(整理)第5章弹性静力学小位移变形理论的变分原理(16K)
弹性力学的基本方程和变分原理

σ xx
( x,
y, z) +
∂σ xx
( x,
∂x
y, z)
dx +
∂
2σ
xx ( x,
2∂x2
y,
z
)
(
dx
)2
+
略去二阶以上微量,有
σ
xx
(x
+
dx,
y
)
=
σ
xx
(x,
y)
+Leabharlann ∂σxx (x,∂x
y
)
dx
故弹性体 V 域内任一点沿坐标轴 x, y, z 方向的平衡方程为
∂σ x ∂x
+
∂τ xy ∂y
(0.1.5)
其中 [A]是微分算子
∂
∂x
0
0
∂ ∂y
0
∂
∂z
[A]
=
0
∂ ∂y
0
∂∂ ∂x ∂z
0
0
0
∂ ∂z
0
∂ ∂y
∂
∂x
(0.1.6)
{F} 是体积力向量,{F} = Fx Fy Fz T
2. 几何方程——应变-位移关系 设一个变形体微小体元的平面直角在变形前为 APB,而变形后为 A’P’B’,P 点变形到 P’点的
PA′ − PP′ − PA PA
=
P= A + AA′ − PP′ − PA
dx +
u
+
∂u ∂x
dx
−u
− dx
=
∂u
PA
dx
∂x
(2)定义 y 方向的相对伸长量为
弹性力学5PPT课件

叠加原理的适用范围
适用于线弹性范围内的小变形问题,对于非线性问题或大变形问题,叠加原理不再适用。
叠加原理的应用举例
利用叠加原理求解复杂载荷下的梁的弯曲问题,可以将复杂载荷分解为几个简单载荷, 分别求出每个简单载荷下的弯曲变形,然后叠加得到最终结果。
03
平面问题求解方法
平面应力问题与平面应变问题
平面应力问题
分析薄板在面内荷载作用 下的应力、变形和稳定性。
平面应变问题
研究长柱体或深埋在地下 的结构物,在垂直于轴线 或地面的荷载作用下,其 横截面内的应力和变形。
两者区别
平面应力问题中,垂直于 板面的应力分量可忽略不 计;而平面应变问题中, 该应力分量不可忽略。
功的互等定理与卡氏定理的应用举例
利用功的互等定理可以求解某些复杂结构的位移和应力问题;利用卡氏 定理可以求解某些特殊载荷作用下的应力问题。
虚功原理与最小势能原理
虚功原理的基本内容
在弹性力学中,外力在虚位移上所做的功等于内力在虚应变上所做的功。这里的虚位移和虚应变是指满足几何约束和平衡 条件的任意微小的位移和应变。
复变函数的引入
利用复变函数的性质,可将平面 弹性力学问题中的偏微分方程转 化为复变函数的解析函数问题。
保角变换
通过保角变换,可将复杂形状的 平面区域映射为简单形状的区域, 从而简化问题的求解。
边界条件的处理
在复变函数法中,边界条件的处 理是关键步骤之一,需要根据具 体问题选择合适的处理方法。
差分法和有限元法在平面问题中的应用
边界条件处理
阐述有限元法中边界条件的处理方法, 如固定边界、自由边界、对称边界等。
第5章 弹性静力学小位移变形理论的变分原理

第5章 弹性静力学小位移变形理论的变分原理变分原理是有限元素法的基础,要很好地理解有限元素法,则应该对能量变分原理有一个较系统地了解。
本章的目的是尽可能地对这些能量变分原理作系统性的介绍,从一般常用的最小位能原理和最小余能原理,引深到引用拉格朗日乘子法(Lagrange Multiple Method )的完全及不完全广义变分原理和为分区集合体的分区(Sub-region )广义变分原理,这将涉及到以混合(Mixed )模型和杂交(Hybrid )模型为基础的变分原理。
在此基础上,针对不同变分原理,进一步说明了有限元素法中的元素的刚度特性和推导元素刚度矩阵的一般过程及表达显式,以及变分原理在结构分析中的若干应用实例,使读者能比较清晰地了解各类变分原理与建立有限元模型之间的关系。
§5.1 小位移弹性理论的最小位能原理与最小余能原理设在卡氏直角坐标系中,坐标参数为)3,2,1(=i x i ,体积为V 的弹性体中任意一点的位移参数为)3,2,1(=i u i 、应力分量为ij σ以及应变分量为)3,2,1,(=εj i ij 。
由线弹性力学理论,我们可以得到如下的用于描述一个弹性静力学小位移变形问题的基本方程式。
(1)力的平衡方程0,=+σi j ij F (在V 内) (5-1) 式中i F 表示体力,j ij ,σ表示应力分量ij σ对坐标分量j x 的偏导数(以下相同)。
(2)应变位移关系式(几何关系))(21,,i j j i ij u u +=ε (在V 内) (5-2) (3)应力应变关系式(物理关系)kl ijkl ij a ε=σ (5-3)kl ijkl ij b σ=ε (5-3’)式中ijkl a 为弹性模量系数,ijkl b 为劲度系数,ijkl a 和ijkl b 都具有对称性。
(4)在弹性体的边界上,表面S 可划分为两部分:外力已知的边界σS 及位移为已知的边界u S ,前者称为力的边界,后者称为位移边界,即u S S S +=σ (5-4)在力的边界σS 上,i j ij T n =σ (5-5)式中i T 为已知边界力,j n 为σS 的边界外法线向量与坐标轴夹角的方向余弦。
弹性力学-05(变分法)

微分提法解法(1)平衡微分方程,=+j i ij X σ(2)几何方程)(21,,i j j i ij u u +=ε(3)物理方程[]ij kk ij ij Eδμσσμε−+=)1(1(4)边界条件ji ij X n =σii u u =定解问题求解方法(1)按位移求解(平衡微分方程(2)按应力求解(((((求解联立的微分方程组求解特点:(解析解微小单元平衡变形材料性质§5-4 弹性体的形变势能和外力势能变分提法解法基本思想:所有可能的解求解线性方程组整个弹性系统能量关系变分方程在给定约束条件下求泛函极(驻)值的变分问题能量法(a )以位移为基本未知量,得到最小势(位)能原理等。
(b )以应力为基本未知量,得到最小余能原理等。
(c )同时以位移、应力、应变为未知量,得到广义(约束)变分原理。
——位移法——力法有限单元法边界元法离散元法数值解法求解方法数值解法基本思想:导数差分求解线性方程组实质:变量离散变分方程区域离散单元可能解求解大型的线性方程组有限单元法边界单元法离散单元法1. 形变势能的一般表达式Px单向拉伸:1形变势能()U 11l l A P Δ11比能三向应力状态:σσyσzyzτzy τyxτxyτxz τzx τ三向应力状态:σσyσzyzτzy τyxτxyτxz τzx τ次序无关形变比能y y x x εσεσ111++yz yz zx zx τγτγ++1形变势能:2. 形变势能的应变分量表示)(12x y y E μεεμσ+−=)(12y x x E μεεμσ+−=xy xyE γμτ)1(2+=22212122(1)2xy x y xy E U μεεμεεγμ−⎡⎤=+++⎢⎥−⎣⎦2x y x y εεμεε+++⎢111表明:3. 形变势能的位移分量表示222121()()2()2(1)2E u v u v u v U x y x y x y μμμ⎡⎤∂∂∂∂−∂∂=++++⎢⎥−∂∂∂∂∂∂⎣⎦()()2(μ++++⎢外力的虚功:;,,Z Y X ZY X ,,Xu Yv +Xu Yv +由于外力做的功消耗了外力势能,因此,在发生实际位移时,弹性体的外力势能为:§11-2 位移变分方程1. 泛函与变分的概念(1)泛函的概念xF泛函P1)(xMEIB l x泛函形变势能泛函(2)变分与变分法自变量的增量函数增量微分问题P1)(xMEIBlx)(xy)(xy yδP1)(xMEIB lx ) (xy)(xy yδ自变函数的增量泛函的增量变分问题变分的运算变分与微分运算:)(x f =⎟)(x f =⎟)(x f =⎟⎟变分运算与微分运算互相交换变分与积分运算:变分运算与积分运算互相交换复合函数的变分:y δ+复合函数的变分:y δ+⎢++⎥⎢′+y y y y δδδδ极大值极小值2. 位移变分方程形变势能位移变分qP应力边界S σ满足:平衡方程、几何真实解(1)任给弹性体一微小的位移变化:wv u δδδ,,满足两个条件:((wv u δδδ,,满足两个条件:((qP应力边界S σw位移的变分虚位移由于位移的变分,引起的外力功的变分和外力势能的变分为:X u Y δδ+X u Y δδ+微小的为约束所允许(2)考察弹性体的能量变化从而引起形变势能的变分为:()()()y xy u v u δδεδδγδ==+,,由于位移的变分,引起的应变的变分为:设:位移变分方程Lagrange 变分方程WU δδ=X u Y δδ+它表明:在实际平衡状态发生位移的变分时,物体形变势能的变分,等于外力在虚位移上所做的虚功。
弹性力学简明教程第五章

y
第五章 用差分法和变分法解平面问题
边界条件
⑴ 应力边界条件用 Φ表示
取出坐标 的正方向作为边界线s 的正 dy 向(图中为顺时针向),当移动ds 时, 为正,而dx 为负,所以外法线的方向余弦 为
dy l cos α , ds dx m sin α . ds
第五章 用差分法和变分法解平面问题
y
10
T0 , 2h
所以得
2h( q y ) 2
T1 0 T0
.
(e)
这时,边界点2的 T2 是未知的,对2点 须列出式(d)的方程。此方程涉及到 T1 0 值,可将式(e)代入。
第五章 用差分法和变分法解平面问题
例2
稳定温度场问题的 40 差分解。设图中的矩 形域为6m×4m ,取 32 网格间距为h=2m,布 置网格如图,各边界 点的已知温度值如图 24 所示,试求内结点a, b的稳定温度值。
边界条件
将上式和式(d)代入式(b),得
d y 2Φ d x 2Φ ( ) ( ) fx, 2 d s y d s xy
d x 2Φ d y 2Φ ( ) ( ) fy. 2 d s x d s xy
即
d Φ ( ) f x , d s y
d Φ ( ) fy. d s x
第五章 用差分法和变分法解平面问题 抛物线差分公式
从上两式解出o点的导数公式,
f 1 ( )0 ( f1 f 3 ), x 2h 2 f 1 ( 2 )0 2 ( f1 f 3 2 f 0 ). x h
(b)
式(b)又称为中心差分公式,并由此可导出 高阶导数公式。
第一节 第二节
弹性力学-05(差分法与变分法)

(5-10)
—— 应力函数差分方程 x 12 4 0 5 1 9 A 13
弹性体边界外一行的节点,称为虚结点。 如:节点13、14等。
(c )
y
h
将其代入式(b),有:
2 2 f h f f 3 f 0 h x 2 x 2 0
0 2 2 f h f f1 f 0 h 2 x 0 2 x 0
任一点 0 处应力分量的差分格式:
2 1 x 0 y 2 h 2 ( 2 4 ) 2 0 0 2 1 y 0 2 2 (1 3 ) 2 0 x 0 h
x 12 8 11 3 7 4 0 2 10 y h 5 1 6 9
在弹性体内每一点均可建立上述方程,即:
0 x 4 2 x 2y 2 y 4 0 0 0 0
4
4
y h
优点: 收敛性好、程序设计简单、 非线性适应好。 代表性软件:FLAC
f f f 1 3 2h x 0
y h
x h
3 0 1
缺点:当边界几何形状复杂时,解的精度受到限制。 (2)等效积分法 控制微分方程 边值条件 建立等效的 积分方程 假设未知函数 整个区域内
定值条件 精确解 (均质、边界条件简单)
近似解 (1)有限差分法 (数值解) (2)等效积分法(包括变分法) (3)有限单元法 (4)边界单元法 …… f1 f 3 (1)有限差分法(FDM) f 代替 2h x 0 要点:差分 微分; x h 3 0 1
弹性力学主要内容及参考书目《弹性力学》

弹性力学的主要章节内容
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 第十章 第十一章 第十二章 绪 论 平面问题的基本理论 平面问题的直角坐标解答 平面问题的极坐标解答 平面问题的复变函数解答 温度应力的平面问题 平面问题的差分解 空间问题的基本理论 空间问题的解答 等截面直杆的扭转 能量原理与变分法 弹性波的传播
教材与主要参考书
教材: 《弹性力学》(上册,第三版)
徐芝纶 编 高等教育出版社 (Timoshenko)编 科学出版社 同济大学出版社 清华大学出版社
参考书:《弹性理论》 铁木辛柯
பைடு நூலகம்
《弹性力学》 吴家龙 编
《弹性理论基础》 陆明万等 编 《弹性力学学习方法及解题指导》
王俊民 编 徐秉业 编 同济大学出版社 机械工业出版社
《弹性与塑性力学》(例题与习题)
弹性力学有限元第五章 变分法解平面问题

用V表示外力的势能(以u,v=0的自然状态下的势能为0),它等于外 力在实际位移上所做的功冠以负号,则:
d U V 0
第五章 变分法解平面问题
§5-3 位移变分方程
d U V 0
U+V是形变势能和外力势能的总和,可以看出,在给定的外力作 用下,实际存在的位移应使总势能的变分成为零。 最小势能原理
积分可得形变势能。 平面应变问题作弹性常数的替换。
第五章 变分法解平面问题
§5-3 位移变分方程
设有平面问题中的任一单位厚度的弹性体,在外力作用下平衡。
u,v为其实际位移分量,假设这些位移分量发生了位移变分(虚位 移)d u, d v,成为:u u d u v v d v
考察其能量方面的变化。
b a a
增量的主要部分定义为泛函的变分,则
f f 代入d f,则 d I d y d y dx a y y
b
d I d f dx
b a
显然,存在关系式: d
b
a
f dx d f dx
a
b
只要积分的上下限不变,变分的运算和定积分运算可以交换次序
U1 U1 U1 dxdy f xd u f yd v dxdy f xd u f yd v ds e x de x e y de y g xy dg xy
虚功方程:方程右边各项称为应力在虚应变上的虚功。 如果在虚位移发生之前,弹性体是出于平衡状态,那么在虚位移过程 中,外力在虚位移上所做的虚功等于应力在虚应变上所做的虚功。
b
第五章 变分法解平面问题
§5-1 变分法简介
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章 弹性静力学小位移变形理论的变分原理对连续体来说,其数学上的处理方法是利用给定的边界条件下的微分方程(或偏微分方程),并在一定的边界条件下求得其解,这种解析方法,实际做起来往往遇到很大的困难,使许多工程实际问题的计算模型很难建立,满足不了实际需要。
自从五十年代直刚法问世以来,利用离散化的方法,将一个连续体划分为有限数量及具有一定几何形状的单元体,即有限单元,再按照一定的过程进行计算,这就使得过去许多工程计算感到困难的问题得到解决,这种方法不受结构特殊几何形状的限制,因此,它的适应范围是相当广泛的。
有限元素法的提出和应用,是工程分析方法上的一次重大的变革,随着理论探讨上的深入及计算机性能的不断提高,使得解的精确性不断地得到改进,以至使得有限元素法成为当前计算领域方面的一个强有力的工具,无论对结构问题(如静力学、动力学)、非结构问题(如流体力学、光学、电磁学)以及许多边缘学科等都得到广泛的应用。
有限元素法的解题过程和步骤在一般的有关有限元法教课书和著作中均有详细讨论,本章不再赘述。
变分原理是有限元素法的基础,要很好地理解有限元素法,则应该对能量变分原理有一个较系统地了解。
本章的目的是尽可能地对这些能量变分原理作系统性的介绍,从一般常用的最小位能原理和最小余能原理,引深到引用拉格朗日乘子法(Lagrange Multiple Method )的完全及不完全广义变分原理和为分区集合体的分区(Sub-region )广义变分原理,这将涉及到以混合(Mixed )模型和杂交(Hybrid )模型为基础的变分原理。
在此基础上,针对不同变分原理,进一步说明了有限元素法中的元素的刚度特性和推导元素刚度矩阵的一般过程及表达显式,以及变分原理在结构分析中的若干应用实例,使读者能比较清晰地了解各类变分原理与建立有限元模型之间的关系。
§5.1 小位移弹性理论的最小位能原理与最小余能原理设在卡氏直角坐标系中,坐标参数为)3,2,1(=i x i ,体积为V 的弹性体中任意一点的位移参数为)3,2,1(=i u i 、应力分量为ij σ以及应变分量为)3,2,1,(=εj i ij 。
由线弹性力学理论,我们可以得到如下的用于描述一个弹性静力学小位移变形问题的基本方程式。
(1)力的平衡方程0,=+σi j ij F (在V 内) (5-1) 式中i F 表示体力,j ij ,σ表示应力分量ij σ对坐标分量j x 的偏导数(以下相同)。
(2)应变位移关系式(几何关系))(21,,i j j i ij u u +=ε (在V 内) (5-2) (3)应力应变关系式(物理关系) kl ijkl ij a ε=σ (5-3)kl ijkl ij b σ=ε (5-3’)式中ijkl a 为弹性模量系数,ijkl b 为劲度系数,ijkl a 和ijkl b 都具有对称性。
(4)在弹性体的边界上,表面S 可划分为两部分:外力已知的边界σS 及位移为已知的边界u S ,前者称为力的边界,后者称为位移边界,即u S S S +=σ (5-4)在力的边界σS 上,i j ij T n =σ (5-5) 式中i T 为已知边界力,j n 为σS 的边界外法线向量与坐标轴夹角的方向余弦。
在位移边界u S 上,i i u u = (5-6) 式中i u 为已知边界位移。
(5-5)式和(5-6)式统称为“边界条件”。
上述的诸方程共有15个,即3个平衡方程,6个应变位移关系方程,6个物理关系方程。
而未知变量也共计15个:6个应力分量ij σ,6个应变分量ij ε和3个位移分量i u 。
因此该问题是可以求解的。
小位移变形弹性体的应变能泛函(或应变能密度)A 和余应变能泛函(余应变能密度)B 可表示为kl ij ijkl ij a A εε=ε21)( (5-9) kl ij ijkl ij b B σσ=σ21)( (5-10) 不难看出,)(ij A ε和)(ij B σ有以下关系,)()(ij ij ij ij B A σ+ε=σε (5-11)并且容易证明ij ij ij B σ∂σ∂=ε)( (5-12) ij ij ij A ε∂ε∂=σ)( (5-13) (一)虚功原理与总位能原理这里用ij εδ和i u δ分别表示应变变分和位移变分,在虚功原理中可视为虚应变和虚位移。
则由虚功原理可写出虚功方程为0dS δdV δd δV i =--εσ⎰⎰⎰σS i i i V ij ij u T u F V (5-14)(5-14)式成立是有条件的,要求ij εδ和i u δ在弹性体内部满足应变位移关系和在位移边界上满足给定位移边界条件,即)δδ(21δ,,i j j i ij u u +=ε (在V 内) (5-15a ) 0δ=i u (在u S 上) (5-15b )虚功原理表明,如果弹性体在给定的体力和边界力作用下处于平衡状态,则对于为位移边界条件所容许的任意虚位移,(5-14)式成立。
反过来,如果(5-14)式对于为位移边界条件所容许的任意虚位移成立,则弹性体处于平衡状态。
值得提出的是,不管材料的应力应变关系是线性还是非线性,虚功原理都成立。
如果用下面泛函表示弹性体的总位能P ∏,⎰⎰σ--ε=∏S i i V i i ij S u T V u F A d d ])([p (5-16) 对(5-16)式取驻值,即一阶变分等于零,⎰⎰σ=--εσ=∏S i i V i i ij ij S u T V u F 0d δd ]δδ[δP (5-17) 将(5-14)式与(5-17)式比较,显然,(5-17)式就是(5-14)式。
所以,可以把总位能原理理解为虚功原理的另一种表达形式。
由于⎰⎰⎰σ=+σ=εσV j i ij i j j i V ij V ij ij V u V u u V d δd )δδ(21d δ,,, (5-18) 利用格林公式,上式等号右边积分可变换为 ⎰⎰⎰σ-σ=σV i j ij S i j ij V j i ij V u S u n V u d δd δd δ,, 并引用(5-15b )式,则(5-17)式可化为 0d δ)(d δ)(,=σ-++σ⎰⎰σS i j ij i Vi i j ij S u n T V u F 因为i u δ为独立量,则由总位能驻值条件可导出:平衡方程(5-1)即0,=+σi j ij F (在V 内)及力的边界条件(5-5)即i j ij T n =σ(在σS 上)。
(5-16)式表达了弹性体的最小位能原理:在满足应变位移关系(5-2)和位移边界条件(5-6)的所有容许的i u 中,实际的i u 使弹性体的总位能取最小值。
(二)余虚功原理与总余能原理余虚功原理中,可取ij σδ表示弹性体内的应力变分,即虚应力。
另外,i T δ表示弹性体指定位移边界上的表面边界力的变分。
与虚功方程相类似的余虚功方程可表示为0d δd δ=-σε⎰⎰uS i i V ij ij S u T V (5-19) 余虚功原理是在满足平衡方程(5-1)式及力的边界条件(5-5)式的条件下成立,即满足(5-1)式和(5-5)式的变分形式的条件为0δ,=σj ij (在V 内) (5-20)0δ=i T (在σS 上) (5-21)现在定义下面的泛函为弹性体的总余能c ∏⎰⎰-σ=∏uS i i V ij S u T V B d d )(c (5-22) 现在对(5-22)式取驻值,即0δc =∏,则有0d δd )(δδc =-σ=∏⎰⎰uS i i V ij S T u V B (5-23) 利用格林公式,上式中的体积分项可化为⎰⎰⎰⎰⎰σ-σ=σ=σε=σVj ij i S ij j i V ij j i ij V ij V ij V u S n u V u V V B d δd δd δd δd )(δ,, 考虑到(5-21)式后,(5-23)式可写成0d δd δ)(,=σ-σ-⎰⎰V j ij i S j ij i i V u S n u u u (5-24) 再考虑到ij σδ应满足(5-20)式,且ij σδ为独立量,则由c ∏的驻值条件可以导出位移边界uS 上的协调条件为0=-i i u u (5-25)(5-22)式表达了弹性体的最小余能原理:在满足平衡方程(5-1)和力的边界条件(5-5)的所有容许的应力ij σ中,实际的应力ij σ使弹性体的总余能取最小值。
上面所讨论的变分原理,所提出的泛函是受一定条件约束的,如最小位能原理的泛函 P ∏应满足的条件是(5-2)式和(5-6)式,而最小余能原理的泛函c ∏应满足的条件是(5-1)式和(5-5)式。
这种变分原理称为不完全变分原理,或称为带约束条件的变分原理。
§5.2 小位移弹性理论的完全及不完全广义变分原理§5.2.1 完全广义变分原理现在,让我们利用拉格朗日乘子法,导出小位移弹性理论的无条件的广义变分原理。
在§5.1节的讨论中,不论是总位能原理或总余能原理,其能量泛函的提出是附带一定条件的即在满足一定条件下提出的。
如果我们利用拉格朗日乘子法,将泛函提出的条件作为约束方程引入到泛函中去,则问题的性质就发生了变化,即将带有约束条件的泛函转化为不带任何约束条件的泛函。
于是形成了下面的完全广义变分原理。
(1) 基于总位能原理的小位移弹性理论的完全广义变分原理现在,让我们将总位能原理的初始满足条件即应变位移关系式(5-2)和位移边界条件(5-6),分别乘以定义在体积V 内的和位移边界u S 上的拉格朗日乘子ij λ和j μ,并与总位能泛函p ∏相加组成新的泛函Gp ∏,Gp ,,1[()]d [()]d 2ij i i ij ij i j j i VV A Fu V u u V ελε∏=-+-+-⎰⎰ ⎰⎰-μ+σuS i i i S i i S u u S u T d )(d (5-26) 式中经受变分的独立量是ij ε,i u ,ij λ及i μ,而不需要附加任何条件。
对这些独立量进行变分,有⎰⎰⎰⎰⎰⎰σ-μ-+μ+-+λ-λ+-ε+ελ+ε∂∂=∏S i i S i i i i i V i i V i j j i ij V ij i j j i ij V ij ij ij S u T S u u u V u F V u u V u u V A u d δd ]δ)(δ[d δd )δδ(21d δ)](21[d δ)(δ,,,,Gp 引用(5-18)式及格林公式,上式第三个积分可化为⎰⎰⎰⎰λ-λ=λ=+λS V i j ij i j ij V j i ij Vi j j i ij V u S u n V u V u u d δd δd δd )δδ(21,,,, 将上式代入Gp δ∏式中,得⎰⎰⎰σ+λ-μ-+λ-μ+-λ+λ+-ε+ελ+σ=∏S i i j ij S i i i i j ij i V i i j ij ij i j j i ij ij ij ij S u T n S u u u n V u F u u u d δ)(d ]δ)(δ)[(d ]}δ)(δ)(21[δ){(δ,,,Gp由0δGp =∏可以导出以下各式ij ij σ-=λ,)(21,,i j j i ij u u +=ε,0,=-λi j ij F (在V 内) (5-27a,b,c ) j ij i n λμ=,i i u u = (在u S 上) (5-27d,e ) 0=+λi j ij T n (在σS 上) (5-27f ) 显然,(5-27c )式表示平衡方程,(5-27b )式表示应变与位移的关系式,将(5-27a )式代入(5-27d )式中,则得j ij i n σ-=μ,将(5-27a )式带入(5-27f )式得j ij n T σ=,表示力边界上的给定条件。