xps谱峰强度单位

合集下载

XPS光电子峰和俄歇电子峰峰位表

XPS光电子峰和俄歇电子峰峰位表

电子能谱(Electron Spectroscopy)
2−2
第二章 X 射线光电子能谱(XPS)
XPS(X-ray Photoelectron Spectroscopy) 又被称为 ESCA(Electron Spectroscopy for Chemical Analysis) 它是以 X 射线为探针 检测由表面出射的光电子 来获取表面信 息的 这些光电子主要来自表面原子的内壳层 携带有表面丰富的物理和化学信息 XPS 作为表面分析技术的普及 归因于其高信息量 其对广泛样品的适应性以及其坚 实的理论基础 本章将介绍 XPS 方法并阐述其理论 仪器 谱的表示及其应用
II 射线光电子能谱(XPS)
XPS 的物理基础......................................................................................................................3 1. X 射线与物质的相互作用 ......................................................................................................3 2. 光电效应 .................................................................................................................................3 3. 电离过程和弛豫过程 ....................................................................................

第八章-X射线光电子能谱(XPS)

第八章-X射线光电子能谱(XPS)

3.俄歇电子能谱法(AES)是用具有一定能量的电子束(或X射 线)激发样品俄歇效应,通过检测俄歇电子的能量和强度, 从而获得有关材料表面化学成分和结构的信息的方法。
4. X射线光电子能谱法(XPS),采用能量为1000~1500eV 的X射线源,能激发内层电子, 使物质光电离、光电子发 射,研究其激发过程及其能量关系,各种元素内层电子的 结合能是有特征性的,因此可以用来鉴别化学元素。又称 为化学分析用电子能谱法(ESCA)。
KE = hv - BE
3 元素不同,其特征的电子键能不同。测量电子动能KE , 就得到对应每种元素的一系列BE-光电子能谱,就得到 电子键能数据。
4 谱峰强度代表含量,谱峰位置的偏移代表价态与环境的 变化-化学位移。
Ag的光电子能谱图(MgK激发)
➢ Core level electrons are ejected by the xray radiation
X射线
K1 K2 K’ K3 K4 K5 K6 K
Mg 靶
能量(eV)
相对强度
1253.7
67.0
1253.4
33.0
1258.2
1.0
1262.1
9.2
1263.1
5.1
1271.0
0.8
1274.2
0.5
1302.0
2.0
Al 靶
能量(eV)
相对强度
1486.7
67.0
1486.3
33.0
1492.3
2p 2s
发射出的光电子Ejected Photoelectron
Free Electron Level Fermi Level
L2,L3 L1

XPS谱峰拟合注意事项

XPS谱峰拟合注意事项

XPS谱峰拟合注意事项XPS(X-ray Photoelectron Spectroscopy)是一种常用的表面分析技术,通过测量材料中的光电子能谱来获取元素的化学状态和表面化学组成信息。

在进行XPS谱峰拟合时,需要注意以下几个方面:1.谱峰选择:首先需要选择合适的XPS谱峰进行拟合。

对于元素的3d谱峰,一般选用高分辨率谱进行拟合;而对于元素的2p谱峰,通常选用低分辨率谱拟合。

此外,还需要根据样品的化学组成选择合适的XPS谱峰。

2.光电子能谱线宽:在进行谱峰拟合之前,需要确定光电子能谱的线宽。

光电子能谱的线宽包括仪器效应和样品表面等原因引起的线宽。

通常情况下,可以通过测量标准物质的XPS谱线来确定仪器效应的线宽。

如果样品表面存在不均匀性,还需要考虑表面扩散等因素。

3. 谱峰形状:在进行XPS谱峰拟合时,需要选择合适的谱峰形状函数。

常用的谱峰形状函数有高斯函数、洛伦兹函数和Voigt函数等。

对于复杂的谱峰,可以采用多个形状函数的组合进行拟合。

4.背景拟合:在XPS谱峰拟合中,背景信号会对谱峰的拟合结果产生影响。

背景信号包括激光连续谱、底部散射等引起的背景。

一般情况下,可以采用多项式函数进行背景拟合。

而对于特殊样品,可能需要使用更复杂的数学函数进行背景拟合。

5.谱线强度校正:XPS谱线的强度受到多种因素的影响,如分析深度、探针电强度、距离等。

在进行谱峰拟合时,需要对谱线的强度进行校正,以获得准确的表面化学组成信息。

6.谱峰重叠处理:在一些情况下,不同元素的谱峰可能会发生重叠。

为了准确区分不同元素的贡献,需要进行谱峰重叠处理。

常见的处理方法包括利用化学键能的差异、XPS波长的差异等。

7.数据处理与误差分析:在进行XPS谱峰拟合之后,还需要对数据进行处理和误差分析。

可以计算每个元素的相对百分含量、角分辨率、信噪比等指标。

此外,还需要对拟合结果进行误差分析,以评估数据的可靠性和拟合的准确性。

总之,进行XPS谱峰拟合需要综合考虑实验条件、谱峰形状、背景拟合等多种因素。

SCI实用-X光电子能谱(XPS)分峰方法

SCI实用-X光电子能谱(XPS)分峰方法

13、拟合、优化结合峰时需注意的要点
Peak Type 根据结果选 择s或p等。
对于p,d,f轨道,谱线有分裂, 分裂的峰之间有一定规则:
( 1 ) 对 于 p3/2 、 p1/2 这 种 次 能 级 的 强 度 比 是 一 定 的 , p3/2 : p1/2=2 : 1 ; d5/2:d3/2=3:2;f7/2:f5/2=4:3。
7、建立基线-1
技巧:为了更合适的分峰,
需要将其调节为较合适的
点击Background,结果如下图: 范围。
这里有一点技巧,基线一般默 认HighBE-to-LowBE为全长。
8、建立基线-2
此外,Backgound Type 一般默认为Shirley,不 要修改。
Slope,调节其数值能够改变基线(黑色线条)的形状, 会明显看到基线变化。
15、数据作图
在作图时,G和H两列可以删去, 以A-F列作图即可。
将记事本打开的数据,复制, 粘贴于Origin。
16、数据如图
Raw 即 为 “ 原 来 未 拟 合 的 峰 ” ; Peak sum为“拟合的总峰”; Background 为 “ 拟 合 的 基 线 ” ; 284.8 eV和288.8 eV,即为拟合 得到的两个峰;
可适当调节,使其呈现出弯曲形状,并与峰脚相切 即可。
9、添加结合峰-1
点击
点击Add Peak,出现新对话 框(圆角四边形处)。
主要调节三个参数: Position(峰位置) FWHM(半峰宽) Area(面积)
Fix能够将调节的参数固定。
10、添加结合峰-2
很显然,在 处),因此我们用同样的方法 添加第二个结合峰。
SCI实用-X射线光电子能谱 (XPS)分峰方法

关于EDS、XPS、XRF的介绍

关于EDS、XPS、XRF的介绍

关于EDS、XPS、XRF的介绍能谱仪EDS(Energy Dispersive Spectrometer)是电子显微镜(扫描电镜、透射电镜)的重要附属配套仪器,结合电子显微镜,能够在1-3分钟之内对材料的微观区域的元素分布进行定性定量分析。

原理:利用不同元素的X射线光子特征能量不同进行成分分析。

与WDS(Wave Dispersive Spectrometer)波普仪相比具有以下优缺点:优点: (1)能谱仪探测X射线的效率高。

(2)在同一时间对分析点内所有元素X射线光子的能量进行测定和计数,在几分钟内可得到定性分析结果,而波谱仪只能逐个测量每种元素特征波长。

(3)结构简单,稳定性和重现性都很好(4)不必聚焦,对样品表面无特殊要求,适于粗糙表面分析。

X射线光电子能谱分析(XPS,X-ray photoelectron spectroscopy)测试的是物体表面10纳米左右的物质的价态和元素含量,而EDS不能测价态,且测试的深度为几十纳米到几微米,基本上只能定性分析,不好做定量分析表面的元素含量。

其主要应用:XPS的原理:待测物受X光照射后内部电子吸收光能而脱离待测物表面(光电子),透过对光电子能量的分析可了解待测物组成,XPS主要应用是测定电子的结合能来实现对表面元素的定性分析,包括价态。

XPS(X射线光电子能谱)的原理是用X射线去辐射样品,使原子或分子的内层电子或价电子受激发射出来。

被光子激发出来的电子称为光电子。

可以测量光电子的能量,以光电子的动能为横坐标,相对强度(脉冲/s)为纵坐标可做出光电子能谱图。

从而获得试样有关信息。

X 射线光电子能谱因对化学分析最有用,因此被称为化学分析用电子能谱(Electron Spectroscopy for Chemical Analysis)。

1,元素的定性分析。

可以根据能谱图中出现的特征谱线的位置鉴定除H、He以外的所有元素。

2,元素的定量分析。

根据能谱图中光电子谱线强度(光电子峰的面积)反应原子的含量或相对浓度。

XPS

XPS

化学分析光电子能谱的一个重要特点是它能在不太 高的真空度下进行表面分析研究,这是所有其它方 法都做不到的。当用电子束激发时,如用俄歇电子 能谱法,必须用超高真空,以防止样品上形成碳的 沉积物而掩惹被测表面。 X射线束比较柔和的特点使我们有可能在中等真空 皮下对表面观察苦干小时,特别是当真空成分有利 时,例如使用离子泵或其它“干抽”时就是这种情 况,当然,原子尺度上清洁的金属表面在10-9到10 -10托以上的真空度下不能保持很长时间,这也是事 实,然而,大量的表面分析工作并不是在原子尺度 清桔的表面上进行的,因此,化学分析光电子能谱 不需要超高真空。
用X射线照射固体时,由于光电效应,原子的某一能级的电 子被击出物体之外,此电子称为光电子。 如果X射线光子的能量为hν,电子在该能级上的结合能为Eb, 射出固体后的动能为Ec,则它们之间的关系为:
hν=Eb+Ec+Ws
式中Ws为功函数,它表示固体中的束缚电子除克服个别原 子核对它的吸引外,还必须克服整个晶体对它的吸引才能逸 出样品表面,即电子逸出表面所做的功。上式可另表示为:
3600
D
3600
X bonding 图-14 600s时氧 的 xps图
E
1100S时刻的XPS图
2400S时刻的XPS图
3400
3400
3200
Y intensiyty
3200
Y intensity
3000
3000
2800
2800
2600
2600
2400
525 530 535 540 545
525
在化学分桥光电子能谱中,探测深度是由样 品中电子的平均自由程(MFP)决定的。由于 在俄歇电子能谱中探测深度也是由电子的平 均自由程所控制,所以这两种方法所研究的 样品深度实际上是一样的。 电子平均自由程是样品成分和逃逸电子动能 的函数,因此.对光电子能谱的不同光电子 峰来说,有效样品厚度可能不完全相同,为 了进行仔细的定量研究,这个因素必须考虑。

X射线光电子能谱分峰软件XPS Peak及分峰步骤

X射线光电子能谱分峰软件XPS Peak及分峰步骤

X射线光电子能谱分峰软件XPS Peak及分峰步骤材料表面分析X射线光电子能谱分峰软件及分峰步骤XPS Peak分峰步骤1.将所拷贝数据转换成所需格式:把所需拟合元素的数据引入Origin后,将column A和B中的值复制到一空的记事本文档中(即成两列的格式,左边为结合能,右边为峰强),并存盘。

如要对数据进行去脉冲处理或截取其中一部分数据,需在Origin中做好处理。

2.打开XPS Peak,引入数据:点Data----Import(ASCII),引入所存数据,则出现相应的XPS谱图。

3.选择本底:点Background,在所出现的小框中的High BE和Low BE下方将出现本底的起始和终点位置(因软件问题,此位置最好不改,否则无法再回到Origin),本底将连接这两点,Type可据实际情况选择。

4.选峰:点Add peak,出现小框,在Peak Type处选择s、p、d、f等峰类型(如C1s峰则选s,S2p峰则选p),在Position处选择希望的峰位,需固定时则点fix前小方框,同法还可选半峰宽(FWHM)、峰面积等。

各项中的constraints 可用来固定此峰与另一峰的关系,如Pt4f7/2和Pt4f5/2的峰位间距可固定为3.45,峰面积比可固定为4:3等。

点Delete peak可去掉此峰。

然后再点Add peak 选第二个峰,如此重复。

5.选好所需拟合的峰个数及大致参数后,点Optimise region进行拟合,观察拟合后总峰与原始峰的重合情况,如不好,可以多次点Optimise region。

6.拟合完成后,分别点另一个窗口中的Rigion Peaks下方的0、1、2等可看每个峰的参数,此时XPS峰中变红的为被选中的峰。

如对拟合结果不满意,可改变这些峰的参数,然后再点Optimise region。

7.点Save XPS存图,下回要打开时点Open XPS就可以打开这副图继续进行处理。

XPS谱图介绍

XPS谱图介绍

XPS谱图介绍XPS谱图一般包括光电子谱线,卫星峰(伴峰),俄歇电子谱线,自旋-轨道分裂(SOS)等1.光电子谱线:每一种元素都有自己特征的光电子线,它是元素定性分析的主要依据。

谱图中强度最大、峰宽最小、对称性最好的谱峰,称为XPS的主谱线。

实例说明一:上图中,对于In元素而言,In 3d强度最大、峰宽最小,对称性最好,是In元素的主谱线。

而除了主谱线In 3d之外,其实还有In 4d, In 3p等其它谱线,这是因为In元素有多种内层电子,因而可以产生多种In XPS信号。

2. 卫星峰(伴峰):常规X射线源(Al/Mg Kα1,2)并非是单色的,而是还存在一些能量略高的小伴线(Kα3,4,5和Kβ等),所以导致XPS中,除Kα1,2所激发的主谱外,还有一些小的伴峰。

3. 俄歇电子谱线:电子电离后,芯能级出现空位,弛豫过程中若使另一电子激发成为自由电子,该电子即为俄歇电子。

俄歇电子谱线总是伴随着XPS,但具有比XPS更宽更复杂的结构,多以谱线群的方式出现。

特征:其动能与入射光hν无关。

实例说明三:上图中O KLL, C KLL即为O和C的俄歇电子谱线,从图中可以看到O KLL 其实有三组峰,最左边的为起始空穴的电子层,中间的是填补起始空穴的电子所属的电子层,右边的是发射俄歇电子的电子层。

4. 自旋-轨道分裂(SOS):由于电子的轨道运动和自旋运动发生耦合后使轨道能级发生分裂。

对于l>0的内壳层来说,用内量子数j(j=|l±ms|)表示自旋轨道分裂。

即若l=0 则j=1/2;若l=1则j=1/2或3/2。

除s亚壳层不发生分裂外,其余亚壳层都将分裂成两个峰。

实例说明四:上图所示为PbO的XPS谱图,图中Pb 4f裂分成4f5/2和4f7/2两个峰。

重要意义:对于某一特定价态的元素而言,其p, d, f 等双峰谱线的双峰间距及峰高比一般为一定值。

p峰的强度比为1:2;d线为2:3;f线为3:4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xps谱峰强度单位
X射线光电子能谱(XPS)是一种用于分析材料表面化学状态的技术。

在XPS谱图中,谱峰强度是衡量谱线的重要参数之一。

谱峰强度表示在特定结合能下的电子计数,可以反映出样品表面元素的种类、化学状态和含量等信息。

XPS谱峰强度的单位是电子/秒(e/s)或者计数/秒(count/s)。

XPS谱峰强度的计算方法,是将检测到的电子计数除以探测器的灵敏度和曝光时间。

探测器灵敏度是指探测器每秒对单位电子数的响应能力,通常以计数/微安(count/μA)或者计数/瓦(count/W)表示。

曝光时间指X射线束照射样品的时间,通常以秒(s)为单位。

因此,XPS 谱峰强度的计算公式可以表示为:
谱峰强度 = (电子计数 / 曝光时间) / 探测器灵敏度
在实际应用中,XPS谱峰强度的单位可转换为电子/秒(e/s),以便于对不同样品的谱图进行比较和分析。

此外,为了方便对谱峰强度进行定量分析,通常还需要对谱峰强度进行归一化处理,即将谱峰强度除以相应元素的灵敏度因子。

这样可以消除不同元素之间的灵敏度差异,使得谱峰强度能够更准确地反映样品表面元素的相对含量。

需要注意的是,XPS谱峰强度受到多种因素的影响,包括样品的表面形态、结构、成分等。

因此,在分析XPS谱图时,需要对样品的实际情况进行综合考虑,以获得准确的谱峰强度信息。

同时,
还需要对XPS谱图进行正确的解析和解读,以揭示样品表面化学状态和反应机制等信息。

总之,XPS谱峰强度是衡量XPS谱线的重要参数之一,表示在特定结合能下的电子计数。

XPS谱峰强度的单位是电子/秒(e/s)或者计数/秒(count/s)。

在分析XPS谱图时,需要对样品的实际情况进行综合考虑,以获得准确的谱峰强度信息。

同时,还需要对XPS谱图进行正确的解析和解读,以揭示样品表面化学状态和反应机制等信息。

相关文档
最新文档