚硬币”的样本空间=Ω{正面,反面}B.“抛一粒骰子的点数”的样本空间=Ω{0,1,2,3,4,5,6}C.“一顾客在超市中购买商品件数”的样本空间=Ω{0,1,…}D.“一台电视机从开始使用到发生第一次故障的时间”的样本空间=Ω{0:≥t t } ZL1A0007.某企业总经理办公室由10人组成,现在从中选出正、副主任各一人(不兼职),将所有可能的选举结果构成样本空间,则其中包含的样本点共有( )个。

A. 4B.8C. 16D.90ZL1A0008.8件产品中有3件不合格品,每次从中随机抽取一只(取出后不放回),直到把不合格品都取出,将可能抽取的次数构成样本空间,则其中包含的样本点共有( )个。

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。

从班级中随机选取一个学生,男生和女生被选到的概率相等。

那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。

从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。

2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。

3. 一枚硬币抛掷,正面向上的概率是_________。

三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。

从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。

从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。

计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。

计算抽取奇数的概率。

答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。

高中概率统计试题及答案

高中概率统计试题及答案

高中概率统计试题及答案一、选择题(每题3分,共30分)1. 某班级有50名学生,其中男生30人,女生20人。

随机抽取1名学生,抽到男生的概率是多少?A. 0.4B. 0.5C. 0.6D. 0.72. 掷一枚均匀的硬币,连续掷两次,至少出现一次正面的概率是多少?A. 0.5B. 0.75C. 0.8D. 1.03. 一个袋子里有10个红球和20个蓝球,随机抽取一个球,抽到红球的概率是多少?A. 1/3B. 1/2C. 2/5D. 3/54. 某工厂生产的产品中有5%是次品。

如果从一批产品中随机抽取100件,至少有1件次品的概率是多少?A. 0.95B. 0.975C. 0.99D. 1.005. 某城市每天下雨的概率为0.3,那么这个月(30天)至少下15天雨的概率是多少?A. 0.2B. 0.3C. 0.4D. 0.56. 某学校有5个班级,每个班级有40名学生。

如果随机选择一个班级,然后在该班级中随机选择一名学生,那么这名学生的学号是偶数的概率是多少?A. 0.2B. 0.25C. 0.5D. 0.757. 一个骰子连续掷两次,两次点数之和为7的概率是多少?A. 1/6B. 1/3C. 1/2D. 2/38. 某次考试,学生通过的概率为0.8,那么一个班级中至少有80%的学生通过考试的概率是多少?A. 0.64B. 0.72C. 0.80D. 0.969. 某次抽奖活动,中奖的概率为0.01,那么一个人连续参加100次抽奖,至少中一次奖的概率是多少?A. 0.63B. 0.73C. 0.84D. 0.9510. 某公司有100名员工,其中5名是经理。

如果随机选择一名员工,那么这名员工是经理的概率是多少?A. 0.05B. 0.1C. 0.5D. 0.95答案:1-5 C B A B A 6-10 C A B C A二、填空题(每题2分,共20分)1. 概率的取值范围在0和1之间,即0 ≤ P(A) ≤ ______。

高中概率统计试题及答案

高中概率统计试题及答案

高中概率统计试题及答案一、选择题(每题3分,共30分)1. 如果一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?A. 1/3B. 1/2C. 3/5D. 2/5答案:C2. 一枚均匀的硬币连续抛掷两次,出现至少一次正面的概率是多少?A. 1/2B. 3/4C. 1/4D. 1/8答案:B3. 一个班级有30个学生,其中15个男生和15个女生。

随机抽取3名学生,抽到至少1名男生的概率是多少?A. 2/3B. 3/4C. 1/2D. 5/6答案:D4. 一个骰子投掷一次,得到偶数点数的概率是多少?A. 1/2B. 1/3C. 1/6D. 2/3答案:A5. 一个袋子里有3个白球和2个黑球,不放回地连续抽取两次,抽到一白一黑的概率是多少?A. 1/5B. 3/5C. 2/5D. 4/5答案:B6. 一个袋子里有2个红球,3个蓝球和5个绿球,随机抽取一个球,抽到蓝球的概率是多少?A. 1/5B. 3/10C. 1/2D. 1/4答案:B7. 一个班级有50名学生,其中20名是优秀学生。

随机抽取5名学生,抽到至少2名优秀学生的概率是多少?A. 0.7B. 0.3C. 0.5D. 0.9答案:A8. 一个袋子里有5个红球和5个蓝球,随机抽取3个球,抽到至少2个红球的概率是多少?A. 1/2B. 2/3C. 1/3D. 1/4答案:B9. 一个骰子投掷两次,两次都是6点的概率是多少?A. 1/6B. 1/36C. 1/12D. 1/24答案:B10. 一个班级有40名学生,其中10名是优秀学生。

随机抽取4名学生,抽到至少1名优秀学生的概率是多少?A. 1B. 3/4C. 2/5D. 1/4答案:A二、填空题(每题4分,共20分)1. 一个袋子里有10个球,其中4个是红球,6个是蓝球。

随机抽取一个球,抽到红球的概率是________。

答案:2/52. 一个班级有50名学生,其中25名是女生。

概率统计试题及答案

概率统计试题及答案

概率统计试题及答案### 概率统计试题及答案#### 一、选择题1. 题目一:设随机变量X服从正态分布N(0, σ^2),若P(X ≤ 0) = 0.5,则σ的值为多少?- A. 0- B. 1- C. 2- D. 无法确定答案:B2. 题目二:若随机变量Y服从二项分布B(n, p),且已知E(Y) = 5,Var(Y) = 2,求n和p的值。

- A. n = 10, p = 0.5- B. n = 5, p = 0.4- C. n = 2, p = 0.75- D. n = 1, p = 5答案:A#### 二、填空题3. 若随机变量X服从均匀分布U(a, b),其概率密度函数为f(x) = \[ \frac{1}{b-a} \],当a = 0,b = 2时,求X的期望E(X)和方差Var(X)。

- E(X) = \[ \frac{1}{2}(b + a) \] = \[ \frac{2}{2} \] = 1 - Var(X) = \[ \frac{(b - a)^2}{12} \] = \[ \frac{2^2}{12}\] = \[ \frac{4}{12} \]4. 对于一个样本数据集{2, 3, 4, 5, 6},求其样本均值和样本方差。

- 样本均值 \( \bar{x} = \frac{2+3+4+5+6}{5} = 4 \)- 样本方差 \( s^2 = \frac{(2-4)^2 + (3-4)^2 + (4-4)^2 +(5-4)^2 + (6-4)^2}{5-1} = \frac{2+1+0+1+4}{4} = 2 \)#### 三、简答题5. 简述大数定律和中心极限定理的区别和联系。

- 大数定律:随着样本容量的增加,样本均值会越来越接近总体均值。

- 中心极限定理:无论总体分布如何,样本均值的分布会趋近于正态分布,当样本容量足够大时。

#### 四、计算题6. 假设有一批产品,其中次品率为0.1,求:- (a) 随机抽取5件产品,至少有1件次品的概率。

(完整版)大学概率统计试题及答案

(完整版)大学概率统计试题及答案

注意:以下是本次考试可能用到的分位点以及标准正态分布的分布函数值:、选择填空题(共80分,其中第1-25小题每题2分,第26-351. A 、B 是两个随机事件,P( A ) = 0.3, P( B ) = 0.4,且A 与B 相互独立, 则P(AUB)= B ;(A) 0.7(B) 0.58(C) 0.82(D) 0.122. A 、B 是两个随机事件,P( A ) = 0.3 , P( B ) = 0.4,且A 与B 互不相容,则P(AUB) D;(A) 0(B) 0.42(C) 0.88(D) 13. 已知 B,C 是两个随机事件,P( B | C ) = 0.5, P( BC ) = 0.4J 则 P( C ) = C : (A) 0.4 (B) 0.5 (C) 0.8 (D) 0.94. 袋中有6只白球,4只红球,从中抽取两只,如果作不放回抽样,则抽得的两个球颜色不同的概率为:_______ :84126(A)亦 (B)亦(C)25(D)可5. 袋中有6只白球,4只红球,从中抽取两只,如果作放回抽样,则抽得的两个球颜色不同的概率为:CJ84 12 6(A)15(B)15(C)25(D)2516.在区间[0,1]上任取两个数,则这两个数之和小于的概率为 C7.在一次事故中,有一矿工被困井下,他可以等可能地选择三个通道之一逃生 假设小题每题3分))封 题… 答… 不… 内… 线… 封…密…(A) 1/2 (B) 1/4 (C) 1/8(D) 1/16矿工通过第一个通道逃生成功的可能性为1/2,通过第二个通道逃生成功的可能性为1/3,通过第三个通道逃生成功的可能性为1/6.请问:该矿工能成功逃(A) 1 (B) 1/2(C) 1/3 (D) 1/68•已知某对夫妇有四个小孩,但不知道他们的具体性别。

设他们有 丫个儿子,如果生男孩的概率为0.5,贝U 丫服从 B ____________ 分布.(A) (0 1)分布(B) B(4,0.5)(C) N(2,1)(D)(2)9.假设某市公安机关每天接到的110报警电话次数X 可以用泊松(Poisson)分布()来描述.已知P{ X 99} P{ X 100}.则该市公安机关平均每天接到的110报警电话次数为 C _________ 次.10.指数分布又称为寿命分布,经常用来描述电子器件的寿命。

概率统计试题及答案

概率统计试题及答案

<概率论〉试题一、填空题1.设 A、B、C是三个随机事件。

试用 A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设 A、B为随机事件, ,,.则=3.若事件A和事件B相互独立,,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6。

设离散型随机变量分布律为则A=______________7。

已知随机变量X的密度为,且,则________ ________8。

设~,且,则 _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是11。

设,,则12.用()的联合分布函数F(x,y)表示13。

用()的联合分布函数F(x,y)表示14.设平面区域D由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为 . 15。

已知,则=16。

设,且与相互独立,则17.设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=19.设,则20。

设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或~。

特别是,当同为正态分布时,对于任意的,都精确有~或~ .21.设是独立同分布的随机变量序列,且, 那么依概率收敛于 .22。

设是来自正态总体的样本,令则当时~。

23。

设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=24.设X1,X2,…X n为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P (A+B) = P (A); (B)(C)(D)2. 以A表示事件“甲种产品畅销,乙种产品滞销",则其对立事件为(A)“甲种产品滞销,乙种产品畅销”; (B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销"。

概率统计期末考试试题及答案

概率统计期末考试试题及答案

概率统计期末考试试题及答案试题一:随机变量的概率分布某工厂生产的产品合格率为0.9,不合格率为0.1。

假设每天生产的产品数量为100件,求下列事件的概率:1. 至少有80件产品是合格的。

2. 至多有5件产品是不合格的。

试题二:连续型随机变量的概率密度函数设随机变量X的概率密度函数为f(x) = 2x,0 ≤ x ≤ 1,0 其他,求:1. X的期望E(X)。

2. X的方差Var(X)。

试题三:大数定律与中心极限定理假设某银行每天的交易量服从均值为100万元,标准差为20万元的正态分布。

求:1. 该银行连续5天的总交易量超过500万元的概率。

2. 根据中心极限定理,该银行连续20天的总交易量的平均值落在90万元至110万元之间的概率。

试题四:统计推断某工厂生产的零件长度服从正态分布,样本数据如下:95, 96, 97, 98, 99, 100, 101, 102, 103, 104求:1. 零件长度的平均值和标准差。

2. 零件长度的95%置信区间。

试题五:假设检验某公司对两种不同品牌的打印机进行了效率测试,测试结果如下:品牌A:平均打印速度为每分钟60页,标准差为5页。

品牌B:平均打印速度为每分钟55页,标准差为4页。

样本量均为30台打印机。

假设两种打印机的平均打印速度没有显著差异,检验假设是否成立。

答案一:1. 至少有80件产品是合格的,即不合格的产品数少于或等于20件。

根据二项分布,P(X ≤ 20) = Σ[C(100, k) * (0.1)^k *(0.9)^(100-k)],k=0至20。

2. 至多有5件产品是不合格的,即不合格的产品数不超过5件。

根据二项分布,P(X ≤ 5) = Σ[C(100, k) * (0.1)^k * (0.9)^(100-k)],k=0至5。

答案二:1. E(X) = ∫[2x * x dx],从0到1,计算得 E(X) = 2/3。

2. Var(X) = E(X^2) - [E(X)]^2 = ∫[2x^2 * x dx] - (2/3)^2,从0到1,计算得 Var(X) = 1/18。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

〈概率论>试题一、填空题1.设 A、B、C是三个随机事件.试用 A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设 A、B为随机事件,,,。

则=3.若事件A和事件B相互独立, ,则4。

将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0。

5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A=______________7. 已知随机变量X的密度为,且,则________ ________8. 设~,且,则 _________9。

一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是11。

设,,则12.用()的联合分布函数F(x,y)表示13。

用()的联合分布函数F(x,y)表示14.设平面区域D由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。

15.已知,则=16.设,且与相互独立,则17。

设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=19。

设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~或~ 。

特别是,当同为正态分布时,对于任意的,都精确有~或~。

21.设是独立同分布的随机变量序列,且,那么依概率收敛于。

22.设是来自正态总体的样本,令则当时~.23.设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=24。

设X1,X2,…X n为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P (A+B) = P (A); (B)(C)(D)2. 以A表示事件“甲种产品畅销,乙种产品滞销",则其对立事件为(A)“甲种产品滞销,乙种产品畅销”;(B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”; (D)“甲种产品滞销或乙种产品畅销”.3. 袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球.则第二人取到黄球的概率是(A)1/5 (B)2/5 (C)3/5 (D)4/54. 对于事件A,B,下列命题正确的是(A)若A,B互不相容,则与也互不相容。

(B)若A,B相容,那么与也相容。

(C)若A,B互不相容,且概率都大于零,则A,B也相互独立。

(D)若A,B相互独立,那么与也相互独立。

5. 若,那么下列命题中正确的是(A) (B)(C) (D)6.设~,那么当增大时,A)增大 B)减少 C)不变 D)增减不定。

7.设X的密度函数为,分布函数为,且.那么对任意给定的a都有A ) B)C) D )8.下列函数中,可作为某一随机变量的分布函数是A) B)C) D) ,其中9.假设随机变量X的分布函数为F(x),密度函数为f(x)。

若X与-X有相同的分布函数,则下列各式中正确的是A)F(x) = F(-x); B) F(x) = — F(-x);C) f (x) = f (—x); D) f (x) = — f (—x)。

10.已知随机变量X的密度函数f(x)=(〉0,A为常数),则概率P{}(a〉0)的值A)与a无关,随的增大而增大 B)与a无关,随的增大而减小C)与无关,随a的增大而增大 D)与无关,随a的增大而减小11.,独立,且分布率为 ,那么下列结论正确的是A)B) C)D)以上都不正确12.设离散型随机变量的联合分布律为且相互独立,则A) B)C) D)13.若~,~那么的联合分布为A)二维正态,且 B)二维正态,且不定C)未必是二维正态 D)以上都不对14.设X,Y是相互独立的两个随机变量,它们的分布函数分别为F X(x),F Y(y),则Z = max {X,Y}的分布函数是A)F Z(z)= max { F X(x),F Y(y)}; B) F Z(z)= max { |F X(x)|,|F Y(y)|} C) F Z(z)= F X(x)·F Y(y) D)都不是15.下列二无函数中,可以作为连续型随机变量的联合概率密度。

A)f(x,y)=B) g(x,y)=C) (x,y)=D) h(x,y)=16.掷一颗均匀的骰子次,那么出现“一点”次数的均值为A) 50 B) 100 C)120 D) 15017.设相互独立同服从参数的泊松分布,令,则A)1。

B)9. C)10。

D)6.18.对于任意两个随机变量和,若,则A) B)C)和独立 D)和不独立19.设,且,则=A)1, B)2, C)3, D)020.设随机变量X和Y的方差存在且不等于0,则是X和Y的A)不相关的充分条件,但不是必要条件; B)独立的必要条件,但不是充分条件; C)不相关的充分必要条件; D)独立的充分必要条件21.设~其中已知,未知,样本,则下列选项中不是统计量的是A) B) C) D)22.设~是来自的样本,那么下列选项中不正确的是A)当充分大时,近似有~B)C)D)23.若~那么~A) B) C) D)24.设为来自正态总体简单随机样本,是样本均值,记,,,,则服从自由度为的分布的随机变量是A) B) C) D)25.设X1,X2,…X n,X n+1, …,X n+m是来自正态总体的容量为n+m的样本,则统计量服从的分布是A) B) C) D)三、解答题1.10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率.2.任意将10本书放在书架上。

其中有两套书,一套3本,另一套4本。

求下列事件的概率。

1) 3本一套放在一起。

2)两套各自放在一起。

3)两套中至少有一套放在一起。

3。

调查某单位得知。

购买空调的占15%,购买电脑占12%,购买DVD的占20%;其中购买空调与电脑占6%,购买空调与DVD占10%,购买电脑和DVD占5%,三种电器都购买占2%。

求下列事件的概率。

1)至少购买一种电器的;2)至多购买一种电器的;3)三种电器都没购买的;4.仓库中有十箱同样规格的产品,已知其中有五箱、三箱、二箱依次为甲、乙、丙厂生产的,且甲厂,乙厂、丙厂生产的这种产品的次品率依次为1/10,1/15,1/20。

从这十箱产品中任取一件产品,求取得正品的概率。

5.一箱产品,A,B两厂生产分别个占60%,40%,其次品率分别为1%,2%。

现在从中任取一件为次品,问此时该产品是哪个厂生产的可能性最大?6.有标号1∼n的n个盒子,每个盒子中都有m个白球k个黑球.从第一个盒子中取一个球放入第二个盒子,再从第二个盒子任取一球放入第三个盒子,依次继续,求从最后一个盒子取到的球是白球的概率。

7.从一批有10个合格品与3个次品的产品中一件一件地抽取产品,各种产品被抽到的可能性相同,求在二种情况下,直到取出合格品为止,所求抽取次数的分布率.(1)放回(2)不放回8.设随机变量X的密度函数为,求 (1)系数A,(2)(3)分布函数。

9.对球的直径作测量,设其值均匀地分布在[]内。

求体积的密度函数。

10.设在独立重复实验中,每次实验成功概率为0。

5,问需要进行多少次实验,才能使至少成功一次的概率不小于0。

9。

11.公共汽车车门的高度是按男子与车门碰头的机会在0.01以下来设计的,设男子的身高,问车门的高度应如何确定?12.设随机变量X的分布函数为:F(x)=A+Barctanx,(-).求:(1)系数A与B;(2)X落在(-1,1)内的概率;(3)X的分布密度.13.把一枚均匀的硬币连抛三次,以表示出现正面的次数,表示正、反两面次数差的绝对值,求的联合分布律与边缘分布.14.设二维连续型随机变量的联合分布函数为求(1)的值,(2)的联合密度,(3)判断的独立性。

15.设连续型随机变量(X,Y)的密度函数为f(x,y)=,求(1)系数A;(2)落在区域D:{的概率。

16.设的联合密度为,(1)求系数A,(2)求的联合分布函数.17.上题条件下:(1)求关于及的边缘密度。

(2)与是否相互独立?18.在第16)题条件下,求和。

19.盒中有7个球,其中4个白球,3个黑球,从中任抽3个球,求抽到白球数的数学期望和方差。

20.有一物品的重量为1克,2克,﹒﹒﹒,10克是等概率的,为用天平称此物品的重量准备了三组砝码,甲组有五个砝码分别为1,2,2,5,10克,乙组为1,1,2,5,10克,丙组为1,2,3,4,10克,只准用一组砝码放在天平的一个称盘里称重量,问哪一组砝码称重物时所用的砝码数平均最少?21.公共汽车起点站于每小时的10分,30分,55分发车,该顾客不知发车时间,在每小时内的任一时刻随机到达车站,求乘客候车时间的数学期望(准确到秒)。

22.设排球队A与B比赛,若有一队胜4场,则比赛宣告结束,假设A,B在每场比赛中获胜的概率均为1/2,试求平均需比赛几场才能分出胜负?23.一袋中有张卡片,分别记为1,2,﹒﹒﹒,,从中有放回地抽取出张来,以表示所得号码之和,求.24.设二维连续型随机变量(X ,Y)的联合概率密度为:f (x ,y)=求:①常数k, ②及.25.设供电网有10000盏电灯,夜晚每盏电灯开灯的概率均为,并且彼此开闭与否相互独立,试用切比雪夫不等式和中心极限定理分别估算夜晚同时开灯数在到之间的概率。

26.一系统是由个相互独立起作用的部件组成,每个部件正常工作的概率为,且必须至少由的部件正常工作,系统才能正常工作,问至少为多大时,才能使系统正常工作的概率不低于 ? 27.甲乙两电影院在竞争名观众,假设每位观众在选择时随机的,且彼此相互独立,问甲至少应设多少个座位,才能使观众因无座位而离去的概率小于。

28.设总体服从正态分布,又设与分别为样本均值和样本方差,又设,且与相互独立,求统计量的分布.29.在天平上重复称量一重为的物品,假设各次称量结果相互独立且同服从正态分布,若以表示次称量结果的算术平均值,为使成立,求的最小值应不小于的自然数?30.证明题设A,B是两个事件,满足,证明事件A,B相互独立。

31.证明题设随即变量的参数为2的指数分布,证明在区间(0,1)上服从均匀分布。

〈概率论>试题参考答案一、填空题1.(1)(2)(3)或2. 0。

相关文档
最新文档