(整理)第6章弹性薄板小挠度弯曲问题的基础变分原理(16K)

合集下载

薄板的小挠度弯曲问题

薄板的小挠度弯曲问题
表2.圆形薄板弯曲的边界条件
名称
圆形薄板的小挠度弯曲问题
轴对称弯曲问题
说明
固定边界
位移边界条件
简支边界
混合边界条件
自由边界
静力边界条件
圆形薄板的轴对称弯曲问题,其挠度函数的通解即内力表达式如表2所示。其中, 为特解,
由板面荷载来确定。
表3.圆形薄板的轴对称弯曲问题的解答
名称
表 达 式
挠 度
内 力
对于有孔板,则可由内外各两个边界条件确定挠度表达式的 ;对于无孔边,则可由板中心处的挠度和内力为有限值得条件,得出 ,再由边界条件确定 和 。但需指出的是,在某些特殊情况下(例如,板面上作用有集中力或者板面上有约束),为了求得问题的解答,可以对内力进行放松,即 。
所示。根据板的厚度,可以将板分为:
(1)厚板:板厚 与板面内的最小特征尺寸
之比大于 ,即 ,且厚板
三个方向的几何尺寸接近于同阶大小。这类
班一般须按弹性力学空间问题来处理。
(2)薄板:板厚 与板面内的最小特征尺
寸 之比在 和 之间,即
。这类板的抗弯刚度较大,
当受到一定大小的横向荷载作用时,薄板图1
将会产生弯曲变形,其挠度 比板厚 要小,最大挠度 ,可认为属于小挠度问题,否则属于大挠度问题。
或者有角点条件
式中: 为支座上端的沉陷。
如图4所示为以正方向标示于矩形薄板中面上的
总剪力、角点反力以及弯矩(以矩矢表示,右手
螺旋,双箭头为大拇指方向,其余四指的绕向即
为弯矩作用的方向),但表明其增量。
圆形薄板的小挠度弯曲问题
对于圆形、扇形、圆环形等形状的薄板,采用
极坐标求解往往比较方便。圆形薄板弯曲问题的基
正,如图2中所示。图2

薄板的小挠度弯曲问题及经典解法

薄板的小挠度弯曲问题及经典解法

(z2

d2
4
)
y
2 w

(9-5)
(4)用w表示应力分量z
由平衡方程(7-1)式的第三式有(取 fz=0):
z zx yz
z
x y
(c)
若体力不为零,可把薄板单位面积内的体力及面力归入薄板上面的
面力,并用 q表示。
d
q ( f )z zd
FRB

2D(1
)
2w xy
B
(9-18)
集中剪力或集中反力的正负号决定于角点处的扭矩的正负号, 而不能另行规定。据此,A点和C点处的剪力以沿z轴的正方向为正, 而O点和B点处的剪力以沿 z轴的负向时为正。
如果点B是自由边AB和自由边BC的交点,而点B并没有任何支 柱对薄板施以此向集中力,则应有FRB=0 ,亦即:
z
w
w(x, y)即在垂直于中面的任一法线
上,薄板全厚度内各点的挠度相同。
2)由几何方程, zy

w v y z
0
, zx

u z
w x
0
,得
v w , u w z y z x (2) z 引起的形变可以不计。
(9-1)
由物理方程(7-12),有:
(3)应用时可查相关手册,若是双向配筋时,扭矩的影响 也可不考虑。
§9-4 边界条件 扭矩的等效剪力
矩形薄板,OC边简支;OA边固支;AB和BC边自由。
1. 固支边,OA边(x = 0)
(w) x ( w )
x
0 x0
0 0
(9-13)
2. 简支边,OC边 (y = 0)
x y

ANSYS第六章

ANSYS第六章

除在板上面承受p0001nmm2p0001nmm2的均布载荷外还在的均布载荷外还在点900900400400处承受两个方向的处承受两个方向的集中力集中力f1000nf1000n按下列两种情况计算结构的最大变形和按下列两种情况计算结构的最大变形和vonvonmisesmises应力
湖北汽车工业学院 有限元法基础与应用 马迅
单元的节点位移和节点力向量可表示为:
{F }e = [Wi
{δ }e
= wi θ xi θ yi
M xi
[
w j θ xj θ yj
M xj
wm θ xm θ ym
M xm
w p θ xp θ yp
M xp
]
T
M yi W j
M yj Wm
M ym W p
M yp
]
T
有限元法基础与应用
Copyrig用
Copyright © MA XUN
5
Printed with FinePrint - purchase at PDF created with pdfFactory trial version
湖北汽车工业学院 有限元法基础与应用 马迅
第六章 薄板弯曲问题的有限元法
§6-1 薄板弯曲问题的性质 §6-2 薄板矩形单元的位移模式 §6-3 程序应用及实例
有限元法基础
Copyright © MA Xun All rights reserved
§6-1 薄板弯曲的问题的性质
薄板是指厚度比板面长宽中的最 小尺寸b小得多的平板。
作用在薄板上的载荷可以分解为两个分量: • 平行于板面的纵向载荷;由它引起的应力、应变和位 移可以按平面应力问题来分析; • 垂直于板面的载荷。由它引起薄板的弯曲,并伴随扭 转,这就是薄板的弯扭问题,通常称为薄板弯曲问题。 转,这就是薄板的弯扭问题,通常称为薄板弯曲问题

弹性薄板的小挠度弯曲课件

弹性薄板的小挠度弯曲课件
践指导。
06
参考文献
参考文献
总结词:详细描述了弹性力学的基本 原理,包括应力和应变的关系,以及 弹性薄板在受到外力作用时的弯曲变 形规律。
详细描述:在弹性力学中,薄板的小 挠度弯曲是指薄板在受到外力作用时 发生的弯曲变形,其弯曲变形程度较 小,可以忽略不计薄板的剪切变形和 转动惯性。这种变形情况下,薄板的 弯曲变形可以通过挠度(即变形量) 来描述。在弹性力学中,应力和应变 之间的关系由胡克定律(Hooke's Law)描述,即应力与应变成正比, 比例系数为材料的弹性模量。
详细描述
圆形薄板在受到垂直于其平面的力时,会在力的方向上发生弯曲,形成弧形。与矩形薄板类似,这种弯曲程度较 小,也称为小挠度弯曲。在圆形薄板中,各个方向的弯曲程度基本相同,因此圆心位置的应力最大。
实例三:不规则形状薄板的弯曲
总结词
不规则形状薄板在受到垂直于其平面的力时,会发生小挠度弯曲。
详细描述
不规则形状薄板在受到垂直于其平面的力时,会在力的方向上发生弯曲,形成弧形。与矩形和圆形薄 板类似,这种弯曲程度较小,也称为小挠度弯曲。不规则形状薄板的弯曲情况较为复杂,需要考虑各 个方向的弯曲程度以及应力分布。
05
结论与展望
研究结论
结论一
弹性薄板在受到小挠度弯 曲时,其弯曲行为与材料 属性、几何尺寸等因素密 切相关。
结论二
通过理论分析和数值模拟, 我们得到了弹性薄板在小 挠度弯曲下的变形规律和 应力分布。
结论三
实验结果与理论预测和数 值模拟结果基本一致,验 证了理论的正确性和数值 方法的可靠性。小的单元,对每 个单元进行弯曲分析,通过求解每个 单元的平衡方程得到整体的挠度分布。
对于某些特定形状和载荷条件的薄板, 可以通过解析方法直接求解弯曲微分 方程,得到挠度分布的精确解。

材料力学知识点

材料力学知识点

第六章弯曲变形知识要点1、弯曲变形的概念1)、挠曲线弯曲变形后梁的轴线变为挠曲线。

平面弯曲时,挠曲线为外力作用平面内的平面曲线。

2)、平面弯曲时的变形在小变形情况下,梁的任意二横截面绕各自的中性轴作相对转动,杆件的轴线变为平面曲线,其变形程度以挠曲线的曲率来度量。

1》纯弯曲时,弯矩—曲率的关系(由上式看出,若弯曲刚度EI为常数则曲率为常数,即挠曲线为圆弧线)2》横力弯曲时,弯矩—曲率的关系3)、平面弯曲时的位移1》挠度——横截面形心在垂直于梁轴线方向上的线位移,以表示。

2》转角——横截面绕其中性轴旋转的角位移,以表示。

挠度和转角的正负号由所选坐标系的正方向来确定。

沿y轴正方向的挠度为正。

转角的正负号判定规则为,将x轴绕原点旋转90°而与y轴重合,若转角与它的转向相同,则为正,反之为负。

4)、挠曲线近似微分方程5)、受弯曲构件的刚度条件,2、积分法求梁的挠度和转角由积分常数C、D由边界条件和连续性条件确定。

对于梁上有突变载荷(集中力、集中力偶、间断性分布力)的情况,梁的弯矩M(x)不是光滑连续函数,应用上式时,应分段积分,每分一段就多出现两个积分常数。

因此除了用边界条件外,还要用连续性条件确定所有的积分常数。

边界条件:支座对梁的位移(挠度和转角)的约束条件。

连续条件:挠曲线的光滑连续条件。

悬臂梁边界条件:固定端挠度为0,转角为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等简支梁边界条件:固定绞支座或滑动绞支座处挠度为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等连接铰链处,左右两端挠度相等,转角不等3、叠加原理求梁的挠度和转角1)、叠加原理各载荷同时作用下梁任一截面的挠度和转角等于各个载荷单独作用时同一截面挠度和转角的代数和。

2)、叠加原理的限制叠加原理要求梁某个截面的挠度和转角与该截面的弯矩成线性关系,因此要求:1》弯矩M和曲率成线性关系,这就要求材料是线弹性材料2》曲率与挠度成线性关系,这就要求梁变形为小变形4、弯曲时的超静定问题——超静定梁1)、超静定梁约束反力数目多于可应用的独立的静力平衡方程数的梁称为超静定梁,它的未知力不能用静力平衡方程完全确定,必须由变形相容条件和力与变形间的物理关系建立补充方程,然后联立静力平衡方程与补充方程,求解所有的未知数。

薄板弯曲问题弹性理论分析及数值计算资料

薄板弯曲问题弹性理论分析及数值计算资料

薄板弯曲问题弹性理论分析及数值计算课程设计指导教师:孙秦学院:航空学院姓名:程云鹤学号: 2011300092班级: 01011105薄板弯曲问题弹性理论分析及数值计算一、一般三维体弹性系统求解微分方程体系总结1、弹性力学中的基本假定(1)连续性,即假定整个物体的体积都被组成这个物体的介质所填满。

(2)完全弹性,物体在引起形变的外力被除去后可完全恢复原形 (3)均匀性,即假定物体是由同一材料组成的。

(4)各向同性,物体的弹性在所有各个方向都相同。

(5)和小变形假定,即假定位移和形变是微小的。

2、平衡微分方程在一般空间问题中,包含15个未知函数,即6个应力分量、6个形变分量和3个位移分量,它们都是x,y,z 坐标变量的函数。

对于空间问题,在弹性体区域内部,考虑静力学、几何学和物理学三方面条件,分别建立平衡微分方程、几何方程和物理方程;并在给定约束面或面力的边界上,建立位移边界条件或应力边界条件。

然后在边界条件下根据所建立的三套方程求解应力分量、形变分量和位移分量。

在物体内的任一点P ,割取一个微小的平行六面体,如图1-1所示。

根据平衡条件即可建立方程。

(1)分别以连接六面体三对相对面中心的直线为矩轴,列出力矩的平衡方程0=∑M ,可证明切应力的互等性:yx xy xz zx zy yz ττττττ===,,(2)分别以轴轴、轴、z y x 为投影轴,列出投影的平衡方程0=∑x F ,0=∑y F ,0=∑z F ,对方程进行约简和整理后,得到空间问题的平衡微分方程如下⎪⎪⎪⎭⎪⎪⎪⎬⎫=+∂∂+∂∂+∂∂=+∂∂+∂∂+∂∂=+∂∂+∂∂+∂∂000z yzxz z y xyzy y x zx yx x f y x z f x z y f z y x ττσττσττσ (1-1)3、物体内任一点的应力状态现在,假定物体在任一点P 的6个直角坐标面上的应力分量 ,,z y x ,σσσyx xy xz zx zy yz ττττττ===,,为已知,试求经过P 点的任一斜面上的应力。

板壳理论 弹性薄板弯曲的基本理论(精编荟萃)

板壳理论 弹性薄板弯曲的基本理论(精编荟萃)
(2)全部非零的应力分量为9个(x,y,z,xy= yx,xz=zx,yz=zy),应变分量为3个( ex,ey, gxy)。
(3)注意计算中的错误。
精编荟萃
24
第一章 弹性薄板弯曲的基本理论
§1.5 四边简支矩形板的一般解
薄板横向弯曲的微分方程是
D 2 2 w

4w
D

(1.3.5)
精编荟萃
4
第一章 弹性薄板弯曲的基本理论
在薄板弯曲的近似理论中,可以将(1.3.5)中的 后两个条件合并为一个。
图1.5 边精界编荟上萃的扭矩
5
第一章 弹性薄板弯曲的基本理论
考虑任一边界(不一定是自由边界)上所受的扭矩Myx。 在微段CD上:
内力Myxdx
在微段DE上:
解:(1)薄板的微分方程
D 2 2 w
(2)边界条件

4w
D

x
4

2
4w x 2y 2

4w
y 4


q
设四边简支矩形薄板在角点B处发生了相对于基准
面的沉陷,沉陷大小为x,则BC边和AB边的挠度是
x
x
w y, w x
xa b
yb a
(1.4.7)
在这两个边界上还有薄板弯矩的边界条件
M x xa M y yb 0
在OA边和OC边,边界条件是
(1.4.8)
w x0 0 , M x x0 0 w y0 0 , M精y 编y荟0萃 0
(1.4.9) 19
第一章 弹性薄板弯曲的基本理论
(3)取满足边界条件挠度函数
取薄板的挠度曲线函数为
w x xy

薄板的屈曲资料

薄板的屈曲资料
1/ 80 ~ 1/100 t / b 1/ 5 ~ 1/ 8 薄板:
受力特点:横向剪力引起的剪切变形与弯曲变形相比可以忽略不计。
薄膜:t / b 1/ 80 ~ 1/100
受力特点:没有抗弯刚度,依靠薄膜拉力与横向荷载平衡。
第6章 薄板的屈曲
板失稳的特点:
板屈曲时产生出平面的双向弯曲变形(凸曲现象),故板上任何一 点的弯矩 M x 、 M y 和扭矩 M xy以及板的挠度 w 都与此点的坐标有关。 板的平衡方程属于二维偏微分方程,除了均匀受压的四边简支的理 想矩形板可直接求解分叉屈曲荷载外,对于其他受力条件和边界条
第6章 薄板的屈曲
小挠度理论板的弹性曲面微分方程
单向均匀受压简支板的弹性失稳荷载
单向(x方向)均匀受压四边简支板,N y =Nxy 0 由
4w 4w 4w 2w 2w 2w D 4 2 2 2 4 N x 2 2 N xy Ny 2 x y y x xy y x 4w 4w 4w 2w D 4 2 2 2 4 Nx 2 0 x y y x x

a b

m 1 dk 0 ,有 2 2 0 dm m m
N x ,cr ,min 4
m
kmin 4
2D
b2
第6章 薄板的屈曲
小挠度理论板的弹性曲面微分方程
单向均匀受压简支板的弹性失稳荷载
板件屈曲系数(四边简支)
板的屈曲方程
第6章 薄板的屈曲
能量法计算板的弹性失稳荷载
迦辽金法
算例Ⅰ:求解单向均匀受压矩形板的屈曲荷载。板的两加载边 简支,两非加载边固定。 板的平衡微分方程:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6章 弹性薄板小挠度弯曲问题的基础变分原理平分板厚度的平面称为板的中面,一般地,当板的厚度t 不大于板中面最小尺寸的5/1时的板称为薄板,薄板的中面是一个平面。

薄板在垂直于中面的载荷作用下发生弯曲时,中面变形所形成的曲面称为弹性曲面或挠度面,中面内各点在未变形中面垂直方向的位移称为板的挠度。

薄板弯曲的精确理论应是满足弹性力学的全部基本方程,但这在数学上将会遇到很大的困难。

1850年,G.R.基尔霍夫(Kirchhoff Gustav Robert ,基尔霍夫 古斯塔夫·罗伯特,德国物理学家,1824-1887年)除采用弹性力学的基本假设外,还提出了一些补充的假设,从而建立起了薄板小挠度弯曲的近似理论。

这些假设是:第一,变形前垂直于板中面的直线,在板变形后仍为直线,并垂直于变形后的中面,而且不经受伸缩;第二,与中面平行的各面上的正应力z σ与应力x σ,y σ和xy τ相比属于小量;第三,在横向载荷作用下板发生弯曲时,板的中面并不伸长,这也就是说,薄板中面内各点都没有平行于中面的位移分量。

用变分法可以导出薄板弯曲问题的平衡微分方程和边界条件。

当板的形状和边界条件较复杂时,直接求解偏微分方程时比较困难的,以变分法为基础的各种近似解是求解这类问题的一个重要途径。

本章讨论了用于薄板小挠度弯曲问题的一些基础变分原理,这包括虚功原理、最小位能原理、最小余能原理、两类自变量广义变分原理并推广到三类自变量广义变分原理。

§6.1 基本方程与边界条件回顾取坐标平面oxy 与中面重合,z 轴垂直于中面,x ,y 和z 轴构成一个右手直角笛卡儿坐标系。

变形后的板内各点沿x ,y 和z 轴方向的位移分别用u ,v 和w 表示。

由Kirchhoff 假设,可以得到xwzz y x u ∂∂-=),,(,y w z z y x v ∂∂-=),,(,),(),,(y x w z y x w = (6-1)并利用弹性力学中位移与应变之间的关系式,可以得到薄板中任意点的应变分量为22x w z x ∂∂-=ε,22ywz y ∂∂-=ε,y x w z xy ∂∂∂-=γ22 (6-2)其余3个应变分量z ε,xz γ和yz γ根据假设都等于零,即0=εz ,0=γxz ,0=γyz (6-3)由薄板的平衡关系,可以确定板的横向分布载荷),(y x q 与剪力x Q ,y Q 以及弯矩x M ,y M 和扭矩xy M (x M ,y M ,xy M 统称为内力矩)与x Q ,y Q 之间的关系式。

这里要注意,x M ,y M ,xy M 是单位中面宽度内的内力矩,它们的因次是千克力,x Q ,y Q 是单位中面宽度内的内力,它们的因次是千克力/米。

弯矩、扭矩和剪力的正方向如图6-1所示。

平衡方程为⎪⎪⎪⎭⎪⎪⎪⎬⎫-=∂∂+∂∂=∂∂+∂∂=∂∂+∂∂),(y x q y Q x Q Q y M x M Q y M x M y x y y xy x xyx (6-4) 在薄板弯曲理论中,剪力x Q ,y Q 不产生应变,因而也不作功,因此可以从(6-4)式中消去x Q ,y Q ,得到0),(22222=+∂∂+∂∂+∂∂y x q yM y x M x M y xy x(6-5)以后凡提到薄板弯曲平衡方程,都是指(6-5)式而言。

而内力x Q ,y Q 不再作为独立的量看待。

上面两组方程仅仅是力的平衡方程,它们未涉及到板的材料性质。

与内力矩相对应的广义应变是挠度面的曲率xy y x k k k ,,,在小挠度弯曲理论中,它们与挠度w 的关系为22x w k x ∂∂-=,22ywk y ∂∂-=,y x w k xy ∂∂∂-=2 (6-6)内力矩与曲率的关系可以通过应变能密度U ~表示出来,若将U ~表示为xy y x k k k ,,的函数,则有xx k UM ∂∂=~,y y k U M ∂∂=~,xy xy k U M ∂∂=~21 (6-7) 这种关系式对于线性或非线性材料都成立。

对于线性的弹性体,U ~是xy y x k k k ,,的正定的二次齐次函数。

在各向同性的情况下,U ~的算式为)])(1(2)[(21~22xy y x y x k k k k k D U -μ--+= (6-8)将(6-8)式代入(6-7)式,然后再将(6-6)式代入,得到内力矩与挠度的关系式为⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂∂μ--=∂∂μ+∂∂-=∂∂μ+∂∂-=y x w DM x w y w D M y w x w D M xy y x 222222222)1()()( (6-9)以上各式中)1(1223μ-=Et D 称为板的弯曲刚度,其中t 为板的厚度,μ为材料的泊松系数。

如果我们定义}{κ为广义应变,{}M 为广义应力,即图6-1 弯矩、扭矩和剪力的正方向⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧=⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂∂-∂∂-∂∂-=⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧=κxy y x xy y x M M M M y x w y w x w k k k }{ 22}{22222, (6-10)则有}]{[}{κ=D M (6-11)式中的][D 为弯曲刚度矩阵。

(6-8)式可以写为}]{[}{21~κκ=D U T (6-12)余应变能密度*~U 看作是内力矩x M ,y M ,xy M 的函数,其值定义为U k M k M k M U xy xy y y x x ~2~*-++= (6-13)并且有xx M U k ∂∂=*~,y y M U k ∂∂=*~,xy xy M U k ∂∂=*~2 (6-14) 同样,对于线性的弹性体,*~U 是x M ,y M ,xy M 的正定的二次齐次函数。

如果以广义应力}{M 表示余应变能密度,则有}]{[}{21~*M C M U T = (6-15)式中1][][-=D C 。

(6-12)式与(6-15)式都是以后经常要用到的表达式。

注意,对于线弹性薄板,应变能密度与余应变能密度在数值上是相等的,即*~~U U =。

将(6-9)式代入(6-5)式,得到以挠度表示的各向同性薄板的平衡方程为),()2(4422444y x q ywy x w x w D =∂∂+∂∂∂+∂∂ (6-16) 或),(22y x q w D =∇∇ (6-16/)在处理具体问题时,经常遇到坐标旋转而引起的变换。

如果坐标由oxy 转变为ξηo ,如图6-2所示,则两个坐标系中坐标的关系为⎭⎬⎫θ+θ-=ηθ+θ=ξθη+θξ=θη-θξ=cos sin ,sin cos cos sin ,sin cos y x y x y x (6-17)对于挠度w ,有),(),(ηξ=w y x w ,从而⎪⎪⎭⎪⎪⎬⎫θ∂∂+θ∂∂-=η∂∂θ∂∂+θ∂∂=ξ∂∂cos sin sin cos y wx w w yw x w w (6-18) 及二阶偏导为图6-2 坐标转换⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫θθ∂∂+θ-θ∂∂∂+θθ∂∂-=η∂ξ∂∂θ∂∂+θθ∂∂∂-θ∂∂=η∂∂θ∂∂+θθ∂∂∂+θ∂∂=ξ∂∂sin cos )sin (cos sin cos cos cos sin 2sin sin cos sin 2cos 22222222222222222222222222y w y x w x w w y w y x w x w wy w y x w x w w (6-19)弯矩、扭矩的变换公式为⎪⎪⎭⎪⎪⎬⎫θθ+θ-θ+θθ-=θ+θθ-θ=θ+θθ+θ=ξηηξsin cos )sin (cos sin cos cos cos sin 2sin sin cos sin 2cos 222222y xy x y xy x y xy x M M M M M M M M M M M M (6-20)剪力的变换公式为⎭⎬⎫θ+θ-=θ+θ=ηξcos sin sin cos y x y x Q Q Q Q Q Q (6-21)在板的弯曲问题中,有三种典型的边界条件,简述如下。

设Ω为板在xy 平面上的定义域,板的边界为C ,令n 为沿边界外向法线的方向,s 为边界的切线,(n ,s )的转向与(x ,y )的转向是一致的,如图6-3所示。

第一种边界为固支边界1C ,在这种边界上,其挠度与法向斜率均为给定的,即有n nww w φ=∂∂=,(在1C 上) (6-22) 第二种边界为简支边界2C ,在这种边界上,其挠度与法向弯矩为给定的,即有n n M M w w ==,(在2C 上) (6-23)第三种边界为自由边界3C ,在自由边界上,作用在边界上的力为给定的。

从内力和力矩看,在边界上共有三个,即n ns n Q M M ,,,但其中并不完全独立,因为从作功角度来看,ns M 和n Q 并不完全独立。

事实上,若边界上的挠度有一变分w δ,则n ns Q M ,在w δ上所作之功w δ是s w Q swM w C n nsd ]δδ[δ3⎰+∂∂-= (6-24) 利用分部积分,上式又可以写成33|δd δ)(δC ns C n nsw M s w Q sM w -+∂∂=⎰ (6-25)由(6-25)式可见,切向扭矩ns M 可以分解为沿着周边边界3C 的分布载荷sM ns∂∂及作用于3C 两端的集中力||ns M ,而3C 两端是支座(不是固支边便是简支边)。

从实际板的受力来分析,可以看到集中力||ns M 为作用在角点上,一般是影响到支座上的力,而对板的变形无影响。

图6-3 板的边界因此,分布载荷sM ns∂∂与剪力n Q 构成沿自由边界3C 上的分布力,这部分边界力的虚功为s w Q s M C n ns d δ)(3⎰+∂∂与w δ相对应的广义力为n nsQ sM +∂∂,自由边的边界条件应取为 )(,s q Q sM M M n nsn n =+∂∂= (在3C 上) (6-26))(s q 为已知的作用在3C 上的线分布载荷。

§6.2 虚功原理和功的互等定理力学上,可能位移是指满足位移连续条件的位移。

在薄板弯曲问题中只有一个广义位移),(y x w ,因此,),(y x w 可能作为可能位移的条件是:yw x w w ∂∂∂∂,,是x ,y 的连续可导函数, 并且在边界上满足连续条件:⎪⎭⎪⎬⎫=φ=∂∂=上)(在上)(在21,C ww C nww w n (6-27) 同样,由可能位移w 按式(6-10)也可得到相应的可能曲率。

可能内力是指与某种外力保持平衡关系的内力。

在薄板弯曲问题中,内力有x M ,y M ,xy M ,这三个内力组成一组可能内力的条件是:在板的内部满足平衡方程(6-5)式,在板的边界上满足条件⎪⎭⎪⎬⎫=+∂∂==上)(在上)(在32)(,C s q Q s M M M C M M n nsn n n n (6-28) 根据能量守恒定理,外力在可能位移上所作的功等于可能内力在可能应变上所作的功,通常把这一关系叫做虚功原理。

相关文档
最新文档