牛顿插值法matlab程序解析

合集下载

matlab牛顿迭代法求方程

matlab牛顿迭代法求方程

一、引言在数值计算中,求解非线性方程是一项常见的任务。

牛顿迭代法是一种常用且有效的方法,它通过不断逼近函数的零点来求解方程。

而在MATLAB中,我们可以利用其强大的数值计算功能来实现牛顿迭代法,快速求解各种非线性方程。

二、牛顿迭代法原理与公式推导1. 牛顿迭代法原理牛顿迭代法是一种利用函数的导数信息不断逼近零点的方法。

其核心思想是利用当前点的切线与x轴的交点来更新下一次迭代的值,直至逼近方程的根。

2. 公式推导与迭代过程假设要求解方程f(x)=0,在初始值x0附近进行迭代。

根据泰勒展开,对f(x)进行一阶泰勒展开可得:f(x) ≈ f(x0) + f'(x0)(x - x0)令f(x)≈0,则有:x = x0 - f(x0)/f'(x0)将x带入f(x)的表达式中,即得到下一次迭代的值x1:x1 = x0 - f(x0)/f'(x0)重复以上过程,直至达到精度要求或者迭代次数上限。

三、MATLAB中的牛顿迭代法实现1. 编写函数在MATLAB中,我们可以编写一个函数来实现牛顿迭代法。

需要定义原方程f(x)的表达式,然后计算其一阶导数f'(x)的表达式。

按照上述推导的迭代公式,编写循环语句进行迭代计算,直至满足精度要求或者达到最大迭代次数。

2. 调用函数求解方程在编写好牛顿迭代法的函数之后,可以通过在MATLAB命令窗口中调用该函数来求解具体的方程。

传入初始值、精度要求和最大迭代次数等参数,即可得到方程的近似根。

四、牛顿迭代法在工程实践中的应用1. 求解非线性方程在工程领域,很多问题都可以转化为非线性方程的求解问题,比如电路分析、控制系统设计等。

利用牛顿迭代法可以高效地求解这些复杂方程,为工程实践提供了重要的数值计算手段。

2. 优化问题的求解除了求解非线性方程外,牛顿迭代法还可以应用于优化问题的求解。

通过求解目标函数的导数等于0的方程,可以找到函数的极值点,从而解决各种优化问题。

牛顿法解方程组matlab

牛顿法解方程组matlab

牛顿法解方程组matlab
牛顿法是一种可以求解方程组的迭代算法。

特别适用于求解非线性系统方程,它的思想是利用抛物线的顶点的构造方程的特性来解决多元函数的极值问题。

在Matlab中,我们可以使用其牛顿法解决方程组问题。

牛顿法的算法思想是根据函数的极值点更新解的方向,以此来找到方程的解,主要步骤如下:
1. 首先,输入要求解的方程组;
2. 然后,使用命令"fzero"构造牛顿法求解器;
3. 随后,使用命令"fsolve"求解方程,输出求解结果;
4. 最后,使用控制台显示求解结果,可以得到我们要求的方程组解。

使用Matlab牛顿法来求解方程组,由于Matlab提供的求解函数算法速度快且求解精度高,加之方便的调节控制,使得它在多元函数迭代求不等式约束系统的解的过程中,能够快速有效地完成任务,节省时间,可以得到较好的效果,从而更好地解决复杂的方程组问题。

由此可以看出,Matlab中使用牛顿法解决方程组是一个非常有用的工具,对求解复杂的方程组来说,它能大大降低计算的难度,提高求解的效率,可以为工程的快速发展做出重要的贡献。

matlab牛顿法代码举例

matlab牛顿法代码举例

matlab牛顿法代码举例使用 MATLAB 实现牛顿法的示例代码。

牛顿法(也称为牛顿-拉弗森方法)是一种在实数和复数域上求解方程的数值方法。

该方法使用函数和其导数的值来寻找函数零点的近似值。

function [root, iter] = newtonMethod(func, dfunc, x0, tol, maxIter) "%"newtonMethod 使用牛顿法求解方程"%"输入:"%"func - 目标函数"%"dfunc - 目标函数的导数"%"x0 - 初始猜测值"%"tol - 容差,求解精度"%"maxIter - 最大迭代次数"%"输出:"%"root - 方程的根"%"iter - 迭代次数x = x0;for iter = 1:maxIterfx = func(x);dfx = dfunc(x);if abs(dfx) < epserror('导数太小,无法继续迭代');endxnew = x - fx/dfx;if abs(xnew - x) < tolroot = xnew;return;endx = xnew;enderror('超过最大迭代次数');end"%"示例: 求解 x^3 - x - 2 = 0func = @(x) x^3 - x - 2;dfunc = @(x) 3*x^2 - 1;x0 = 1; "%"初始猜测值tol = 1e-6; "%"容差maxIter = 1000; "%"最大迭代次数[root, iter] = newtonMethod(func, dfunc, x0, tol, maxIter);fprintf('根是: "%"f, 在 "%"d 次迭代后找到\n', root, iter);在这个代码中,newtonMethod 函数接收一个函数 func 及其导数 dfunc,一个初始猜测值,容差和最大迭代次数 maxIter。

牛顿插值法matlab程序例题

牛顿插值法matlab程序例题

牛顿插值法是一种常用的数值分析方法,用于构造一个多项式函数,以便在给定的数据点上进行插值。

这个主题在数学和工程领域中有着广泛的应用,特别是在数据拟合和函数逼近方面。

牛顿插值法的核心思想是通过不断地添加新的数据点来构造一个多项式,并利用已知数据点来确定多项式的系数,从而实现对未知数据点的插值预测。

在Matlab中,实现牛顿插值法并不困难,我们可以利用已有的函数和工具来简化计算过程。

下面,我们将通过一个具体的例题来讲解如何使用Matlab编写牛顿插值法的程序,并分析其结果。

我们需要明确牛顿插值法的数学原理。

给定n个互不相同的节点\(x_0, x_1, ... , x_n\),以及在这些节点上的函数值\(f(x_0), f(x_1), ... , f(x_n)\),我们希望构造一个n次插值多项式p(x),满足p(x_i) = f(x_i),i=0,1,...,n。

牛顿插值多项式的一般形式为:\[p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + ... + a_n(x -x_0)(x - x_1)...(x - x_{n-1})\]其中,\[a_i\]表示插值多项式的系数。

通过牛顿插值法的迭代过程,可以逐步求解出这些系数,进而得到插值多项式的表达式。

接下来,我们将以一个具体的例题来演示如何在Matlab中实现牛顿插值法。

假设我们有如下的数据点和函数值:\(x = [1, 2, 3, 4]\)\(f(x) = [1, 4, 9, 16]\)我们希望利用这些数据点来构造一个插值多项式,并在给定的区间上进行插值计算。

在Matlab中,可以通过interp1函数来进行插值计算,该函数支持多种插值方法,包括牛顿插值法。

下面是一个简单的Matlab程序示例:```matlabx = [1, 2, 3, 4];y = [1, 4, 9, 16];xi = 2.5;yi = interp1(x, y, xi, 'spline');disp(['在x=',num2str(xi),'处的插值结果为:',num2str(yi)]);```在这段代码中,我们首先定义了给定的数据点x和对应的函数值y,然后利用interp1函数对x=2.5处的插值结果进行计算。

matlab牛顿法求根程序

matlab牛顿法求根程序

matlab牛顿法求根程序1、引言牛顿法求解方程的数值解是非常常用的一种方法,也是收敛速度很快的一种方法。

在Matlab中,可以使用fzero函数实现牛顿法求根。

本篇文章将介绍如何使用Matlab实现牛顿法求根。

2、牛顿法求根的原理牛顿法求根实际上是一种迭代法,迭代公式为:x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}其中,x_n 是第n次迭代的数值解,f(x_n)是方程在x_n处的函数值,f'(x_n)是方程在x_n处的导数值。

3、使用Matlab实现牛顿法求根在Matlab中,我们可以使用fzero函数实现牛顿法求根。

该函数的基本用法为:x=fzero(fun,x0,options)其中,fun是一个函数句柄,x0是初始迭代值,options是一个选项结构体,用于设置迭代精度等参数。

例如,我们想求解方程x^2-2=0在x=1附近的解,可以写出如下Matlab程序:fun=@(x)x^2-2;x0=1;options=optimset('TolX',1e-8,'Display','iter');x=fzero(fun,x0,options)其中,optimset函数可以设置迭代精度等参数,‘TolX’表示迭代停止条件,‘Display’表示是否输出迭代过程。

程序的运行结果如下:Func-count x f(x) Procedure1 1 -1 initial2 1.5000 0.2500 search3 1.4167 0.0069 search4 1.4142 0.0000 search即求得方程的解为1.4142。

4、代码实现除了使用fzero函数外,我们也可以自己实现牛顿法求根的代码。

以下是一个简单的例子:function x=newton(fun,x0,tol)while abs(fun(x0))>tolx0=x0-fun(x0)/diff(fun,x0);endx=x0;end其中,fun是函数句柄,x0是初始迭代值,tol是迭代停止条件。

牛顿插值法matlab程序解析

牛顿插值法matlab程序解析

牛顿插值法在MATLAB 中的实现经过n+1个不同的插值点12n+1,,x x x …,,构造牛顿插值公式1211231212n+112n =[,]()[,,]()()[,,]()()()N f x x x x f x x x x x x x f x x x x x x x x x -+--++---(x )……… 注:牛顿插值法中,用到了插值公式%我们以二次牛顿插值公式为例解析牛顿插值法的matlab 程序function[c,d ]=newpoly (x ,y )%这里x 为3个节点的横坐标组成的向量,即()123,,x x x x =,y 为纵坐标的组成向量,即()()()()123,,y f x f x f x =%c 为所得的牛顿插值多项式的系数组成的向量n=length(x);%测量向量x 的长度,即向量x 中元素i x 的个数,赋值给n,所以n=3,注:这里的“n ”仅为变量,和公式中的次数n 不一样d=zeros (n ,n ); d=zeros(3,3)%把变量d 定义为一个n 行,n 列的零矩阵,此矩阵用来储存各阶差商,格式完全等同于书中21页的表2。

1 d (:,1)=y';%此句是把向量y 的转置,即123()()()f x y f x f x ⎛⎫ ⎪= ⎪ ⎪⎝⎭,赋值给零矩阵d 的第一列%下面运用两个for 循环来构造书中21页的差商表2。

1%第一个循环(父循环),循环变量为kfor k=2:n%用来表示零矩阵d 中的第几行%第二个循环(父循环),循环变量为kfor j=k :n%用来表示零矩阵d 中的第几列d (k ,j)=(d (k ,j-1)—d(k-1,j —1))/(x (k)-x (k —j+1));%差商公式,其中d (k,j)表示零矩阵d 中的第k 行,第j 列的元素,d (k,j —1),d (k-1,j —1)等也类似,它们代表的元素随着双循环而变化,x(k —1)表示1k x -,这种计算差商的方法是根据差商表的排列位置而得来,具体解释见下面。

matlab牛顿法

matlab牛顿法

matlab牛顿法牛顿法是一种经典的数值计算算法,其目的是在数值计算中寻找函数零点。

这个算法在工程、物理、计算机等各个领域都有广泛的应用。

在matlab中,牛顿法也是常用的算法之一。

1、牛顿法的概念及其原理牛顿法是一种迭代方法,用于解决方程f(x)=0的根。

该算法的基本思想是利用泰勒级数在函数零点处的展开式来逐步逼近函数零点。

具体地,看以下公式:f(x)=f(x0)+f'(x0)(x-x0)+...+f(n)(x0)/n!*(x-x0)^n这个公式表明了在x=x0附近的函数f(x)可以通过f(x0)以及一堆导数来近似表示。

如果我们只保留前两项,则有:0=f(x0)+f'(x0)(x-x0)然后可以解出以下的式子来得到下一个近似解:x1=x0-f(x0)/f'(x0)在牛顿法中只保留一阶泰勒级数,实际上是认为函数在零点附近,近似为线性函数,接下来的迭代是在这个线性函数上迭代得到零点。

2、应用牛顿法解决实际问题在实际问题中,当我们遇到求方程零点的问题时,我们可以使用牛顿法。

例如,我们想要计算sin(x)=1的解的话,可以将函数f(x)=sin(x)-1作为牛顿法的输入函数。

具体来说,可以这样写:% 定义初始值x0 = 1;% 定义牛顿法需要用到的函数f(x)fx = @(x) sin(x) - 1;% 迭代for i = 1:50x1 = x0 - fx(x0) / cos(x0);x0 = x1;enddisp(x1);通过这样的代码实现,我们可以得到方程sin(x)=1的解为1.5708。

事实上,matlab中有一个现成的函数,叫做fzero,可以直接用来求方程的解,这个函数内部实现也是用的牛顿法。

3、牛顿法的优缺点及适用条件牛顿法有其优点和缺点,其优点在于它的收敛速度非常快,因为它利用了导数来对函数刻画,逐步逼近了函数零点。

另外,牛顿法的收敛率是二次的,因此在计算精度方面也有比较大的保证。

matlab实验牛顿法

matlab实验牛顿法

实验报告实验名称:牛顿法院(系):机电学院专业班级:机械制造及其自动化姓名:学号:2013年5 月13 日实验一:牛顿法实验日期:2013年5 月13 日一、实验目的了解MATLAB的基本运用了解MATLB在优化中的使用二、实验原理牛顿法是梯度法的发展,不仅使用目标函数的一阶导数,而且考虑变化趋势,利用目标函数的二阶偏导,对于一元函数,将其极小点x*附近的一个给定点x0进行泰勒展开,得到二次函数,按照极值条件可得极小值点x1,用其作为x*的下一个近似点,并在x1处进行泰勒展开,得到第二个近似点x2。

直到求的F(x)的极小值点,对于多元函数f(x),同样用上述方法求极小值三、实验内容牛顿法程序:x0=[3;3];%初始点xk=x0;k=0;%迭代变量初始化MLN=100;%最大迭代次数ie=10^(-7);%收敛精度ae=1;%实际收敛精度grad=zeros(2,1);%迭代循环求解while (ae>ie&&k<MLN)syms x1syms x2%调用目标函数,求梯度fun1=fun(x1,x2);fx1=diff(fun1,'x1');fx2=diff(fun1,'x2');fx1=inline(fx1);fx2=inline(fx2);%计算梯度值grad(1)=feval(fx1,xk(1));grad(2)=feval(fx2,xk(2));%计算海赛矩阵及其逆阵G=jacobian(jacobian(fun1),[x1,x2]);b=zeros(2,2);b(1,1)=G(1,1);b(1,2)=G(1,2);b(2,1)=G(2,1);b(2,2)=G(2,2);b=inv(b);xk1=xk-b*grad;ae=norm(xk1-xk);xk=xk1;k=k+1;endx=xk函数程序:function f=fun(x1,x2)f=(x1-1)^4+(x1+2*x2)^2执行结果:x =四、实验小结通过本实验了解了了matlab的基本操作方法,了解牛顿法的原理与基本运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿插值法在MATLAB 中的实现
经过n+1个不同的插值点12n+1,,x x x …,,构造牛顿插值公式
1211231212n+112n =[,]()[,,]()()[,,]()()()N f x x x x f x x x x x x x f x x x x x x x x x -+--++---(x )……… 注:牛顿插值法中,用到了插值公式
%我们以二次牛顿插值公式为例解析牛顿插值法的matlab 程序
function[c,d]=newpoly(x,y)
%这里x 为3个节点的横坐标组成的向量,即()123,,x x x x =,y 为纵坐标的组成向量,即()()()()123,,y f x f x f x =
%c 为所得的牛顿插值多项式的系数组成的向量
n=length(x);
%测量向量x 的长度,即向量x 中元素i x 的个数,赋值给n ,所以n=3,注:这里的“n ”仅为变量,和公式中的次数n 不一样
d=zeros(n,n); d=zeros(3,3)
%把变量d 定义为一个n 行,n 列的零矩阵,此矩阵用来储存各阶差商,格式完全等同于书中21页的表 d(:,1)=y ’;
%此句是把向量y 的转置,即123()()()f x y f x f x ⎛⎫ ⎪= ⎪ ⎪⎝
⎭,赋值给零矩阵d 的第一列
%下面运用两个for 循环来构造书中21页的差商表
%第一个循环(父循环),循环变量为k
for k=2:n
%用来表示零矩阵d 中的第几行
%第二个循环(父循环),循环变量为k
for j=k:n
%用来表示零矩阵d 中的第几列
d(k,j)=(d(k,j-1)-d(k-1,j-1))/(x(k)-x(k-j+1));
%差商公式,其中d(k,j)表示零矩阵d 中的第k 行,第j 列的元素,d(k,j-1),d(k-1,j-1)等也类似,它们代表的元素随着双循环而变化,x(k-1)表示1k x -,这种计算差商的方法是根据差商表的排列位置而得来,具体解释见下面。

end
end
%下面以二次牛顿插值公式为例解析双循环构造差商表,让我们先来看看构造好的差商表
121232312333
()
()
[,]
()[,][,,]X f x d f x f x x f x f x x f x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦
%然后我们依旧用大括号的形式表示构造各阶差商的步骤
[][]212121213223323223211233131()()(2,1)(1,1)2,(2,2)[,],2()()(3,1)(2,1)3,(3,2)[,]x ,,(3,2)(2,2)33(3,3)[,,]f x f x d d k d f x x x x x x j f x f x d d k d f x x x x x x f x f x x d d j k d f x x x x x x x ⎧--⎧====⎪⎪--⎪⎪=⎨⎪--⎪⎪====⎨⎪--⎩⎪⎪⎧--=====⎪⎨--⎪⎩⎩
, c=d(n,n); 即 c=d(3,3)
%此句是把零矩阵d 中的对角线元素给了向量c , c 的向量长度即为3
%下面的循环为子循环,循环变量为k ,用于构造牛顿插值公式
for k=(n-1):(-1):1; k=2:-1:1 %这句话是说循环变量k 从2循环到1
c(k+1,k+1)=conv(c(k+1,k+1),poly(x(k))); %conv 为相乘函数,此句k 每循环一次就是把c 和以k x 为单根的多项式相乘起来,即()k c x x ⨯-,k 循环结束后即为11n ()()()k c x x x x x x +⨯-⨯⨯-⨯⨯-……,注初值c=d(3,3). m=length(c); %此句就是统计向量c 的长度,其实我们把它认定为n 循环到了哪次,所以m=k+1 c(m)=c(m)+d(k,k) %此句是循环中的重点,是一个著名的循环,其中c (m )=c (k+1,k+1); end
%下面我们以二次牛顿插值公式为例用大括号的形式表示循环构造牛顿插值公式的过程 ()()12322123212112321122,13,(3,3)[,,](3)(3,3)*(2,2)(3,3)*(2,2)[,,]()[,]1,12,(2)(2,2)(3)(1,1)(3,3)*()(1,1)[,,]()()[,]k m k d f x x x c c c x x d d x x d f x x x x x f x x k m k c c c d c x x d f x x x x x x x f x x ==+===-+=-+=⨯-+==+===+=-+=⨯-⨯-+⨯初值为c==,11()()x x f x ⎧⎨-+⎩。

相关文档
最新文档