气垫导轨实验讲义word资料7页

合集下载

实验二气垫导轨实验

实验二气垫导轨实验

实验二气垫导轨实验一、实验目的1、学习气垫导轨的基本工作原理与特点;2、了解气垫导轨工作时的特性及优化方法;3、掌握气垫导轨的设计原理和设计方法;4、通过实验验证气垫导轨的工作性能。

二、实验内容三、实验原理气垫导轨是利用气液两相流的作用,在导轨面上形成气膜,使导轨与台面之间产生气浮力,从而形成负载支撑系统。

气垫导轨的主要特点是摩擦小、运动平稳、精度高、寿命长等。

气垫导轨的气体流道设计非常重要。

气体的流动受几何参数和压力控制的影响。

密封性与压力的平衡是至关重要的,以确保气垫导轨的高精度运动。

气垫导轨的优化可以通过结构优化或气体压力优化来实现。

其中,结构优化包括气膜通道形状和几何参数的设计改进,以及加工和制造工艺的优化等。

气体压力优化包括压力注入过程的优化和气体通道压力的控制等。

四、实验步骤1、准备气垫导轨及测试设备,并检查设备安全可靠;2、将气垫导轨与测试台面正确连接并调整平稳;3、注入气体,使其形成气膜并保持稳定;4、通过测量工具,测试气垫导轨的运动特性和精度。

五、实验结果通过实验可得出气垫导轨的运动特性和精度等指标。

根据实验结果,可以对气垫导轨的结构和气压参数进行优化设计,以达到更好的工作性能和精度。

六、注意事项1、实验时应注意安全,避免气垫导轨和测试设备产生损坏;2、气垫导轨的工作性能与气体压力和气体流动速度有关,应在合理范围内进行调整;3、实验结束后应及时清理工作现场,恢复正常使用状态。

通过本次实验,我们深入了解了气垫导轨的工作原理,掌握了气垫导轨的设计方法和优化原理,并对气垫导轨的运动特性和精度等指标有了较深的认识。

同时,也提高了我们的实验能力和工程设计水平,为今后的学习和工作打下了坚实的基础。

气垫导轨实验报告

气垫导轨实验报告

气垫导轨实验报告实验目的:本实验旨在研究气垫导轨的性能与特点,探究其在高速运动中的应用。

实验原理:气垫导轨是一种利用高压气体形成气垫,使物体在导轨上减小摩擦力以及实现平稳运动的装置。

其基本原理为:通过在导轨表面产生一层气膜,从而形成类似气垫的效果,降低物体与导轨之间的接触面积,减小摩擦力。

气垫导轨的主要组成部分包括导轨座、导轨滑块、气源装置和控制系统等。

实验装置与步骤:1. 实验装置:气垫导轨、测试物体、气源装置、压力传感器等。

2. 实验步骤:(1) 将气垫导轨平放在实验台上,确保其平稳稳定。

(2) 连接气源装置,调节气源压力至实验要求,使导轨上产生适量气膜。

(3) 将待测试物体放置在导轨滑块上,注意调整滑块位置以保证物体在导轨上平稳滑动。

(4) 开始记录实验数据,包括物体运动时间、滑动距离、气源压力等。

(5) 重复实验多次,取平均值作为最后结果。

实验结果与分析:经过多次实验,我们得到了一组实验数据。

在分析这些数据时,我们发现气垫导轨对物体的运动具有显著的减摩特性,使物体滑动速度更快,减少了能量损耗。

此外,我们还发现导轨上的气膜厚度与滑动距离呈正相关关系,在保持一定气源压力的情况下,气膜越厚,滑动距离越大。

实验结论:通过本次实验,我们得出了以下结论:1. 气垫导轨能够有效减小物体与导轨之间的摩擦力,实现平稳滑动。

2. 导轨上产生的气膜厚度与滑动距离呈正相关关系。

3. 气垫导轨在高速运动中具有较好的减摩性能,适用于需要高速运动的场景。

实验局限性与改进方向:本实验存在一定局限性,如实验方法的简化以及实验数据的数量较少。

为此,我们可以通过增加实验样本数量和改进实验装置,进一步优化实验结果。

总结:通过本次实验,我们深入理解了气垫导轨的工作原理与特点,并通过实验数据验证了其在高速运动中的应用价值。

这一技术在工业领域有着广泛的应用前景,有助于提高生产效率和降低能量消耗。

希望本实验能对相关领域的研究与开发提供一定的参考。

实验二 气垫导轨上的实验上课讲义

实验二  气垫导轨上的实验上课讲义

实验二气垫导轨上的实验实验二 气垫导轨上的实验气垫导轨是为消除摩擦而设计的力学实验的装置,来自气源的气在开有密集小孔的导轨表面产生一层气垫。

物体运动在气垫上,避免物体与导轨的直接接触,很大程度上减少了物体与导轨表面的摩擦。

利用气垫导轨可以进行许多力学实验,如测定速度、加速度,验证牛顿第二定律,动量守恒定律,研究简谐振动等。

【实验目的】1、利用碰撞特例验证动量守恒定律。

2、学习使用气垫导轨和数字毫秒计。

【实验仪器】实验装置如图1所示,主要由气源、气垫导轨、滑块(上面装有档光片)、光电计时系统(光电门、数字毫秒计)组成。

图1 气垫导轨实验示意图实验室用“吹尘器”作气源。

气垫导轨简称气轨,是一条横截面为三角形的空芯轨道,轨道表面分布着许多小气孔。

气轨一头封闭,另一头装有进气嘴,气流从进气嘴流入,通过小气孔喷出,当滑块置于气垫之上时,滑块与轨道之间形成气垫,将滑块浮起,滑块的运动可视为是无摩擦的(气垫的两端装有缓冲弹簧,以免滑块冲出)。

整个导轨安置在矩形梁上,梁下有三个用来调节水平的底脚螺丝。

(3)滑块1m 、2m (1m ~22m )是实验中相互碰撞的两物体,1m 、2m 滑块的内表面可与气轨密切配合;上部装有“凹”字形的档光片,1m 一端装有缓冲弹簧,另一端粘有尼龙搭扣,2m 一端粘有尼龙搭扣,另一端为光滑端。

(4)光电计时测速系统由光电门、数字毫秒计(包括滑块上的档光片)组成。

光电门是计时系统的信号接收装置,主要由安装在支架上的小聚光灯和光敏管组成,也有使用红外发光二极管和红外光敏三极管组成的光电门。

聚光灯和光敏管对置于轨道两侧,工作时聚光灯发光,光敏管接收光电信号。

利用光敏管所接收的光照变化来控制毫秒计的“计”和“停”,实现计时。

光电计时器在本实验的工作特点是:光敏管第一次被遮光,开始计时,第二次被遮光,计时停止,故计时器记录的是两次遮光的时间间隔。

固连于滑块上的挡光片的有效部分为“凹”字形铝片,当挡光片随同滑块通过光电门时,就使光敏管受到两次遮光,从而使计时器记下一段时间t 与此段图2 档光片运动示意图于是滑块通过光电门的平均速度为tx=υ (1)x 不大,可将v 近似地视为瞬时速度。

气垫导轨实验.doc

气垫导轨实验.doc

气垫导轨实验气垫导轨是一种阻力极小的力学实验装置。

它利用气源将压缩空气打入导轨型腔,再由导轨表面上的小孔喷出气流,在导轨与滑行器之间形成很薄的气膜,将滑行器浮起,并使滑行器能在导轨上作近似无阻力的直线运动。

气垫导轨表面小孔喷出的压缩空气,将滑行器浮起,使运动时的接触摩擦阻力大为减小,从而可以进行一些较为精确的定量研究。

工业上利用气垫技术,还可以减少机械或器件的磨损,延长使用寿命,提高速度和机械效率,所以,气垫技术在机械、纺织、运输等工业生产中得到广泛应用,如气垫船、空气轴承、气垫输送线等。

利用气垫导轨可以实现的实验项目有很多,主要有:1、测定匀加速直线运动的速度,并验证匀加速直线运动公式;2、验证动量定理和动量守恒定律;3、验证机械能守恒定律;4、弹簧振子的运动规律;5、受迫振动----振子质量与共振,频率和振幅的关系;6、物体在液体中的运动;7、可变质量的牛顿第二定律。

【仪器介绍】滑块图1 气垫导轨一、导轨部分1、导轨是用一根平直、光滑的三角形铝合金制成,固定在一根刚性较强的钢梁上。

导轨长为1.5m,轨面上均匀分布着孔径为0.6mm的两排喷气小孔,导轨一端封死,另一端装有进气嘴。

气泵将压缩空气送入空腔管后,再由小孔高速喷出。

托起滑行器,滑行器漂浮的高度,视气流大小及滑行器重量而定。

为了避免碰伤,导轨两端及滑轨上都装有弹射器。

在导轨上安放滑块,在导轨下装有调节水平用的底脚螺丝和用于测量光电门位置的标尺。

双脚端的螺钉用来调节轨面两侧线高度,单脚端螺钉用来调节导轨水平。

或者将不同厚度的垫块放在导轨底脚螺钉下,以得到不同的斜度。

滑轮和砝码用于对滑行器施加外力。

整个导轨通过一系列直立的螺杆安装在口字形铸铝梁上。

2、滑块是导轨上的运动物体,是由长约0.100—0.300米的角铝做成的。

其角度经过校准,内表面经过细磨,与导轨的两个上表面很好吻合。

当导轨的喷气小孔喷气时,在滑块和导轨之间形成一层厚约0.05-0.20mm流动的空气薄膜—气垫(气垫厚度由滑块重量确定)。

在气垫导轨上测量速度和加速度实验讲义

在气垫导轨上测量速度和加速度实验讲义

在气垫导轨上测量速度和加速度气垫导轨为力学实验提供了一维几乎无摩擦的系统。

在气垫导轨上可以研究运动体的一维运动、碰撞及振动等。

本实验采用气垫导轨验证匀加速直线运动的公式和牛顿第一定律。

【预习提示】1. 在使用气垫导轨前,要首先将导轨调至水平状态,实验中如何将导轨调至水平?2. 实验中采用光电计时器是如何工作的,它是如何获得滑块滑过某点的瞬时速度的?【实验目的】1. 设计实验方案,验证匀加速直线运动的三个基本公式。

2. 设计实验方案,利用直线外推法验证牛顿第一定律。

3. 学会光电计时器的使用方法,能够用光电计时器测量时间、速度和加速度。

【实验原理】将已调水平的气垫导轨的一端垫上垫块,便得到一个较为理想的平直光滑斜面。

忽略空气摩擦阻尼,运动物体滑块在重力沿斜面的分力作用下作匀加速直线运动。

这种具有恒定加速度的运动有三个熟知的基本公式:v =v 0+at (1)s =v 0t +12at 2 (2) v 2=v 02+2as (3) 式中v 0、v 分别为物体在0t =和t 时刻的瞬时速度,s 为物体在t 时间内运动的距离,a 即为物体的加速度。

由牛顿第二定律可知,这时加速度a 和重力加速度g 之间关系应当为a =gsinθ=g ℎL (4) 式中θ为导轨的倾角,h 为导轨调平后一端垫高的高度,即垫块的厚度,L 为斜面的长度,即两端底脚螺丝之间的距离。

实验中用直线图解法求加速度。

如图1所示,设运动物体滑块每次均从P 处静止开始下滑,测得数据()()()112233,,,s v s v s v 、、、,根据(3)式,以s 为横坐标,v 2为纵坐标,作v 2~s图线,如果图线为一直线,说明物体作匀加速直线运动,直线的斜率为2a ,截距为v 02。

实验者可自行分析考虑,怎样利用(1)式和(2)式,由实验数据绘制求加速度a 的直线图。

图1 图2保持s 不变,即实验中两光电门位置固定不动,改变垫块的高度h ,即可求得加速度a 和相应的h 之间的直线关系,线性外推得到当0h =时,0a =,说明导轨水平时,物体不受外力作用要保持原来的匀速直线运动状态,从而验证了牛顿第一定律。

《气垫导轨实验》word版

《气垫导轨实验》word版

气 垫 导 轨 实 验【实验目的】1.掌握气垫导轨的水平调整和数字记时器的使用。

2.利用气垫导轨测滑块运动的速度和加速度。

3.验证牛顿第二定律。

4.测定重力加速度。

【实验原理】1.速度的测定物体作一维运动时,平均速度表示为:t x v ΔΔ(3-1)(3-2)很小的x ∆,用其平均速度近似地代替瞬时速度。

2.加速度的测定当滑块作匀加速直线运动时,其加速度a 可用下式求得)(2122122x x vv a --=(3-3)3.验证牛顿第二定律 动力学方程:⎩⎨⎧==-Ma T ma T mg (3-4)解方程组(3-4),得系统所受合外力F 为:a m M mg F )(+==(3-5)不同外力F下滑块的加速度值a ,作F a -曲线,若所绘制的F a -图为过原点的m图-验证牛顿第二定律3 2直线,其平均斜率近似为)(1m M +,即可验证:物体加速度的大小与所受合外力的大小成正比。

改变滑块的质量,测量一组不同质量下的滑块的加速度值a ,作)(1m M a +-曲线,若所绘制的)(1m M a +-图为过原点的直线,即可验证:物体所获得的加速度的与物体的质量成反比。

【实验内容】1.气垫导轨的水平调节静态调节法: 2.测定速度 3.测定加速度 4.验证牛顿第二定律5.在倾斜的气轨上测定重力加速度重力加速度沿导轨方向的分量L h g g a x /sin ⋅≈⋅=θ(3-6)hLa g x ⋅=(3-7)【数据与结果】1.测滑块系统的加速度与验证牛顿第二定律2.在倾斜气垫导轨上测重力加速度。

10讲义(气垫导轨)

10讲义(气垫导轨)

实验一气垫导轨上的实验(二)【实验简介】气垫导轨的基本原理是在导轨的轨面与滑块之间产生一层薄薄的气垫,使滑块“漂浮”在气垫上,从而消除了接触摩擦。

虽然仍然存在着空气的粘滞阻力,但由于它极小,可以忽略不计,所以滑块的运动几乎可以视为无摩擦运动。

由于滑块作近似的无摩擦运动,再加上气垫导轨与电脑计数器配套使用,时间的测量可以精确到0.01ms(十万分之一秒),这样,就使气垫导轨上的实验精度大大提高,相对误差小,重复性好。

利用气垫导轨装置可以做很多力学实验,如测量物体的速度,验证牛顿第一定律;测量物体的加速度,验证牛顿第二定律;测量重力加速度;研究动量守恒定律;研究机械能守恒定律等等。

【实验目的】1、学习气垫导轨和电脑计数器的使用方法。

2、用气垫导轨装置测量本地的重力加速度。

3、验证动量守恒定律。

【实验仪器】气垫导轨(QG—1.5mm)、滑块、垫片、光电门、电脑计数器(MUJ—6B)、游标卡尺(0.02mm)、卷尺(2m)。

配重块、一台电子天平及尼龙搭扣。

【实验原理】1、研究动量守恒定律动量守恒定律和能量守恒定律一样,是自然界的一条普遍适用的规律。

它不仅适用于宏观世界,同样也适用于微观世界。

它虽然是一条力学定律,但却比牛顿运动定律适用范围更广,反映的问题更深刻。

动量守恒定律告诉我们,如果一个系统所受的合外力为零,那么系统内部的物体在作相互碰撞,传递动量的时候,虽然各个物体的动量是变化的,但系统的总动量守恒。

如果系统在某个方向上所受的合外力为零,则系统在该方向上的动量守恒。

在水平的气垫导轨上,滑块运动时受到的粘滞阻力很小,若不计这一阻力,则滑块系统受到的合外力为零,两滑块作对心碰撞时前后的总动量守恒。

、分别为两个滑块的质量,、分别为碰撞前两个滑块的速度,、分别为碰撞后两个滑块的速度。

应该注意的是,计算时必须选择一个方向为正,反方向为负。

牛顿在研究碰撞现象时曾提出恢复系数的概念,定义恢复系数。

当时为完全弹性碰撞,时为完全非弹性碰撞,时为非完全弹性碰撞。

气垫导轨上的实验报告

气垫导轨上的实验报告

气垫导轨上的实验报告气垫导轨上的实验报告引言气垫导轨是一种利用气体动力学原理来减小摩擦力的装置,广泛应用于高速列车、滑翔器等交通工具中。

本实验旨在研究气垫导轨的运行原理及其对运动物体的影响,以期进一步提高交通工具的运行效率和安全性。

一、实验设备本次实验所使用的气垫导轨实验装置包括气垫导轨、运动物体、气源和测量仪器。

气垫导轨由一条长而平滑的导轨构成,导轨的表面布满了小孔,通过这些小孔喷出的气体形成气垫,减小了运动物体与导轨之间的接触面积,从而减小了摩擦力。

运动物体是一个小球,可以在气垫导轨上自由滑动,测量仪器则用于记录小球的运动轨迹和速度。

二、实验步骤1. 将气垫导轨放置在水平台面上,并连接气源。

2. 将小球放置在气垫导轨的起点处,记录下小球的初始位置。

3. 打开气源,调节气压,观察小球在气垫导轨上的运动情况。

4. 使用测量仪器记录小球在不同气压下的运动轨迹和速度。

5. 根据实验数据,分析小球在不同气压下的运动特点,并进行总结。

三、实验结果与分析实验结果表明,随着气压的增加,小球在气垫导轨上的滑动速度逐渐增加。

这是因为气压的增加导致气垫导轨上的气体流速增加,从而形成了更强的气垫,减小了小球与导轨之间的接触面积,进而减小了摩擦力。

因此,小球在气垫导轨上的滑动速度随气压的增加而增加。

此外,实验还发现,当气压超过一定阈值时,小球的滑动速度将趋于稳定。

这是因为在超过该阈值后,气垫导轨上的气体流速已经达到了最大值,再增加气压并不会进一步减小摩擦力。

因此,小球的滑动速度在超过该阈值后趋于稳定。

四、实验意义与应用气垫导轨作为一种减小摩擦力的装置,具有广泛的应用前景。

首先,在高速列车中的应用可以大大提高列车的运行效率和安全性。

由于气垫导轨减小了列车与轨道之间的摩擦力,列车的运行阻力减小,从而可以实现更高的运行速度。

其次,在滑翔器等交通工具中的应用也可以提高其运行效率和稳定性。

气垫导轨的使用可以减小滑翔器与地面之间的摩擦力,从而减小能量损失,提高滑翔器的滑行距离和时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三 气垫导轨上的实验在物理实验中,由于摩擦的存在,导致误差往往很大,甚至使某些实验无法进行。

若采用气垫导轨等装置,可使这一问题得以较好的解决,气垫技术还可以减少磨损、延长仪器寿命提高机械效率。

在机械、电子、运输等领域已被广泛应用,如气垫船、空气轴承,气垫输送线等。

使用气垫导轨做力学实验可以观察和研究在近似无阻力情况下物体的各种运动规律。

一、实验目的1.熟悉气垫导轨的构造和调整使用方法;2.掌握用光电计时装置测量速度、加速度; 3.验证动量守恒定律;4.深入了解完全弹性碰撞与完全非弹性碰撞的特点。

二、仪器与用具气垫导轨装置、数字毫秒计、砝码等 三、实验原理如图3-1所示,气垫导轨处于水平,在滑块的一端系一条细线,绕过气轨一端的滑轮后系一重物,由滑块、托盘和砝码构成的运动系统在重力作用下作直线加速运动。

图3-1 气垫导轨示意图1、速度、加速度的测量:在导轨上相距s 的两处放置二光电门,若测得此系统在重力mg 作用下,滑块通光电门时的速度分别为1v 、2v 则系统的加速度为sa 22122v v -=(3.1) 在滑块上放置一中间有方孔(或缺口)的挡光片,使方孔正好在光电管前通过,用数字毫秒计S 2档测出滑块和挡光片在光电门中通过时,二次挡光的时间间隔t ∆,则可得到该小间隔的平均速度tx∆∆,x ∆为挡光片二前沿间距离。

因x ∆较小,则可认为此平均速度为挡光片二前沿的中点通过光电门时,滑块M 的即时速度。

只要测出了挡光片通过二光电门的时间间隔1t ∆和2t ∆,则可得对应的速度为21,t xt x ∆∆=∆∆=21v v (3.2) 从(3.1)、(3.2)两式可解得运动系统的加速度为)11(221222t t s x a ∆-∆∆= (3.3)动量守恒定律指出,如果一力学系统所受外力的矢量和为零,则系统的总动量保持不变,若系统上某一方向上所受合外力为零,则系统在该方向上的总动量将保持不变(即分动量守恒)。

2、碰撞在本实验中,利用气垫导轨上两滑块的对心碰撞来验证动量守恒定律.如图3-1所示,若忽略滑块与导轨之间的摩擦力,则质量分别为1m 和2m 的两滑块之间在水平方向只受互相碰撞的作用内力,因而碰撞前后的总动量保持不变,若以10v 、1v ,20v 、2v 分别表示它们碰撞前后的速度,则由动量守恒定律,在碰撞方向上有21120101v v m v v m 22m m +=+ (3.4)(1) 完全弹性碰撞 在完全弹性碰撞中,碰撞前后不仅系统的动量守恒,而且机械能也守恒,实验时,在两滑块的相碰端装上弹簧片,当两滑块相碰时,弹簧片发生弹性形变后迅速恢复原状,并将滑块弹开,系统的机械能近似没有损失,即两滑块的总动能不变,则有222112202101v 21v m 21v 21v m 2122m m +=+ (3.5) 当0=20v 时,由(3.4)与(3.5)两式解得 10111v m m v 22m m +-=(3.6)10112v m 2m v 2m +=(3.7)如果21m m =,则0=1v ,202v v =.(2) 完全非弹性碰撞 在两滑块的相碰面上粘上橡皮泥(或尼龙粘胶带),碰撞后两滑块粘在一起以同一速度v 运动,即可实现完全非弹性碰撞,此时(3.4)式变为)v m v v m 12010122(m m +=+ (11.8)当v 20=0时,由上式可得 21101m -m v m v =(11.9)四、实验内容(一)仪器的调整1.光电计时系统的调整。

将数字毫秒计的“光控”信号输入端和二光电门相联,并选用S 2、ms 1档;检查光电门是否正常工作。

2.轨道调平。

(1)粗调:把二光电门置于导轨中部,相距cm 7060-,离轨端距离大致相同。

打开气源,放上滑块,调节底脚螺丝,直至滑块在气轨上不再自由滑动。

(2)细调:将滑块从导轨左端轻推一下,测其通过电门的时间1t ∆、2t ∆,调节底脚螺丝,使二者尽量接近;又从右端推一下滑块,测出挡光时间'∆1t 和'∆2t ,同样调节使二者尽量接近(一般2t ∆略大于1t ∆),直至1t ∆和2t ∆、'∆1t 和'∆2t 之间的相对差异小于%2,则可认为导轨的水平已调好。

3.测出二光电门的距离S,并用游标卡尺测量挡光片上的二前沿间的距离x ∆。

(二)水平拉力法 将细尼龙线的一端系在滑块上,另一端绕过滑轮后挂一砝码盘,将10克砝码加在滑块上。

将滑块置于第一光电门外侧约10厘米处(每次都必须在同一起始位置),松开滑块,测出通过二光电门的时间间隔1t ∆和2t ∆(要适当调节“延时调节”使测量2t ∆之前仪器自动复零)。

重复测5次后取1t ∆和2t ∆的平均值。

(三)碰撞中的守恒定律。

1.完全弹性碰撞(1)打开气源,调平气垫导轨,检查光电系统(选择S 2、ms 1档)使之能正常。

(2)取带有缓冲弹簧的两滑块称出其质量1m 和2m ,并将2m 放在两光电门中间,使其静止(0=20v ),滑块1m 放在导轨一端,将其轻轻推向2m ,记下1m 经过光电门I 时的时间间隔10t ∆。

如图3-1所示,两滑块相碰后,1m 以速度10v 、2m 以速度20v 向前运动。

记下滑块2m 与1m 经过光电门Ⅱ时的时间2t ∆和1t ∆ (注意在滑块2m 经过光电门Ⅱ后,应使其静止于轨端,并使记时显示迅速复零,以免影响1t ∆的测量。

重复上述测量3~5次。

(3)从以上各次测量结果计算碰撞前后的动量及二者之比值,求各比值的平均值,验证碰撞前后的动量是否守恒. 2.完全非弹性碰撞(1)保持气垫导轨水平,在两滑块的相碰端粘上橡皮泥(或尼龙胶带),称出两滑块的2m 和1m 。

(2)将2m 静止于两光电门之间,将1m 放在导轨一端轻轻推动去碰撞2m ,测量碰撞前后的速度,重测3~5次。

(3)计算各次碰撞前后的动量及其比值,求出比值的平均值,验证动量守恒。

3.求上述两种碰撞条件下的恢复系数。

4.参考表格:挡光片两前沿间距x ∆=_______(cm ); 滑快质量M =_____(g )重物质量m =___(g )“验证动量守恒定律:种类次数 10t10v2t2v1t1v101v m2211v m v m + 完全弹性碰撞12 3 4 5 完全非弹性碰撞12 3 4 5五、注意事项1. 要特别注意气垫导轨的保护和保养以及数字毫秒计的正确使用,请认真阅读附录。

2. 两滑块碰撞时,尽量使碰撞点在两滑块质心的连线上,以减少滑块震动。

六、思考与问答1.使用气垫导轨要注意哪些问题,如何调平气垫导轨?2.如何选择挡光片的距离x ∆?过大或过小对速度的测量各有什么影响? 3.如何验证牛顿第二定律?设计一具体步骤及方案。

附录 : 气垫导轨气垫导轨是一种力学实验仪器。

它利用从导轨表面小孔喷出的压缩空气,在滑块与导轨面之间形成很薄的气垫,将滑块浮起。

这样,滑块运动时的接触摩擦力可以略去不计,仅仅只有小得多的空气的粘滞力和周围空气的阻力,因此就极大的减少了力学实验中难于克服的摩擦力的影响,使实验效果大为提高。

在气垫导轨上可以进行很多力学实验,如速度、加速度的测量、牛顿第二定律的验证、动量守恒定律的验证 、谐振动研究等等。

一.导轨装置的构造气垫导轨装置的构造如图3-1所示1.导轨 导轨是由长1.2~1.5m 的角铝合金制成.导轨面上均匀分布着直径约mm 4.0的喷气孔,导轨的一端装有进气孔、另一端装有滑轮,两端内侧都装有缓冲弹簧,整个导轨安装在工字钢梁上。

2.光电门(或探头) 它由小灯泡和光敏管组成,利用光敏管受光照和不受光照时电势的变化,产生电脉冲来控制数字毫秒计的“计”和“停”,进行计时。

3.滑块 用角型铝材制成,其两侧内表面和导轨面精确吻合,两端装有缓冲器,其上可以加装挡光片、附加重物等,以供各种不同实验的需要。

4.调节螺钉与垫块 导轨的一端是单脚螺钉,另一端是双脚螺钉,主要供调节导轨水平使用,垫块用来改变气垫导轨的斜度。

根据要求可将不同尺寸的垫块放在导轨单脚螺钉下得到不同斜度的斜面。

一般滑块被托起的高度约为10~100mm .5.标尺 固定在导轨一侧,在定位窗上可读出光电门的位置。

二.气源用橡皮管将气垫导轨的进气嘴与气源相连,并用开关进行控制。

压力稳定、消振、消音而又清洁的空气进入导轨内,由导轨表面上的小孔喷出。

三、注意事项1.为了保持气轨表面的平直度和光洁度,不允许用其它东西敲、碰导轨表面。

也要注意不要碰倒光电门。

2.滑块的内表面光洁度高,应严防划伤、碰坏,更不允许将滑块掉在地上,滑块与导轨配套使用,不得任意换用。

导轨在不通气时,不要将滑块放在导轨上来回滑动,变动遮光板在滑块上的位置时,应将滑块从导轨上拿下,待固定好遮光板后再把滑块放在导轨上。

3.导轨面上的喷气孔很小,应在供气后用薄的小纸条检查是否有堵塞,如发现堵塞,必须用细钢丝仔细通一下。

4.进行实验时,两光敏管都应处于光照状态。

5.在实验过程中,不得任意移动导轨的位置。

6.实验前必须用纱布沾少许酒精擦洗导轨表面和滑块内表面。

实验结束后,勿将滑块久放在导轨上,以免导轨表面拉伤,所有附件都应放入附件盒,用塑料套把导轨盖好。

实验四 弦振动的研究两列振幅相等的相干波,在同一直线上沿相反方向传播时,叠加形成驻波,驻波是波的干涉现象中的一种重要现象。

它在声学、光学、无线电工程和检测技术等方面都有广泛的应用,利用驻波现象可以测量波长、波速和频率。

一、实验目的1.观察弦振动时形成的驻波;2.学会一种测量弦线上横波传播速度的方法; 3.用作图法验证弦振动基频与张力的关系。

二、仪器与用具电动音叉、滑轮、米尺、砝码、尼龙细线、分析天平等 三、实验原理1.弦线上横波传播的速度将细弦的一端固定在电振音叉上,另一端系上砝码盘绕过滑轮,当音叉振动时,强迫弦线振动,弦振动频率应当和音叉的频率f 相等,若适当调节砝码,可在弦上出现明显稳定的驻波,即弦与音叉共振,设驻波波长为λ,则弦线上横波传播的速度υ等于λυf = (4.1) 又从力学理论可知:在线密度为ρ,张力为T 的弦线上,横波传播的速度为ρυT=(4.2)2.弦振动规律将(4.1)式代入(4.2)式,可得 ρλTf =(4.3)设弦线长为L ,振动时弦上的半波数为n ,则2λ=n L ,即nL 2=λ,将此式代入(4.3)式,得ρTL n f 2=(4.4)上式表明对于线密度ρ、长度L 和张力T 一定的弦,其自由振动时的频率不只一个,而是包 图4-1 弦振动原理括相当于n =1、2、3、……的1f 、2f 、3f ……等多种频率,n =1的频率称为基频,n =2、3的频率称为第一、第二谐频,但基频较其它谐频强得多,因此它决定弦的频率,而各谐频则决定它的音色.当弦线在频率为ν的音叉策动下振动时,适当改变T 、L 和ρ,则可能和强迫力发生共振的不一定是基频,而可能是第一、第二、第三、……谐频,但根据(4.4)式,可能此时的基频0f 等于nf,即: ρTL f 210=(4.5)两侧取对数,得: T L f ln 21ln )21ln(ln 0+-=ρ(4.6) 上式表明在 0ln f 与L ln 、T ln 之间存在线性关系,本实验将分别验证这一关系。

相关文档
最新文档