概率统计常见题型及方法总结
高考数学概率与统计题型解析与答题技巧

高考数学概率与统计题型解析与答题技巧在高考数学中,概率与统计是一个重要的板块,它不仅考查学生的数学知识和技能,还培养学生的数据分析和推理能力。
对于很多同学来说,这部分内容既有一定的挑战性,又充满了得分的机会。
下面我们就来详细解析高考数学中概率与统计的常见题型以及相应的答题技巧。
一、概率题型1、古典概型古典概型是概率中最基础的题型之一。
它的特点是试验结果有限且等可能。
例如,从装有若干个红球和白球的袋子中摸球,计算摸到某种颜色球的概率。
答题技巧:首先,确定总的基本事件数和所求事件包含的基本事件数。
然后,利用古典概型的概率公式 P(A)=所求事件包含的基本事件数÷总的基本事件数进行计算。
2、几何概型几何概型与古典概型不同,它的试验结果是无限的。
常见的有长度型、面积型、体积型几何概型。
比如,在一个区间内随机取一个数,求满足某个条件的概率。
答题技巧:对于几何概型,关键是要正确确定几何度量。
例如,长度型就计算长度,面积型就计算面积,体积型就计算体积。
然后,按照几何概型的概率公式 P(A)=构成事件 A 的区域长度(面积或体积)÷试验的全部结果所构成的区域长度(面积或体积)进行求解。
3、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率。
题目中通常会给出一些条件,让我们计算在这些条件下的概率。
答题技巧:利用条件概率公式 P(A|B)= P(AB)÷P(B),先求出 P(AB)和 P(B),再计算条件概率。
4、相互独立事件与互斥事件相互独立事件是指一个事件的发生与否对另一个事件的发生概率没有影响;互斥事件则是指两个事件不能同时发生。
答题技巧:对于相互独立事件,它们同时发生的概率用乘法计算,即 P(AB)= P(A)×P(B);对于互斥事件,它们至少有一个发生的概率用加法计算,即 P(A∪B)= P(A)+ P(B)。
二、统计题型1、抽样方法包括简单随机抽样、分层抽样和系统抽样。
概率与统计题型归纳总结

概率与统计题型归纳总结在学习概率与统计的过程中,我们不可避免地要接触到各种各样的题型。
在这些题型中,有的看似简单却需要一定思考,有的则需要我们具备一定的数学基础。
本文将围绕这些题型展开,帮助大家更好地总结归纳概率与统计中的题型。
一、基本概率基本概率是概率学习中最基础的部分,要求我们计算某一事件发生的可能性,其公式为:P(A)=n(A)/n(S)。
其中,P(A)表示事件A发生的概率,n(A)表示事件A出现的次数,n(S)表示总体出现的次数。
二、条件概率条件概率是建立在基本概率之上的,要求我们在已知某一事件发生的情况下,计算其他事件发生的概率。
其公式为:P(A|B)=P(B∩A)/P(B)。
其中,P(A|B)表示在B发生的前提下,A发生的概率,P(B∩A)表示A与B同时发生的概率,P(B)表示B发生的概率。
三、贝叶斯定理贝叶斯定理是一种利用先验信息来更新后验概率的方法。
其公式为:P(A|B)=P(B|A)P(A)/P(B)。
其中,P(A)为先验概率,P(B|A)为A发生的情况下,B发生的概率,P(B)为后验概率。
四、独立事件独立事件是指两个或多个事件,其中任意一个事件的发生与其他事件的发生无关。
其公式为:P(A∩B)=P(A)P(B)。
其中,P(A)和P(B)分别表示事件A和事件B各自发生的概率,P(A∩B)表示A和B同时发生的概率。
五、全概率公式全概率公式是用来计算某一事件在多种情况下的概率的公式。
其公式为:P(A)=∑(i=1)^(n)P(A|B_i)P(B_i)。
其中,B_1,B_2...B_n是一组互不相交的事件,且它们包含了所有可能的情况。
P(A)表示事件A的概率,P(A|B_i)表示在B_i发生的前提下,A发生的概率,P(B_i)表示B_i 发生的概率。
六、随机变量随机变量是指某一随机事件在其过程中所反映的变量。
在统计学中,我们常常会用随机变量来描述概率分布。
常见的随机变量有离散随机变量和连续随机变量。
高中数学必修3概率统计常考题型:简单随机抽样

【知识梳理】1.简单随机抽样的定义设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.抽签法把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.3.随机数法随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.【常考题型】题型一、简单随机抽样的概念【例1】下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区参加救灾工作;(4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签.[解](1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.(4)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样.【类题通法】简单随机抽样的判断策略判断一个抽样能否用简单随机抽样,关键是看它是否满足四个特点:①总体的个体数目有限;②从总体中逐个进行抽取;③是不放回抽样;④是等可能抽样.同时还要注意以下几点:①总体的个体性质相似,无明显的层次;②总体的个体数目较少,尤其是样本容量较小;③用简单随机抽样法抽出的样本带有随机性,个体间无固定的距离.【对点训练】下列问题中,最适合用简单随机抽样方法抽样的是()A.某电影院有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了解在编人员对学校机构改革的意见,要从中抽取一个容量为20的样本D.某乡农田有:山地800公顷,丘陵1 200公顷,平地2 400公顷,洼地400公顷,现抽取农田48公顷估计全乡农田平均每公顷产量解析:选B A的总体容量较大,用简单随机抽样法比较麻烦;B的总体容量较少,用简单随机抽样法比较方便;C由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D总体容量大,且各类田地的差别很大,也不宜采用简单随机抽样法.题型二、抽签法及其应用【例2】(1)下列抽样实验中,适合用抽签法的有()A.从某厂生产3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验[解析]A,D两项总体容量较大,不适合用抽签法;对C项甲、乙两厂生产的产品质量可能差异明显.[答案] B(2)某大学为了选拔世博会志愿者,现从报告的18名同学中选取6人组成志愿小组,请用抽签法写出抽样过程.[解]第一步,将18名同学编号,号码是01,02, (18)第二步,将号码分别写在一张纸条上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步,从袋子中依次抽取6个号签,并记录上面的编号;第五步,所得号码对应的同学就是志愿小组的成员.【类题通法】1.抽签法的适用条件一个抽样能否用抽签法,关键看两点:一是制签是否方便;二是号签是否容易被搅匀.一般地,当总体容量和样本容量都较小时适宜用抽签法.2.应用抽签法的关注点(1)对个体编号时,也可以利用已有的编号.例如,从某班学生中抽取样本时,可以利用学生的学号、座位号等.(2)在制作号签时,所使用的工具(纸条、卡片或小球等)应形状、大小都相同,以保证每个号签被抽到的概率相等.(3)用抽签法抽样的关键是将号签搅拌均匀.只有将号签搅拌均匀,才能保证每个个体有相等的机会被抽中,从而才能保证样本具有代表性.(4)要逐一不放回抽取.【对点训练】现有30本《三维设计》,要从中随机抽取5本进行印刷质量检验,请用抽签法进行抽样,并写出抽样过程.解:总体和样本数目较小,可采用抽签法进行:①先将30本书进行编号,从1编到30;②把号码写在形状、大小均相同的号签上;③将号签放在某个箱子中进行充分搅拌,然后依次从箱子中取出5个号签,按这5个号签上的号码取出样品,即得样本.题型三、随机数表法的应用【例3】(1)要考察某种品牌的850颗种子的发芽率,从中抽取50颗种子进行实验,利用随机数表法抽取种子,先将850颗种子按001,002,…,850进行编号,如果从随机数表第3行第6列的数开始向右读,请依次写出最先检验的4颗种子的编号____________________.(下面抽取了随机数表第1行至第5行.)03 47 43 73 8636 96 47 36 6146 98 63 71 6233 26 16 80 4560 11 14 10 9597 74 24 67 6242 81 14 57 2042 53 32 37 3227 07 36 07 5124 51 79 89 7316 76 62 27 6656 50 26 71 0732 90 79 78 5313 55 38 58 5988 97 54 14 1012 56 85 99 2696 96 68 27 3105 03 72 93 1557 12 10 14 2188 26 49 81 7655 59 56 35 6438 54 82 46 2231 62 43 09 9006 18 44 32 5323 83 01 30 30[解析]从随机数表第3行第6列的数2开始向右读第一个小于850的数字是227,第二个数字665,第三个数字650,第四个数字267,符合题意.[答案]227,665,650,267(2)现有一批零件,其编号为600,601,602,…,999.利用原有的编号从中抽取一个容量为10的样本进行质量检查,若用随机数表法,怎样设计方案?[解]第一步,在随机数表中任选一数字作为开始数字,任选一方向作为读数方向.比如:选第7行第6个数“7”,向右读.第二步,从“7”开始向右每次读取三位,凡在600~999中的数保留,否则跳过去不读,依次得753,724,688,770,721,763,676,630,785,916.第三步,以上号码对应的10个零件就是要抽取的对象.(答案不唯一)【类题通法】利用随机数表法抽样时应注意的问题(1)编号要求位数相同,若不相同?需先调整到一致两再进行抽样,如当总体中有100个个体时,为了操作简便可以选择从00开始编号,那么所有个体的号码都用两位数字表示即可,从00~99号.如果选择从1开始编号那么所有个体的号码都必须用三位数字表示,从001~100.很明显每次读两个数字要比读三个数字节省读取随机数的时间.(2)第一个数字的抽取是随机的.(3)当随机数选定,开始读数时,读数的方向可左,可右,可上,可下,但应是事先定好的.【对点训练】现有一批编号为10,11,…,98,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验,如何用随机数表法设计抽样方案?解:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9.第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.【练习反馈】1.为了了解一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量解析:选C200个零件的长度是从总体中抽出的个体所组成的集合,所以是总体的一个样本.故选C.2.抽签法中确保样本具有代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回解析:选B在数理统计里,为了使样本具有较好的代表性,设计抽样方法时,最重要的是将总体“搅拌均匀”,使每个个体有同样的机会被抽到,而抽签法是简单随机抽样,因此在给总体标号后,一定要搅拌均匀.3.用随机数法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的可能性是________.解析:因为样本容量为20,总体容量为100,所以总体中每一个个体被抽到的可能性都为20100=0.2.答案:0.24.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是________.95 33 95 22 0018 74 72 00 1838 79 58 69 3281 76 80 26 9282 80 84 25 3990 84 60 79 8024 36 59 87 3882 07 53 89 3596 35 23 79 1805 98 90 07 3546 40 62 98 8054 97 20 56 9515 74 80 08 3216 46 70 50 8067 72 16 42 7920 31 89 03 4338 46 82 68 7232 14 82 99 7080 60 47 18 9763 49 30 21 3071 59 73 05 5008 22 23 71 7791 01 93 20 4982 96 59 26 9466 39 67 98 60解析:所取的号码要在00~59之间且重复出现的号码仅取一次.答案:18,00,38,58,32,26,25,395.某校高一年级有43名足球运动员,要从中抽出5人抽查学习负担情况.用抽签法设计一个抽样方案.解:第一步:编号,把43名运动员编号为1~43;第二步:制签,做好大小、形状相同的号签,分别写上这43个数;第三步:搅拌,将这些号签放在暗箱中,进行均匀搅拌;第四步:抽签入样,每次从中抽取一个,连续抽取5次,从而得到容量为5的入选样本.。
高考数学概率统计题型归纳

高考数学概率统计题型归纳高考数学中的概率统计是一个重要的考点,其题型多样,涵盖了众多知识点。
为了帮助同学们更好地应对高考中的概率统计题目,下面对常见的题型进行归纳和分析。
一、古典概型古典概型是概率统计中最基本的题型之一。
其特点是试验中所有可能的结果有限,且每个结果出现的可能性相等。
例如,从装有 5 个红球和 3 个白球的袋子中随机取出 2 个球,求取出的 2 个球都是红球的概率。
解决这类问题的关键是要准确计算基本事件的总数和所求事件包含的基本事件数。
在上述例子中,基本事件的总数可以通过组合数计算,即从 8 个球中取出 2 个球的组合数;所求事件包含的基本事件数为从 5 个红球中取出 2 个球的组合数。
然后用所求事件包含的基本事件数除以基本事件的总数,即可得到所求概率。
二、几何概型几何概型与古典概型的区别在于试验的结果是无限的。
通常会涉及到长度、面积、体积等几何度量。
比如,在区间0, 5上随机取一个数,求这个数小于 2 的概率。
解决几何概型问题时,需要确定几何区域的度量,并计算出所求事件对应的几何区域的度量,最后用所求事件对应的几何区域的度量除以总的几何区域的度量,得到概率。
三、相互独立事件与条件概率相互独立事件是指一个事件的发生与否对另一个事件的发生概率没有影响。
例如,甲、乙两人分别独立射击,甲击中目标的概率为 08,乙击中目标的概率为 07,求两人都击中目标的概率。
条件概率则是在已知某个事件发生的条件下,求另一个事件发生的概率。
比如,已知某班级男生占 60%,女生占 40%,男生中优秀的比例为30%,女生中优秀的比例为 20%,现从班级中随机抽取一名学生为优秀,求这名学生是男生的概率。
对于相互独立事件,其概率的计算使用乘法公式;对于条件概率,使用条件概率公式进行计算。
四、离散型随机变量离散型随机变量是指取值可以一一列出的随机变量。
常见的离散型随机变量有二项分布、超几何分布等。
二项分布是指在 n 次独立重复试验中,某事件发生的次数 X 服从二项分布。
高中数学概率与统计的常见题型解析

高中数学概率与统计的常见题型解析概率与统计是高中数学中的一门重要课程,也是学生们普遍感觉较难的一部分内容。
在考试中,概率与统计题型占比较大,因此对于这部分知识的掌握至关重要。
本文将结合常见的概率与统计题型,进行解析和说明,帮助高中学生和他们的父母更好地理解和应对这些题目。
一、事件概率计算题事件概率计算题是概率与统计中的基础题型,也是最常见的题型之一。
这类题目要求计算某个事件发生的概率。
例如:【例题】已知一副扑克牌中有52张牌,其中红心牌有13张。
从中随机抽取一张牌,求抽到红心牌的概率。
解析:这是一个典型的事件概率计算题。
根据题目所给的信息,我们知道红心牌有13张,总共有52张牌,因此红心牌的概率为13/52,即1/4。
这类题目的考点在于理解概率的定义,并且能够根据题目给出的条件计算出事件发生的概率。
在解题过程中,可以通过简化分数、约分等方法,使计算更加简便。
二、排列组合题排列组合题是概率与统计中的另一类常见题型,也是较为复杂的题目之一。
这类题目要求计算事件的排列或组合方式。
例如:【例题】某班有10个学生,要从中选出3个学生组成一支篮球队,求不考虑位置的情况下,有多少种不同的组合方式。
解析:这是一个排列组合题。
我们需要从10个学生中选出3个学生,不考虑位置的情况下,即选出的学生是无序的。
根据组合的定义,我们可以使用组合公式C(n,m) = n!/(m!(n-m)!)进行计算。
代入题目的数据,即C(10,3) = 10!/(3!(10-3)!)=120种不同的组合方式。
这类题目的考点在于理解排列和组合的概念,并且能够根据题目给出的条件进行计算。
在解题过程中,可以使用排列组合公式简化计算,同时注意分子和分母的阶乘运算。
三、事件独立性题事件独立性题是概率与统计中的另一个重要题型,也是较为复杂的题目之一。
这类题目要求判断多个事件之间是否独立。
例如:【例题】甲、乙、丙三个人独立地进行一项考试,他们的及格率分别为0.8、0.9和0.7。
2024高考数学概率统计知识点总结与题型分析

2024高考数学概率统计知识点总结与题型分析概率统计作为数学课程的一个重要分支,在高考中占有重要的一席之地。
它是一个与现实生活息息相关的学科,旨在通过收集、整理和分析数据,帮助我们做出正确的判断和决策。
本文对2024高考数学概率统计的知识点进行了总结,并对可能出现的题型进行了分析。
一、基本概念和公式1. 随机事件:指在一次试验中可能发生也可能不发生的事件。
2. 样本空间:指一个试验所有可能结果的集合。
3. 必然事件:指在一次试验中一定会发生的事件。
4. 不可能事件:指在一次试验中一定不会发生的事件。
5. 事件的概率:指随机事件发生的可能性大小。
6. 加法原理:对于两个互不相容的事件A和B,它们的和事件A∪B的概率等于各个事件的概率之和。
P(A∪B) = P(A) + P(B)7. 乘法原理:对于两个相互独立的事件A和B,它们的积事件A∩B的概率等于各个事件的概率之积。
P(A∩B) = P(A) × P(B)二、概率计算1. 事件的概率计算:对于离散型随机事件,概率可通过频率估计和计数原理计算。
对于连续型随机事件,概率可通过定积分计算。
2. 事件的互斥与独立:如果两个事件A和B互斥(即不能同时发生),则它们的和事件A∪B的概率等于各自事件的概率之和。
如果两个事件A和B相互独立(即一个事件的发生不受另一个事件发生与否的影响),则它们的积事件A∩B的概率等于各自事件的概率之积。
三、排列组合与概率计算1. 排列:排列是从n个不同元素中取出m个元素(m≤n),并有顺序地排成一列的方式。
排列的计算公式为:A(n,m) = n! / (n-m)!2. 组合:组合是从n个不同元素中取出m个元素(m≤n),不考虑顺序地组成一个集合的方式。
组合的计算公式为:C(n,m) = n! / [m! × (n-m)!]3. 概率计算中的排列组合:当事件A与某个事件B相关时,在计算A的概率时,需要考虑B 发生的不同排列组合情况。
高中数学概率与统计的常见题型解析

高中数学概率与统计的常见题型解析随着高中数学课程的深入,概率与统计成为了学生们必修的重要内容之一。
在这个领域里,有许多常见的题型需要我们掌握和熟练运用。
本文将对高中数学概率与统计的常见题型进行解析,帮助同学们更好地理解和应用。
一、概率计算题1.基本原理概率计算题是考察学生对基本原理的理解与运用能力。
基本原理包括“分子数/总数”和“事件发生的次数/总次数”等计算方法。
通常,这类题目要求计算某一事件发生的概率。
2.排列组合排列组合也是概率计算中重要的一部分,常见的排列组合题型有“抽签问题”和“求解概率的可能性”等。
解决这类题目,需要熟悉排列组合的计算方法,并注意根据题目要求确定计算的范围和顺序。
3.条件概率条件概率是指在已知某一条件下发生某一事件的可能性。
解决条件概率题型,需要根据条件和事件的关系确定计算的方法,并利用已知信息进行计算。
二、统计分析题1.数据收集统计分析题通常给出一组数据,要求学生进行整理和计算。
在解决这类题目时,需要注意数据的归类和整理,以及正确选择和运用统计方法。
2.频数分布表频数分布表是将一组数据按照区间进行分类和统计后所得到的表格。
在解答频数分布表的题目时,需要根据给出的条件计算出各个区间的频数和频率,并进行适当的分析和解释。
3.统计图表常见的统计图表有柱状图、折线图、饼图等。
解决统计图表题目时,需要对图表进行仔细观察和理解,计算出各个数据的相关指标,并进行适当的比较和分析。
三、综合题综合题是将概率计算和统计分析相结合,考察学生对概率与统计知识的综合运用能力。
解决综合题的关键在于分析题干给出的条件和要求,运用合适的方法进行计算和分析。
高中数学概率与统计的常见题型解析至此结束。
通过对这些题型的解析和学习,相信同学们对于高中数学概率与统计的应用能力会有很大的提升。
希望同学们能够认真对待这一领域,做好充分的准备,取得优秀的成绩!。
数学中考统计与概率题型解题方法总结

数学中考统计与概率题型解题方法总结统计与概率是数学中考试中常出现的题型之一,通过掌握一些解题方法和技巧,能够帮助我们更好地应对这类题目。
本文将对中考统计与概率题型的解题方法进行总结,希望对同学们的备考有所帮助。
一、频数统计题频数统计题是统计与概率题型中最为基础和常见的一类题目。
在这类题目中,通常会给出一组数据,要求我们统计某个数值或某个范围内数据出现的次数。
解题方法:1. 仔细读题,理解题意。
确定需要统计的数值或范围,并分析给定数据的特点。
2. 建立频数统计表格。
将给定数据按照一定的顺序排列,并在表格中记录每个数值或范围的出现次数。
3. 统计频数。
根据数据进行计数,并记录在频数统计表格中。
4. 统计完成后,根据题目要求回答相关问题。
举例说明:例如,某题目给出以下一组数据:3, 4, 3, 2, 5, 4, 3, 1, 2, 4。
题目要求统计数据中各个数字出现的次数。
解题步骤:1. 建立频数统计表格如下:数字 | 1 | 2 | 3 | 4 | 5 |------|---|---|---|---|---|频数 | | | | | |2. 对数据进行计数:数字1出现1次,数字2出现2次,数字3出现3次,数字4出现3次,数字5出现1次。
3. 填入频数统计表格:数字 | 1 | 2 | 3 | 4 | 5 |------|---|---|---|---|---|频数 | 1 | 2 | 3 | 3 | 1 |4. 统计完成后,根据需要回答相关问题,比如出现次数最多的数字是3,共出现了3次。
二、频率与百分数计算题在统计与概率题型中,频率与百分数计算题目是针对概率进行计算和比较的题目。
通常会给出一组数据,并要求我们计算某个数值或范围的频率或百分数。
解题方法:1. 读题,理解题意。
确定频率或百分数的计算对象,并分析给定数据的特点。
2. 计算频率或百分数。
使用给定数据和统计结果计算所需的频率或百分数。
3. 根据题目要求,回答相关问题或进行比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合格。在检验时,一件正品被误判为次品的概率为 0.05,而一件次品被误判为正品的概率
为 0.01。(1)求任取一件产品被检验为正品的概率;(2)求这批产品被检验为合格品的概
率。
解 设 A 表示“任取一件产品被检验为正品”, B 表示“任取一件产品是正品”,则
P B 96 , P B 4 , P A| B 0.95 , P A | B 0.01
P( A0 ) 0.6 ,
P( A1 ) 0.4 , P(Bx | A0 ) 0.2 , P(Bx | A1 ) 0.1。
(1)由全概率公式得
P(Bx ) P(Bx | A0 )P( A0 ) P(Bx | A1 )P( A1 )
4分
0.2 0.6 0.1 0.4 0.16。
2分
(2)由贝叶斯公式得
..
.
.
四(10分)设随机变量 (X ,Y ) 的概率密度为
2e(x2 y) , x 0, y 0
f (x, y) 0,
其他
求随机变量 Z X 2Y 的分布函数。
FZ (z) P{X 2Y z} f (x, y)dxdy x2 yz
当 z 0 时, FZ (z) 0
当 z 0 时, FZ (z)
P( A0
|
Bx )
P(Bx | A0 )P( A0 ) P(Bx )
0.2 0.6 0.16
0.75Biblioteka ,3分P( A1 | Bx ) 1 P( A0 | Bx ) 1 0.75 0.25
3分
. 学习.资料.
..
.
.
二、随机变量函数的分布及其边缘密度及其独立性的判断 记住如下知识点: 常见分布律和概率密度:
np(1 p)
,
P{a
X
b}
(
b
np npq
)
(
a
np npq
)
这个公式给出了 n 较大时二项分布的概率计算方法。
. 学习.资料.
..
.
.
另一类是除二项分布之外的其他分布的独立变量连加和的
计算问题,
设 X1, X2, , Xn, 独立同分布,E Xk D Xk 2 0 k 1,2, ,n.
100 P(
i 1
Xi
240)
P
100 i 1
Xi 100 2 100 4
240 100 2 100 4
(2)
0.9772
点估计的问题:矩估计和似然估计
似然函数的构造:
. 学习.资料.
..
.
.
例题分析:
一、设总体 X 的概率密度为
e(x ) , x ,
二、(10 分)设二维随机变量 X ,Y 的概率密度为
f
x,
y
Ae y ,
0,
0x y 其它
(1)求常数 A 的值;(2)求 X 与Y 的协方差 Cov X ,Y 。
解
(1)由1
f x, y dxdy
dy
y Ae ydx A ,得 A 1
0
0
(2) E X
则
PB
n m
n
,PB
m mn
,
PA
B
1,
P
A
B
1 2r
―—5分
PB
A
PB P(A B)
P(B)P(A B) P(B)P(A B)
n 1 mn
m
n
n
1
m m
n
1 2r
2r n 2r n m
三、(10 分)一批产品共 100 件,其中有 4 件次品,其余皆为正品。现在每次从中任
取一件产品进行检验,检验后放回,连续检验 3 次,如果发现有次品,则认为这批产品不
分布,且各位顾客的服务时间是相互独立的,试用中心极限定理计算,对 100 位顾客的总 服务时间不超过 240 分钟的概率。
解 设 X1, , X100 分别表示每一位顾客的服务时间,则它们相互独立相同分布,且
E( X i ) 2, D( X i ) 4 ------------------------------- 5 分
分析:
一、设总体 X 服从 (0,1) 上的均匀分布, X1, X 2 , , X n 是来自总体 X 的一个样本,最大顺 序统计量 X (n) max( X 1 , X 2 ,, X n ) ,
1.求随机变量 X (n) 的概率密度;
0, x 0
解: X
~
f (x)
1, 0,
0 x 其它
1
,其分布函数为
z
dx
zx
2 2e(x2 y) dy 1 ez ze z
0
0
所以 Z X 2Y 的分布函数为
0,
z0
FZ (z) 1 ez zez , z 0
3.中心极限定理的问题:用正态分布近似计算
共两类:
一类是二项分布的近似计算问题
近似
X ~ b(n, p) N(np, np(1 p))
,即 X np ~ N (0,1)
y2e ydy 2
0
0
0
Cov X,Y E X EY 3 2 1
三(16 分)设二维随机变量 (X ,Y ) 的概率密度为
e(x y) ,
f (x, y)
0,
x 0, y 0 其它
(1) 求边缘密度函数 f X (x) , fY ( y) ;
(2) 求边缘分布函数 FX (x) , FY ( y) ; (3) 判断 X 与 Y 是否相互独立; (4) 求 P( X Y 1) 。
当 y ≤0 时, fY ( y) =0
e y , y 0
当 y >0 时
fY
(
y
)
=
0,
y0
1 e y , 0 y
(2) F( y)
0,
其他
1 ex , F(x)
0,
(3)独立
0 x
其他
(3) P(XY 1) f (x, y)dxdy 2
x y1
e
4分
4分 4分 4分
. 学习.资料.
‘1’,以 0.2 的概率收为模糊信号‘ x ’;发出‘1’时,分别以概率 0.85 和 0.05 收到‘1’ 和‘0’,以概率 0.1 收到模糊信号‘ x ’。
(1)求收到模糊信号‘ x ’的概率; (2)当收到模糊信号‘ x ’时,以译成哪个信号为好?为什么?
解 设 Ai =“发出信号 i ” (i 0,1) , Bi =“收到信号 i ” (i 0,1, x) 。由题意知
(1)
fX (x)
f (x, y)dy ,
当 x ≤0 时, f (x, y) =0,于是 fX (x) =0
当 x >0 时, fX (x)
=
e y dy ex ,
x
ex , x 0 所以 X 的边缘概率密度为 fX (x) = 0, x 0
Y 的边缘概率密度 fY ( y) f (x, y)dx
2分
a P( Ai ) a b 二(10 分)袋中装有 m 只正品硬币, n 只次品硬币(次品硬币的两面均印有国徽),在袋
中任取一只,将它投掷 r 次,已知每次都出现国徽,问这只硬币是次品的概率为多少?
. 学习.资料.
..
.
.
、解 记 B ={取到次品}, B ={取到正品}, A ={将硬币投掷 r 次每次都出现国徽}
不为零的区
域,然后穿线通过区域确定 x 的上下限。
他的函数 Z = g ( X , Y )的概率密度,只能使用分布函数法
其步骤如下:
f (x, y) 第 一 步 求 联 合 密 度 :
,根据联合密度写出
f (x, z x)或者 f (z y, y)
第二步 求 z 的分布函数:
FZ (z) P{Z z} P{2X Y z}
..
.
.
常见大题: 1. 全概率公式和贝叶斯公式问题 B 看做“结果”,有多个“原因或者条件 Ai ”可以导致 B 这个“结果”发生,考虑结果 B 发生的概率,或者 求在 B 发生的条件下,源于某个原因 Ai 的概率问题
全概率公式: 贝叶斯公式:
n
P B P Ai P B | Ai i 1
解 Bi 表示从第 i 个口袋放入第 i 1个口袋红球, i 1,2,3,4
Ai 表示从第 i 个口袋中任取一个球为红球,
2分
则
P(B1 )
a
a
b
,
2分
P(A1) P(B1)P(A1 B1) P(B1)P(A1 B1)
a a 1 b
a a
2分
a b a b1 a b a b1 a b
依次类推
(1)写出 X 的概率分布;
(2)求被盗索赔户不少于 14 户且不多于 30 户的概率的近似值。
[解] (1) X ~ b(100, 0.2) , P{X k} C1k00 0.2k 0.8100k , k 0,1,2,,100 (2) E(X ) 100 0.2 20 , D(X ) 100 0.2 (1 0.2) 16
根据棣莫佛—拉普拉斯中心极限定理
P {14
X
30}
P14
20 4
X
E(X ) D(X )
30
20
4
. 学习.资料.
..
.
.
P1.5 X E( X ) 2.5 (2.5) (1.5)
D(X )
(2.5) (1.5) 1 0.994 0.933 1 0.927
三(10 分)某银行的柜台替每一位顾客的服务时间(单位:分钟)服从参数 1 的指数 2