概率分布的期望与方差
概率论中的随机变量的期望与方差

概率论是数学中的一门重要学科,用于研究随机现象的规律及其概率性质。
其中,随机变量是概率论的一个核心概念,描述了在某个随机实验中可能的取值及其相应的概率分布。
而随机变量的期望与方差则是对随机变量的两个基本性质进行度量的重要指标。
首先,我们来谈谈随机变量的期望。
随机变量的期望是指随机变量所有可能取值的平均值,也可以理解为随机变量的中心位置。
对于离散型随机变量,其期望的计算方法为每个取值与其概率乘积的和。
例如,设X为一个服从二项分布的随机变量,取值为0和1,概率分别为p和1-p,则X的期望为E(X)=0p+1(1-p)=1-p。
而对于连续型随机变量,其期望的计算方法为对变量的概率密度函数进行积分求和。
例如,设X为一个服从均匀分布的随机变量,取值范围为[a,b],则X的概率密度函数为f(x)=1/(b-a),X的期望为E(X)=∫[a,b]xf(x)dx=(b^2-a^2)/(2(b-a))=(a+b)/2。
期望具有良好的加性和线性性质。
加性指的是对于两个随机变量X和Y,E(X+Y)=E(X)+E(Y)。
线性性是指对于一个随机变量X和常数a,E(aX)=aE(X)。
这些性质使得期望成为了许多概率论推导及应用的基本工具。
接下来,我们讨论随机变量的方差。
方差是对随机变量的离散程度进行度量的指标。
方差越大,表示随机变量取值的波动程度越大,反之亦然。
方差的计算方法为每个取值与其概率乘积与随机变量期望差的平方的和。
对于离散型随机变量,其方差的计算公式为Var(X)=Σ(x-E(X))^2P(x),其中Σ表示对所有可能取值求和。
对于连续型随机变量,方差的计算方法为Var(X)=∫(x-E(X))^2f(x)dx。
方差也具有一些重要的性质。
首先,方差非负,即Var(X)≥0。
其次,根据加和线性性质,方差的计算可以简化为Var(aX+b)=a^2Var(X),其中a和b为常数。
这个性质为方差的应用提供了便利。
最后,方差的平方根被定义为随机变量的标准差,它也是一个重要的度量指标。
多元统计分析-概率,期望,方差,正态分布

多元统计分析-概率,期望,⽅差,正态分布概率,期望,⽅差
只有⼀个变量时
F(x<=a) = ∫-∞a f(x)dx
当区间取负⽆穷到正⽆穷时积分为1
推⼴到多元之后:
同理,当区间取满整个空间时,积分为1
f被称为概率密度函数
边缘分布函数
当多元函数的n-m个变量取负⽆穷到正⽆穷之后
概率函数变为有m个⾃变量的函数(⼀共有n个⾃变量)
此时的概率密度函数被称为这m个⾃变量的边缘密度函数
若n个⾃变量相互独⽴,则每个⾃变量边缘密度函数的乘积为联合分布的概率密度
均值与⽅差:
均值⼀元时相同,只不过是在每⼀位上求均值并最终将他们组合成⼀个向量
均值组合成的向量最为均值
同理,均值有如下特征
这⾥的A,B为矩阵,X为向量
由均值得出⽅差
D(X) = E(X-E(X))*(X - E(X))
D(x) = E(XX') - E(X)*E(X')
可以看到,协差阵是平⽅的期望,所以协差阵肯定是半正定的
这个正好是当X=Y时的协差阵
协差阵,相关系数阵,标准离差阵
当判断两个多元向量关系的时候,可先求出协差阵
协差阵的每个元素/这两个单独拿出来算的⽅差即可得到相关系数阵
正态分布:
密度函数:
u:均值向量,∑协⽅差矩阵
由于协差阵半正定当∑ = 0时特殊情况特殊考虑
n元正态分布的每⼀维都服从正态分布
若X服从N(u , Σ)
现在做变换 X‘ = AX + d
那么X’服从 N(Au + d, AΣA')。
概率、期望与方差的计算和性质

概率与统计知识点一:常见的概率类型与概率计算公式; 类型一:古典概型;1、 古典概型的基本特点:(1) 基本事件数有限多个;(2) 每个基本事件之间互斥且等可能; 2、 概率计算公式:A 事件发生的概率()A P A =事件所包含的基本事件数总的基本事件数;类型二:几何概型;1、 几何概型的基本特点:(1) 基本事件数有无限多个;(2) 每个基本事件之间互斥且等可能; 2、 概率计算公式:A 事件发生的概率()A P A =构成事件的区域长度(或面积或体积或角度)总的区域长度(或面积或体积或角度);注意:(1) 究竟是长度比还是面积比还是体积比,关键是看表达该概率问题需要几个变量,如果需要一个变量,则应该是长度比或者角度比;若需要两个变量则应该是面积比;当然如果是必须要三个变量则必为体积比;(2) 如果是用一个变量,到底是角度问题还是长度问题,关键是看谁是变化的主体,哪一个是等可能的; 例如:等腰ABC ∆中,角C=23π,则: (1) 若点M 是线段AB 上一点,求使得AM AC ≤的概率; (2) 若射线CA 绕着点C 向射线CB 旋转,且射线CA 与线段AB 始终相交且交点是M ,求使得AM AC ≤的概率;解析:第一问中明确M 为AB 上动点,即点M 是在AB 上均匀分布,所以这一问应该是长度之比,所求概率:13P =; 而第二问中真正变化的主体是射线的转动,所以角度的变化是均匀的,所以这一问应该是角度之比的问题,所以所求的概率:2755==1208P ︒; 知识点二:常见的概率计算性质; 类型一:事件间的关系与运算; A+B (和事件):表示A 、B 两个事件至少有一个发生; A B ∙(积事件):表示A 、B 两个事件同时发生;A (对立事件):表示事件A 的对立事件;类型二:复杂事件的概率计算公式; 1、 和事件的概率:()=()()()P A B P A P B P A B ++-∙(1)特别的,若A 与B 为互斥事件,则:()=()()P A B P A P B ++(2)对立事件的概率公式:()1()P A P A =-2、 积事件的概率:(1)若事件12n A A A 、、、相互独立,则:1212()()()()n n P A A A P A P A P A ∙∙∙=∙∙∙(2)n 次独立重复的贝努利实验中,某事件A 在每一次实验中发生的概率都为p ,则在n 次试验中事件A 发生k 次的概率:()(1)k k k n kn n P A C p p -=- 类型三:条件概率;1、 条件概率的定义:我们把在事件A 发生的条件下事件B 发生的概率记为:(|)P B A ;且()(|)()P A B P B A P A ∙=2、 三个常见公式:(1) 乘法公式:()()(|)P A B P A P B A ∙=∙(2) 全概率公式:设123,,,,n A A A A 是一组互斥的事件且1nk k A ==Ω∑,则对于任何一个事件B 都有:11()()()(|)nnki i k k P B P AB P A P B A ===∙=∙∑∑(3) 贝叶斯公式:设123,,,,n A A A A 是一组互斥的事件且1nk k A ==Ω∑则对于任何一个事件B 都有:1()(|)(|)()(|)j j j niik P A P B A P A B P A P B A =∙=∙∑知识点三:求解一般概率问题的步骤;第一步:确定事件的性质:等可能事件、互斥事件、相互独立事件、n 次独立重复实验等; 第二步:确定事件的运算:和事件、积事件、条件概率等;第三步:运用相应公式,算出结果;知识点三:常见的统计学数字特征量及其计算; 特征量一:平均数(数学期望) 计算公式一:1231()n x x x x x n=++++;计算公式二:1()nx iik E x P x x ==∙=∑;计算公式三:(若随机变量x 是连续型随机变量,且函数()f x 是它的密度函数)()Ex xf x dx +∞-∞=⎰特征量二:中位数将所有的数从大到小排或者从小到大排,若共有奇数个数,则正中间的那个数叫做这一列数的中位数;若共有偶数个数,那么正中间那两个数的平均数叫做这一列数的中位数。
概率论分布列期望方差习题及答案

概率论分布列期望方差习题及答案The following text is amended on 12 November 2020.圆梦教育 离散型随机变量的分布列、期望、方差专题姓名:__________班级:__________学号:__________1.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为,,,假设各盘比赛结果相互独立。
(Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ.2.已知某种从太空带回的植物种子每粒成功发芽的概率都为13,某植物研究所分两个小组分别独立开展该种子的发芽实验,每次实验种一粒种子,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的. (1) 第一小组做了三次实验,求实验成功的平均次数;(2) 第二小组连续进行实验,求实验首次成功时所需的实验次数的期望; (3)两个小组分别进行2次试验,求至少有2次实验成功的概率.3.一种电脑屏幕保护画面,只有符号“○”和“×”随机地反复出现,每秒钟变化一次,每次变化只出现“○”和“×”之一,其中出现“○”的概率为p ,出现“×”的概率为q .若第k 次出现“○”,则a k =1;出现“×”,则a k =1-.令S n =a 1+a 2+…+a n ()n N *∈.(1)当12p q ==时,求S 6≠2的概率;(2)当p =31,q =32时,求S 8=2且S i ≥0(i =1,2,3,4)的概率.4.在一个有奖问答的电视节目中,参赛选手顺序回答123A A A 、、三个问题,答对各个问题所获奖金(单位:元)对应如下表:当一个问题回答正确后,选手可选择继续回答下一个问题,也可选择放弃.若选择放弃,选手将获得答对问题的累计奖金,答题结束;若有任何一个问题回答错误,则全部奖金归零,答题结束.设一名选手能正确回答123A A A 、、的概率分别为421534、、,正确回答一个问题后,选择继续回答下一个问题的概率均为12,且各个问题回答正确与否互不影响.(Ⅰ)按照答题规则,求该选手1A 回答正确但所得奖金为零的概率;(Ⅱ)设该选手所获奖金总数为ξ,求ξ的分布列与数学期望.5.某装置由两套系统M,N 组成,只要有一套系统工作正常,该装置就可以正常工作。
二项分布的期望和方差

二项分布的期望和方差二项分布是一种重要的离散概率分布,它描述的是$n$个相互独立的试验中,成功事件发生$k$次的概率分布。
在实际应用中,二项分布经常用于描述一些概率事件的发生情况,如掷硬币的正反面、挑选配对项的成功率等等。
在这篇文章中,我们将主要讨论二项分布的期望和方差。
一、二项分布的期望我们知道,二项分布的概率质量函数为:$$P(X=k)={n\\choose k}p^k(1-p)^{n-k}$$其中,$k$表示成功事件发生的次数,$p$表示单次试验中成功的概率,$(1-p)$表示单次试验中失败的概率,$n$表示总的试验次数。
二项分布的期望是指在进行$n$次相互独立的试验中,成功事件发生的次数$k$的平均值,即:$$E(X)=\\sum_{k=0}^{n}k\\cdot P(X=k)$$通过二项分布的概率质量函数,可得:$$E(X)=\\sum_{k=0}^{n}k\\cdot {n\\choose k}p^k(1-p)^{n-k}$$$$=\\sum_{k=0}^{n}k\\cdot\\frac{n!}{k!(n-k)!}p^k(1-p)^{n-k}$$$$=\\sum_{k=0}^{n}\\frac{n!}{(k-1)!(n-k)!}p^k(1-p)^{n-k}$$$$=np\\sum_{k=1}^{n}\\frac{(n-1)!}{(k-1)!(n-k)!}p^{k-1}(1-p)^{n-k}$$我们可以发现,上述式子中的求和式与二项分布的概率质量函数非常相似,只是指数$k$的范围有所变化。
因此,我们可以将上述式子看成是在二项分布的概率质量函数中去掉$k=0$的项后,对余下的$k$项分别乘以$k$,最后相加起来,即:$$E(X)=np\\sum_{k=0}^{n-1}{n-1\\choose k}p^k(1-p)^{n-1-k}$$$$=np\\cdot1$$由此可见,二项分布的期望为$np$,这意味着在进行$n$次相互独立的试验中,成功事件发生的次数$k$的平均值为$n$乘以单次成功的概率$p$。
由分布列求期望、方差(共11张PPT)

[解析] (1)依题意,随机变量 ξ 的取值是 2、3、4、5、6. 因为 P(ξ=2)=3822=694; P(ξ=3)=2×8232=1684; P(ξ=4)=32+28×2 3×2=2614; P(ξ=5)=2×832×2=1624; P(ξ=6)=2×82 2=644. 所以,当 ξ=4 时,其发生的概率最大,为 P(ξ=4)=2614.
• 【典例2】 编号1,2,3的三位学生随意入座编号为 1,2,3的三个座位,每位学生坐一个座位,设与座位编 号相同的学生的个数是ξ.
• (1)求随机变ຫໍສະໝຸດ ξ的概率分布;• (2)求随机变量ξ的数学期望和方差.
• [分析] (1)随机变量ξ的意义表示对号入座的学生个数; 它的取值只有(zhǐyǒu)0、1或3,若2人对号入座第3人 必对号入座,所以ξ=2不存在.由排列知识与等可能 事件概率公式易求分布列.
• 回归课本 • 1.一般地,若离散(lísàn)型随机变量ξ的概率分布列为
ξ
x1
x2
…
xn
…
P
p1
p2
…
pn
…
• 则称Eξ=x1p1+x2p2+…+xnpn+…为ξ的数学期望 或平均值、均值,数学期望又简称为期望.它反映了 离散(lísàn)型随机变量取值的平均水平.
第一页,共11页。
• 3.如果离散型随机变量ξ所有可能的取值是x1, x2,…,xn,…且取这些值的概率分别是p1,p2,…, pn,…,设Eξ是随机变量ξ的期望,那么把Dξ=(x1- Eξ)2·p1+(x2-Eξ)2·p2+…+(xn-Eξ)2·pn+…叫做 随机变量ξ的均方差(fānɡ chà),简称方差(fānɡ chà).Dξ的算术平方根叫做随机变量ξ的标准差,记 作σξ.随机变量的方差(fānɡ chà)与标准差都反映了随 机变量取值的稳定与波动、集中与离散的程度.其中 标准差与随机变量本身有相同的单位.
二项分布的期望和方差的详细证明

二项分布的期望和方差的详细证明在概率论中,二项分布是一种非常重要的离散概率分布。
它描述了在 n 次独立重复的伯努利试验中,成功的次数 X 的概率分布。
在深入研究二项分布时,了解其期望和方差是至关重要的。
接下来,我们将详细证明二项分布的期望和方差。
首先,让我们明确二项分布的定义。
如果一个随机变量 X 服从参数为 n 和 p 的二项分布,记作 X ~ B(n, p),其中 n 表示试验的次数,p 表示每次试验成功的概率。
那么,二项分布的概率质量函数为:P(X = k) = C(n, k) p^k (1 p)^(n k) ,其中 k = 0, 1, 2,, n ,C(n, k) 表示从 n 个元素中选取 k 个元素的组合数。
接下来,我们开始证明二项分布的期望。
期望(Expected Value),通常用 E(X) 表示,它反映了随机变量取值的平均水平。
我们有:E(X) =∑k = 0 to n k P(X = k)=∑k = 0 to n k C(n, k) p^k (1 p)^(n k)为了计算这个和式,我们可以使用一些技巧。
首先,我们对 k C(n, k) 进行变形:k C(n, k) = n C(n 1, k 1)将其代入期望的表达式中:E(X) =∑k = 0 to n n C(n 1, k 1) p^k (1 p)^(n k)令 j = k 1 ,则 k = j + 1 ,当 k = 0 时,j =-1 ;当 k = n 时,j = n 1 。
则上式可以改写为:E(X) =n ∑j =-1 to n 1 C(n 1, j) p^(j + 1) (1 p)^((n 1) j)因为当 j =-1 时,C(n 1, -1) = 0 ,所以可以将求和的下限改为0 。
E(X) =n p ∑j = 0 to n 1 C(n 1, j) p^j (1 p)^((n 1) j)而∑j = 0 to n 1 C(n 1, j) p^j (1 p)^((n 1) j) 恰好是二项分布B(n 1, p) 的所有概率之和,其值为 1 。
概率论,方差,分布列知识总结

分布列、期望、方差知识总结一、知识结构二、知识点1.随机试验的特点:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.2.分类随机变量(如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而变化,那么这样的变量叫做随机变量.随机变量常用大写字母X、Y等或希腊字母ξ、η等表示。
)离散型随机变量在上面的射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.连续型随机变量对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.连续型随机变量的结果不可以一一列出.3.离散型随机变量的分布列一般的,设离散型随机变量X可能取的值为x1,x2, ,x i , ,x nX取每一个值xi(i=1,2,)的概率P(ξ=x i)=P i,则称表为离散型随机变量X 的概率分布,简称分布列性质:①pi≥0, i =1,2,…;②p1 + p2 +…+p n= 1.③一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。
4.求离散型随机变量分布列的解题步骤例题:篮球运动员在比赛中每次罚球命中得1分,不中得0分,已知某运动员罚球命中的概率为0.7,求他罚球一次的得分的分布列.解:用随机变量X表示“每次罚球得的分值”,依题可知,X可能的取值为:1,0且P(X=1)=0.7,P(X=0)=0.3因此所求分布列为:引出二点分布如果随机变量X的分布列为:其中0<p<1,q=1-p,则称离散型随机变量X服从参数p的二点分布二点分布的应用:如抽取彩票是否中奖问题、新生婴儿的性别问题等.超几何分布一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为()(0,1,2,,)k n k M N MnNC C P X k k m C --===,其中{}min,m M n =,且*,,,,n N M N n M N N ∈≤≤ 则称随机变量X 的分布列为超几何分布列,且称随机变量X 服从参数N 、M 、n 的超几何分布注意:(1)超几何分布的模型是不放回抽样;(2)超几何分布中的参数是N 、M 、n ,其意义分别是总体中的个体总数、N 中一类的总数、样本容量解题步骤:例题、在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.游戏者一次从中摸出5个球.至少摸到3个红球就中奖,求中奖的概率解:设摸出红球的个数为X,则X 服从超几何分布,其中30,10,5N M n === X 可能的取值为0,1,2,3,4, 5. 由题目可知,至少摸到3个红球的概率为(3)(3)(4)(5)P X P X P X P X ==+=+=≥324150102010201020555303030C C C C C C C C C =++ ≈0.191答:中奖概率为0.191.nNn MN MCC C -0nNn MN MCC C 11--nNm n MN m MCC C --条件概率1.定义:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率P(B|A),读作A 发生的条件下B 的概率2.事件的交(积):由事件A 和事件B 同时发生所构成的事件D ,称为事件A 与事件B 的交(或积作D=A ∩B 或D=AB3.条件概率计算公式:P(B|A)相当于把A 看作新的基本事件空间,求A∩B发生的概率:解题步骤:例题、10个产品中有7个正品、3个次品,从中不放回地抽取两个,已知第一个取到次品,求第二取到次品的概率.解:设 A = {第一个取到次品}, B = {第二个取到次品},所以,P(B|A) = P(AB) / P(A)= 2/9 答:第二个又取到次品的概率为2/9..0)(,)()()|(>=A P A P AB P A B P .1)|(0)()|()(0)A (P ≤≤⋅=>A B P A P A B P AB P (乘法公式);,则若.151)(21023==⇒C C AB P .103)(=A P相互独立事件2.相互独立事件同时发生的概率公式两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率分布的期望与方差
概率分布是概率论中一个重要的概念,用于描述随机变量可能取得各个值的概率。
在概率分布中,期望和方差是两个关键的统计量,它们能够量化随机变量的中心位置和离散程度。
本文将介绍期望和方差的概念及计算方法,并通过实例进行解释。
期望
期望是概率分布的均值,用于衡量随机变量的平均值。
对于离散随机变量而言,期望的计算方法如下:
假设X是一个离散随机变量,它的取值范围是{x1, x2, ..., xn},对应的概率分别是{p1, p2, ..., pn}。
那么X的期望(记为E[X])可以通过如下公式计算:
E[X] = x1 * p1 + x2 * p2 + ... + xn * pn
这个公式表示,将随机变量的每个取值乘以对应的概率,再将结果相加即可得到期望。
举个例子来说,假设有一个骰子,它的每个面的点数是{1, 2, 3, 4, 5, 6},出现的概率都是1/6。
那么这个骰子的期望就是:
E[骰子] = 1 * (1/6) + 2 * (1/6) + 3 * (1/6) + 4 * (1/6) + 5 * (1/6) + 6 * (1/6) = 3.5
因此,这个骰子的期望值为3.5,表示在长期观察中,每次掷骰子所得点数的平均值为3.5。
方差
方差是概率分布的离散程度,用于衡量随机变量的扩散程度。
对于离散随机变量而言,方差的计算方法如下:
假设X是一个离散随机变量,它的取值范围是{x1, x2, ..., xn},对应的概率分别是{p1, p2, ..., pn}。
那么X的方差(记为Var[X]或σ^2)可以通过如下公式计算:
Var[X] = (x1 - E[X])^2 * p1 + (x2 - E[X])^2 * p2 + ... + (xn - E[X])^2 * pn
其中E[X]表示随机变量X的期望。
这个公式表示,将随机变量的每个取值与期望的差的平方乘以对应的概率,再将结果相加即可得到方差。
方差的平方根又称为标准差,用于度量随机变量的离散程度。
继续以前面的骰子为例,这个骰子的期望值为3.5。
我们可以计算出该骰子的方差如下:
Var[骰子] = (1 - 3.5)^2 * (1/6) + (2 - 3.5)^2 * (1/6) + (3 - 3.5)^2 * (1/6) + (4 - 3.5)^2 * (1/6) + (5 - 3.5)^2 * (1/6) + (6 - 3.5)^2 * (1/6) ≈ 2.92因此,这个骰子的方差约为2.92,表示掷骰子所得点数的离散程度较高。
结语
期望和方差是概率分布中重要的统计量,能够量化随机变量的中心位置和离散程度。
通过计算期望和方差,我们可以更好地理解概率分布的特征,并对随机事件进行分析和判断。
在实际应用中,期望和方
差经常被用于风险评估、投资决策、财务分析等领域,对于提高决策的准确性和可靠性具有重要作用。
总之,期望和方差是概率论中不可或缺的概念,深入理解它们对于理解和应用概率分布具有重要意义。