信号与系统习题集
大连理工大学信号与系统习题集

(3) ( p 2 + 3 p + 2) y(t) = f (t) , y(0− ) = 1 , y ' (0− ) = 0 (4) ( p 2 + 3 p + 2) y(t) = f (t) , yx (0+ ) = 1 , yx' (0+ ) = 2 (5) ( p 2 + 3 p + 2) y(t) = f (t) , yx (0+ ) = 1 , yx' (0+ ) = 2
三、强化阶段(7 月-8 月)
1、学习目标: 复习第二遍,达到掌握整体,难点、重点集中攻破。以新大纲指定参考书为主,解决第
一遍遗留同时,加强知识前后联系,建整体框架结构,重难点掌握。
2、阶段重点: 这一阶段最重要的任务是抓住重点、掌握重点。要抓住重点,一是要分析试题;二是要
专业化辅导;三是内部资料,如出题老师的论文、讲义、当前学术热点等。对核心概念、基 础概念、重要知识点、要点、常见公式一定要地毯式全面记忆,并反复强化,达到永久记忆。 建议自我检测或者让专业课老师及时检测,不断督促,有压力才能保障效果。
1、学习目标:
跨专业:吃透参考书,地毯式复习,夯实基础训练思维,掌握基本概念和基本模型。
本专业:指定参考书为主,兼顾笔记,第一轮复习。理解为主,不纠缠细节,不懂的知 识点做标记。
2、阶段重点:
对指定参考书目"地毯式"学习一遍,系统性了解各科目,弄清每本书章节分布情况、内 在逻辑结构、重点章节所在等,但不要求记住,达到整体了解内容的效果。
1.1 分别判断图 P1.1 所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否 为数字信号?
f (t)
信号与系统 高等教育何子述版 课后习题答案

二
g (t )
1
/2
y(t) 11d t / 2t
/ 2t
/2t
当 / 2 /2 t 即t 时
y(t) 0
信 号 与 系 统
习 题 二
t
y(t
)
t
0
t 0 0t
其它
y (t )
t
2) y(t) f (t) h(t) f ( )h(t )d
信
统
2
f[-n]
1
习
.
.
-5 -4 -3 -2 -1 0 1 2 3 4 5 n
题
fo[n]
1
一
... ..
-5 -4 -3 -2 -1 0 1 2 3 4 5 n
1.18 已知连续时间信号 f (t) 如图 p1.18所示。
信
(1)用单位阶跃信号u(t)的延时组合写出信号 f (t) 的
号 与
表达式; (2)求下面各式并画出信号波形。
与
y[n] 2h[n] 2h[n 1] h[n 2] 3h[n 3]
系
2[n 2] 6[n 3] 7[n 4] 7[n 5] 7[n 6] 3[n 7]
统
即y[n] {2,6,7,7,7,3} n 2,3,4,5,6,7
2) F (x) 2 2x x2 3x4
当1 t 0 即t 1时 y(t) 0
号
当0 1 t 2 即1 t 1时
与
h(t)
1
y(t)
1t
cos(
)d
sin(t)
0
系
当2 1 t 4 即1 t 3时
统
1
1
t
1t
y(t) cos( )d 0 1t
信号与系统王明泉第三章习题解答

(4)频域分析法分析系统;
(5)系统的无失真传输;
(6)理想低通滤波器;
(7)系统的物理可实现性;
3.3本章的内容摘要
3.3.1信号的正交分解
两个矢量 和 正交的条件是这两个矢量的点乘为零,即:
如果 和 为相互正交的单位矢量,则 和 就构成了一个二维矢量集,而且是二维空间的完备正交矢量集。也就是说,再也找不到另一个矢量 能满足 。在二维矢量空间中的任一矢量 可以精确地用两个正交矢量 和 的线性组合来表示,有
条件1:在一周期内,如果有间断点存在,则间断点的数目应是有限个。
条件2:在一周期内,极大值和极小值的数目应是有限个。
条件3:在一周期内,信号绝对可积,即
(5)周期信号频谱的特点
第一:离散性,此频谱由不连续的谱线组成,每一条谱线代表一个正弦分量,所以此谱称为不连续谱或离散谱。
第二:谐波性,此频谱的每一条谱线只能出现在基波频率 的整数倍频率上。
(a)周期、连续频谱; (b)周期、离散频谱;
(c)连续、非周期频谱; (d)离散、非周期频谱。
答案:(d)
题7、 的傅里叶变换为
答案:
分析:该题为典型信号的调制形式
题8、 的傅里叶变换为
答案:
分析:根据时移和频移性质即可获得
题9、已知信号 如图所示,且其傅里叶变换为
试确定:
(1)
(2)
(3)
解:
(1)将 向左平移一个单位得到
对于奇谐函数,满足 ,当 为偶数时, , ;当 为奇数时, , ,即半波像对称函数的傅里叶级数展开式中只含奇次谐波而不含偶次谐波项。
(4)周期信号傅里叶级数的近似与傅里叶级数的收敛性
一般来说,任意周期函数表示为傅里叶级数时需要无限多项才能完全逼近原函数。但在实际应用中,经常采用有限项级数来代替无限项级数。无穷项与有限项误差平方的平均值定义为均方误差,即 。式中, , 。研究表明, 越大, 越小,当 时, 。
信号与系统课程习题集(含参考答案)

《信号与系统》课程习题集一、计算题1. 已知一连续时间LTI 系统,输入为()(2)n f t t n δ+∞=-∞=-∑,单位冲激响应sin 3()t th t π=。
(1)求()f t 的傅里叶级数系数k a ,以及傅里叶变换()F j ω。
(2)求该系统的频率响应)(ωj H ,并概略画出其波形。
(3)求该系统输出)(t y ,以及)(ωj Y 。
2. 已知一连续时间理想高通滤波器S ,其频率响应是1,400()0,H j otherωω⎧≥⎪=⎨⎪⎩。
当该滤波器的输入是一个基波周期4T π=且傅里叶级数系数为k a 的信号()f t 时,发现有()()()Sf t y t f t −−→=。
问对于什么样的k 值,才能保证0=k a ?3. 已知一连续时间理想低通滤波器S ,其频率响应是1,200()0,>200H j ωωω⎧≤⎪=⎨⎪⎩。
当该滤波器的输入是一个基波周期8T π=且傅里叶级数系数为k a 的信号()f t 时,发现有()()()Sf t y t f t −−→=。
问对于什么样的k 值,才能保证0=k a ?4. 已知一连续时间LTI 系统,输入为()(),4n f t t nT T δ+∞=-∞=-=∑,单位冲激响应sin 2()tth t π=。
(1)求()f t 的傅里叶级数系数k a ,以及傅里叶变换()F j ω。
(2)求该系统的频率响应)(ωj H ,并概略画出其波形。
(3)求该系统输出)(t y ,以及)(ωj Y 。
5. 已知一连续时间LTI 系统,单位冲激响应sin ()t th t ππ=,输入()f t 为如图所示周期性方波。
(1)求()f t 的傅里叶级数系数k a 。
(2)求该系统的频率响应)(ωj H ,并概略画出其波形。
(3)求该系统输出)(t y ,以及)(ωj Y 。
6. 已知常系数线性微分方程描述的连续时间因果线性时不变系统。
信号系统习题(PDF)

1.判断下列系统的线性、时不变性、因果性和记忆性。
(解析P7) ①()10()()dy t y t f t dt += ②()()(10)dy t y t f t dt+=+ ③2()()()dy t t y t f t dt+= ④2()(10)()y t f t f t =++2.判断下列系统的线性、时不变性和因果性。
(解析P7) ①20()()sin ()y t y t t at f t =+ ②()()()y t f t f t b =⋅−3.某系统,当输入为()tδτ−时,输出为()()(3)h t u t u t ττ=−−−,问该系统是否为因果系统?是否为时不变系统?说明理由。
4.下列信号属于功率信号的是(解析P6) ①cos ()tu t ②()teu t − ③()t te u t − ④te−5. 画出函数波形图:2()(1)f t u t =−(指导P12)6.已知()()2(1)(2)(2),f t tu t u t t u t =−−+−−画出()f t 波形。
(指导P13)7.根据1.10图中(32)f t −+的波形,画出()f t 波形。
(指导P18)8.已知()f t 波形波形如例1.11图所示,试画出1(2)2f t −−的波形。
(指导P19)9.已知(52)f t −的波形如图例1.12图所示,求()f t 波形。
(指导P20)10.求下列函数值 ①432'(652)(1)t t t t dt δ∞+++−∫②3'()te d τδττ−−∞∫ ③'2(9)t dt δ+∞−∞−∫(指导P24)11.求信号0.20.3()j n j n x n ee ππ−=+的周期。
(指导P36)12.设()x t 是复指数信号:0()j tx t eΩ=,其角频率为0Ω,基本周期为02T π=Ω。
如果离散时间序列是通过对()x t 以取样间隔s T 进行均匀取样的结果,即00()()s j nT j n s x n x nT e e ωΩ===。
《信号与系统(第四版)》习题详解图文

故f(t)与{c0, c1, …, cN}一一对应。
7
3.3 设
第3章 连续信号与系统的频域分析
试问函数组{ξ1(t),ξ2(t),ξ3(t),ξ4(t)}在(0,4)区间上是否 为正交函数组,是否为归一化正交函数组,是否为完备正交函 数组,并用它们的线性组合精确地表示题图 3.2 所示函数f(t)。
题图 3.10
51
第3章 连续信号与系统的频域分析 52
第3章 连续信号与系统的频域分析 53
第3章 连续信号与系统的频域分析 54
第3章 连续信号与系统的频域分析 55
第3章 连续信号与系统的频域分析 56
第3章 连续信号与系统的频域分析 57
第3章 连续信号与系统的频域分析
题解图 3.19-1
8
第3章 连续信号与系统的频域分析
题图 3.2
9
第3章 连续信号与系统的频域分析
解 据ξi(t)的定义式可知ξ1(t)、ξ2(t)、ξ3(t)、ξ4(t)的波形如题 解图3.3-1所示。
题解图 3.3-1
10
不难得到:
第3章 连续信号与系统的频域分析
可知在(0,4)区间ξi(t)为归一化正交函数集,从而有
激励信号为f(t)。试证明系统的响应y(t)=-f(t)。
69
证 因为
第3章 连续信号与系统的频域分析
所以
即
70
系统函数
第3章 连续信号与系统的频域分析
故
因此
71
第3章 连续信号与系统的频域分析
3.23 设f(t)的傅里叶变换为F(jω),且 试在K≥ωm条件下化简下式:
72
第3章 连续信号与系统的频域分析 73
107
信号与系统奥本海姆习题答案

Chapter 1 Answers1.6 (a).NoBecause when t<0, )(1t x =0.(b).NoBecause only if n=0, ][2n x has valuable.(c).Yes Because ∑∞-∞=--+--+=+k k m n k m n m n x ]}414[]44[{]4[δδ ∑∞-∞=------=k m k n m k n )]}(41[)](4[{δδ ∑∞-∞=----=k k n k n ]}41[]4[{δδ N=4.1.9 (a). T=π/5Because 0w =10, T=2π/10=π/5.(b). Not periodic.Because jt t e e t x --=)(2, while t e -is not periodic, )(2t x is not periodic.(c). N=2Because 0w =7π, N=(2π/0w )*m, and m=7.(d). N=10Because n j j e e n x )5/3(10/343)(ππ=, that is 0w =3π/5, N=(2π/0w )*m, and m=3.(e). Not periodic. Because 0w =3/5, N=(2π/0w )*m=10πm/3 , it ’s not a rational number.1.14 A1=3, t1=0, A2=-3, t2=1 or -1dtt dx )( isSolution: x(t) isBecause ∑∞-∞=-=k k t t g )2()(δ, dt t dx )(=3g(t)-3g(t-1) or dtt dx )(=3g(t)-3g(t+1) 1.15. (a). y[n]=2x[n-2]+5x[n-3]+2x[n-4]Solution:]3[21]2[][222-+-=n x n x n y ]3[21]2[11-+-=n y n y ]}4[4]3[2{21]}3[4]2[2{1111-+-+-+-=n x n x n x n x ]4[2]3[5]2[2111-+-+-=n x n x n xThen, ]4[2]3[5]2[2][-+-+-=n x n x n x n y(b).No. For it ’s linearity.the relationship between ][1n y and ][2n x is the same in-out relationship with (a). you can have a try.1.16. (a). No.For example, when n=0, y[0]=x[0]x[-2]. So the system is memory. (b). y[n]=0.When the input is ][n A δ,then, ]2[][][2-=n n A n y δδ, so y[n]=0. (c). No.For example, when x[n]=0, y[n]=0; when x[n]=][n A δ, y[n]=0. So the system is not invertible.1.17. (a). No.For example, )0()(x y =-π. So it ’s not causal.(b). Yes.Because : ))(sin()(11t x t y = , ))(sin()(22t x t y =))(sin())(sin()()(2121t bx t ax t by t ay +=+1.21. Solution:We have known:(a).(b).(c).(d).1.22. Solution:We have known:(a).(b).(e).(g)1.23. Solution:For )]()([21)}({t x t x t x E v -+= )]()([21)}({t x t x t x O d --= then,(a).(b).(c).1.24.For: ])[][(21]}[{n x n x n x E v -+= ])[][(21]}[{n x n x n x O d --=then,(a).(b).1.25. (a). Periodic. T=π/2.Solution: T=2π/4=π/2.(b). Periodic. T=2.Solution: T=2π/π=2.(d). Periodic. T=0.5. Solution: )}()4{cos()(t u t E t x v π=)}())(4cos()()4{cos(21t u t t u t --+=ππ )}()(){4cos(21t u t u t -+=π )4cos(21t π= So, T=2π/4π=0.51.26. (a). Periodic. N=7Solution: N=m *7/62ππ=7, m=3.(b). Aperriodic.Solution: N=ππm m 16*8/12=, it ’s not rational number.(e). Periodic. N=16 Solution as follow:)62cos(2)8sin()4cos(2][ππππ+-+=n n n n x in this equation,)4cos(2n π, it ’s period is N=2π*m/(π/4)=8, m=1.)8sin(n π, it ’s period is N=2π*m/(π/8)=16, m=1.)62cos(2ππ+-n , it ’s period is N=2π*m/(π/2)=4, m=1. So, the fundamental period of ][n x is N=(8,16,4)=16.1.31. SolutionBecause )()1()(),2()()(113112t x t x t x t x t x t x ++=--=. According to LTI property ,)()1()(),2()()(113112t y t y t y t y t y t y ++=--=Extra problems:Sketch ⎰∞-=t dt t x t y )()(. 1. SupposeSolution:2. SupposeSketch:(1). )]1(2)1()3()[(--+++t t t t g δδδ(2). ∑∞-∞=-k k t t g )2()(δ(2).Chapter 22.1 Solution:Because x[n]=(1 2 0 –1)0, h[n]=(2 0 2)1-, then(a).So, ]4[2]2[2]1[2][4]1[2][1---+-+++=n n n n n n y δδδδδ (b). according to the property of convolutioin:]2[][12+=n y n y(c). ]2[][13+=n y n y][*][][n h n x n y =][][k n h k x k -=∑∞-∞= ∑∞-∞=-+--=k k k n u k u ]2[]2[)21(2 ][211)21()21(][)21(12)2(0222n u n u n n k k --==+-++=-∑ ][])21(1[21n u n +-= the figure of the y[n] is:2.5 Solution:We have known: ⎩⎨⎧≤≤=elsewhere n n x ....090....1][,,, ⎩⎨⎧≤≤=elsewhere N n n h ....00....1][,,,(9≤N ) Then, ]10[][][--=n u n u n x , ]1[][][---=N n u n u n h∑∞-∞=-==k k n u k h n h n x n y ][][][*][][ ∑∞-∞=-------=k k n u k n u N k u k u ])10[][])(1[][(So, y[4] ∑∞-∞=-------=k k u k u N k u k u ])6[]4[])(1[][( ⎪⎪⎩⎪⎪⎨⎧≥≤=∑∑==4,...14, (140)0N N k Nk =5, then 4≥N And y[14] ∑∞-∞=------=k k u k u N k u k u ])4[]14[])(1[][(⎪⎪⎩⎪⎪⎨⎧≥≤=∑∑==14,...114, (1145)5N N k Nk =0, then 5<N ∴4=N2.7 Solution:[][][2]k y n x k g n k ∞=-∞=-∑(a )[][1]x n n δ=-,[][][2][1][2][2]k k y n x k g n k k g n k g n δ∞∞=-∞=-∞=-=--=-∑∑(b) [][2]x n n δ=-,[][][2][2][2][4]k k y n x k g n k k g n k g n δ∞∞=-∞=-∞=-=--=-∑∑ (c) S is not LTI system..(d) [][]x n u n =,0[][][2][][2][2]k k k y n x k g n k u k g n k g n k ∞∞∞=-∞=-∞==-=-=-∑∑∑2.8 Solution: )]1(2)2([*)()(*)()(+++==t t t x t h t x t y δδ )1(2)2(+++=t x t xThen,That is, ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<-≤<-+-=-<<-+=others t t t t t t t t y ,........010,....2201,.....41..,.........412,.....3)(2.10 Solution:(a). We know:Then,)()()(αδδ--='t t t h)]()([*)()(*)()(αδδ--='='t t t x t h t x t y )()(α--=t x t xthat is,So, ⎪⎪⎩⎪⎪⎨⎧+≤≤-+≤≤≤≤=others t t t t t t y ,.....011,.....11,....0,.....)(ααααα(b). From the figure of )(t y ', only if 1=α, )(t y ' would contain merely therediscontinuities.2.11 Solution:(a). )(*)]5()3([)(*)()(3t u et u t u t h t x t y t----==⎰⎰∞∞---∞∞--------=ττττττττd t u e u d t u eu t t )()5()()3()(3)(3⎰⎰-------=tt t t d e t u d et u 5)(33)(3)5()3(ττττ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥+-=-<≤-=<=---------⎰⎰⎰5,.......353,.....313.........,.........0315395)(33)(3393)(3t e e d e d e t e d e t tt t t t t t t t ττττττ(b). )(*)]5()3([)(*)/)(()(3t u e t t t h dt t dx t g t ----==δδ)5()3()5(3)3(3---=----t u e t u e t t(c). It ’s obvious that dt t dy t g /)()(=.2.12 Solution∑∑∞-∞=-∞-∞=--=-=k tk tk t t u ek t t u e t y )]3(*)([)3(*)()(δδ∑∞-∞=---=k k t k t u e)3()3(Considering for 30<≤t ,we can obtain33311])3([)(---∞=-∞-∞=--==-=∑∑ee e ek t u e e t y tk k tk kt. (Because k must be negetive ,1)3(=-k t u for 30<≤t ).2.19 Solution:(a). We have known:][]1[21][n x n w n w +-=(1) ][]1[][n w n y n y βα+-=(2)from (1), 21)(1-=E EE Hfrom (2), αβ-=E EE H )(2then, 212212)21(1)21)(()()()(--++-=--==E E E E E E H E H E H ααβαβ∴][]2[2]1[)21(][n x n y n y n y βαα=-+-+-but, ][]1[43]2[81][n x n y n y n y +-+--=∴⎪⎩⎪⎨⎧=⎪⎭⎫ ⎝⎛=+=143)21(:....812βααor ∴⎪⎩⎪⎨⎧==141βα(b). from (a), we know )21)(41()()()(221--==E E E E H E H E H21241-+--=E EE E ∴][)41()21(2][n u n h n n ⎥⎦⎤⎢⎣⎡-=2.20 (a). 1⎰⎰∞∞-∞∞-===1)0cos()cos()()cos()(0dt t t dt t t u δ(b). 0dt t t )3()2sin(5+⎰δπ has value only on 3-=t , but ]5,0[3∉-∴dt t t )3()2sin(5+⎰δπ=0(c). 0⎰⎰---=-641551)2cos()()2cos()1(dt t t u d u πτπττ⎰-'-=64)2cos()(dt t t πδ0|)2(s co ='=t t π 0|)2sin(20=-==t t ππ∑∞-∞=-==k t h kT t t h t x t y )(*)()(*)()(δ∑∞-∞=-=k kT t h )(∴2.27Solution()y A y t dt ∞-∞=⎰,()xA x t dt ∞-∞=⎰,()hA h t dt ∞-∞=⎰.()()*()()()y t x t h t x x t d τττ∞-∞==-⎰()()()()()()()()()(){()}y x hA y t dt x x t d dtx x t dtd x x t dtd x x d d x d x d A A ττττττττττξξτττξξ∞∞∞-∞-∞-∞∞∞∞∞-∞-∞-∞-∞∞∞∞∞-∞-∞-∞-∞==-=-=-===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(a) ()()(2)tt y t e x d τττ---∞=-⎰,Let ()()x t t δ=,then ()()y t h t =. So , 2()(2)(2)()(2)()(2)t t t t t h t ed e d e u t τξδττδξξ---------∞-∞=-==-⎰⎰(b) (2)()()*()[(1)(2)]*(2)t y t x t h t u t u t e u t --==+---(2)(2)(1)(2)(2)(2)t t u eu t d u e u t d ττττττττ∞∞-------∞-∞=+------⎰⎰22(2)(2)12(1)(4)t t t t u t e d u t e d ττττ---------=---⎰⎰(2)2(2)212(1)[]|(4)[]|t t t t u t e e u t ee ττ-------=--- (1)(4)[1](1)[1](4)t t e u t e u t ----=-----2.46 SolutionBecause)]1([2)1(]2[)(33-+-=--t u dtde t u e dt d t x dt d t t )1(2)(3)1(2)(333-+-=-+-=--t e t x t e t x t δδ.From LTI property ,we know)1(2)(3)(3-+-→-t h e t y t x dtdwhere )(t h is the impulse response of the system. So ,following equation can be derived.)()1(223t u e t h e t --=-Finally, )1(21)()1(23+=+-t u e e t h t 2.47 SoliutionAccording to the property of the linear time-invariant system: (a). )(2)(*)(2)(*)()(000t y t h t x t h t x t y ===(b). )(*)]2()([)(*)()(00t h t x t x t h t x t y --==)(*)2()(*)(0000t h t x t h t x --=012y(t)t4)2()(00--=t y t y(c). )1()1(*)(*)2()1(*)2()(*)()(00000-=+-=+-==t y t t h t x t h t x t h t x t y δ(d). The condition is not enough.(e). )(*)()(*)()(00t h t x t h t x t y --==τττd t h x )()(00+--=⎰∞∞-)()()(000t y dm m t h m x -=--=⎰∞∞-(f). )()]([)](*)([)(*)()(*)()(000000t y t y t h t x t h t x t h t x t y "=''='--'=-'-'==Extra problems:1. Solute h(t), h[n](1). )()(6)(5)(22t x t y t y dt dt y dtd =++ (2). ]1[][2]1[2]2[+=++++n x n y n y n y Solution:(1). Because 3121)3)(2(1651)(2+-++=++=++=P P P P P P P Hso )()()()3121()(32t u e e t P P t h t t ---=+-++=δ (2). Because )1)(1(1)1(22)(22i E i E EE E E E E E H -+++=++=++=iE Eii E E i -+-+++=1212 so []][)1()1(2][1212][n u i i i k i E E i i E E i n h n n +----=⎪⎪⎪⎪⎭⎫⎝⎛-+-+++=δChapter 33.1 Solution:Fundamental period 8T =.02/8/4ωππ==00000000033113333()224434cos()8sin()44j kt j t j t j t j tk k j t j t j t j tx t a e a e a e a e a e e e je je t t ωωωωωωωωωππ∞----=-∞--==+++=++-=-∑3.2 Solution:for, 10=a , 4/2πj ea --= , 4/2πj ea = , 3/42πj ea --=, 3/42πj ea =n N jk k N k e a n x )/2(][π∑>=<=n j n j n j n j e a e a e a e a a )5/8(4)5/8(4)5/4(2)5/4(20ππππ----++++=n j j n j j n j j n j j e e e e e e e e )5/8(3/)5/8(3/)5/4(4/)5/4(4/221ππππππππ----++++= )358cos(4)454cos(21ππππ++++=n n)6558sin(4)4354sin(21ππππ++++=n n3.3 Solution: for the period of )32cos(t πis 3=T , the period of )35sin(t πis 6=Tso the period of )(t x is 6 , i.e. 3/6/20ππ==w)35sin(4)32cos(2)(t t t x ππ++= )5sin(4)2cos(21200t w t w ++=)(2)(21200005522t w j t w j t w j t w j e e j e e ----++=then, 20=a , 2122==-a a , j a 25=-, j a 25-=3.5 Solution:(1). Because )1()1()(112-+-=t x t x t x , then )(2t x has the same period as )(1t x ,that is 21T T T ==, 12w w =(2). 212111()((1)(1))jkw t jkw tk T T b x t e dt x t x t e dt T--==-+-⎰⎰111111(1)(1)jkw tjkw t T Tx t e dt x t e dt T T --=-+-⎰⎰ 111)(jkw k k jkw k jkw k e a a e a e a -----+=+=3.8 Solution:kt jw k k e a t x 0)(∑∞-∞==while:)(t x is real and odd, then 00=a , k k a a --=2=T , then ππ==2/20wand0=k a for 1>kso kt jw k k e a t x 0)(∑∞-∞==t jw t jw e a e a a 00110++=--)sin(2)(11t a e e a t j t j πππ=-=-for12)(2121212120220==++=-⎰a a a a dt t x∴2/21±=a ∴)sin(2)(t t x π±=3.13 Solution:Fundamental period 8T =.02/8/4ωππ==kt jw k k e a t x 0)(∑∞-∞==∴t jkw k k e jkw H a t y 0)()(0∑∞-∞==0004, 0sin(4)()0, 0k k H jk k k ωωω=⎧==⎨≠⎩ ∴000()()4jkw t k k y t a H jkw e a ∞=-∞==∑Because 48004111()1(1)088T a x t dt dt dt T ==+-=⎰⎰⎰So ()0y t =.kt jw k k e a t x 0)(∑∞-∞==∴t jkw k k e jkw H a t y 0)()(0∑∞-∞== ∴dt e jkw H t y Ta t jkw Tk 0)()(10-⎰=for⎪⎩⎪⎨⎧>≤=100, (0100),.......1)(w w jw H ∴if 0=k a , it needs 1000>kwthat is 12100,........1006/2>>k kππand k is integer, so 8>K3.22 Solution:021)(1110===⎰⎰-tdt dt t x Ta Tdt te dt te dt e t x T a t jk t jk t jkw T k ππ-----⎰⎰⎰===1122112121)(10t jk tde jk ππ--⎰-=1121⎥⎥⎦⎤⎢⎢⎣⎡---=----111121ππππjk e te jk t jk tjk ⎥⎦⎤⎢⎣⎡---+-=--ππππππjk e e e e jk jk jk jk jk )()(21⎥⎦⎤⎢⎣⎡-+-=ππππjk k k jk )sin(2)cos(221[]πππππk jk k j k jk k)1()cos()cos(221-==-=0............≠k404402()()1184416tj tj t t j tt j t H j h t edt ee dte edt e e dtj j ωωωωωωωω∞∞----∞-∞∞----∞===+=+=-++⎰⎰⎰⎰A periodic continous-signal has Fourier Series:. 0()j kt k k x t a e ω∞=-∞=∑T is the fundamental period of ()x t .02/T ωπ=The output of LTI system with inputed ()x t is 00()()jk t k k y t a H jk e ωω∞=-∞=∑Its coefficients of Fourier Series: 0()k k b a H jk ω= (a)()()n x t t n δ∞=-∞=-∑.T=1, 02ωπ=11k a T==. 01/221/21()()1jkw t jk tk T a x t e dt t e dt Tπδ---===⎰⎰ (Note :If ()()n x t t nT δ∞=-∞=-∑,1k a T=) So 2282(2)16(2)4()k k b a H jk k k πππ===++ (b)()(1)()n n x t t n δ∞=-∞=--∑ .T=2, 0ωπ=,11k a T== 01/23/21/21/2111()()(1)(1)221[1(1)]2jkw t jk tjk t k T k a x t e dt t e dt t e dtT ππδδ----==+--=--⎰⎰⎰So 24[1(1)]()16()k k k b a H jk k ππ--==+, (c) T=1,02ωπ=01/421/4sin()12()jk t jk tk T k a x t e dt e dt Tk ωπππ---===⎰⎰28sin()2()[16(2)]k k k b a H jk k k ππππ==+ 3.35 Solution: T= /7π,02/14T ωπ==.kt jw k k e a t x 0)(∑∞-∞==∴t jkw k k e jkw H a t y 0)()(0∑∞-∞==∴0()k k b a H jkw =for⎩⎨⎧≥=otherwise w jw H ,.......0250,.......1)(,01,. (17)()0,.......k H jkw otherwise ⎧≥⎪=⎨⎪⎩that is 0250250, (14)k k ω<<, and k is integer, so 18....17k or k <≤. Let ()()y t x t =,k k b a =, it needs 0=k a ,for 18....17k or k <≤.3.37 Solution:11()[]()212()21312411511cos 224nj j nj n n n n j nn j nn n j j j H e h n ee ee e e e ωωωωωωωωω∞∞--=-∞=-∞-∞--=-∞=-===+=+=---∑∑∑∑A periodic sequence has Fourier Series:2()[]jk n Nk k N x n a eπ=<>=∑.N is the fundamental period of []x n .The output of LTI system with inputed []x n is 22()[]()jk jk n NNk k N y n a H eeππ=<>=∑.Its coefficients of Fourier Series: 2()jk Nk k b a H eπ=(a)[][4]k x n n k δ∞=-∞=-∑.N=4, 14k a =.So 2314()524cos()44j k Nk k b a H e k ππ==-3165cos()42k b k π=-3.40 Solution: According to the property of fourier series: (a). )2cos(2)cos(20000000t Tka t kw a e a ea a k k t jkw k t jkw k k π==+='- (b). Because 2)()()}({t x t x t x E v -+=}{2k v k k k a E a a a =+='-(c). Because 2)(*)()}({t x t x t x R e +=2*kk k a a a -+='(d). k k k a Tjka jkw a 220)2()(π=='(e). first, the period of )13(-t x is 3T T ='then 3)(1)13(131213120dme m x T dt e t x T a m T jk T t T jk T k +'--'-'-'⎰⎰'=-'='ππTjkk m T jk T T jk T jk m T jk T ea dm e m x T e dm e e m x T πππππ221122211)(1)(1---------=⎥⎦⎤⎢⎣⎡==⎰⎰3.43 (a) Proof:(i )Because ()x t is odd harmonic ,(2/)()jk T t k k x t a e π∞=-∞=∑,where 0k a = for everynon-zero even k.(2/)()2(2/)(2/)()2T jk T t k k jk jk T tk k jk T tk k T x t a ea e e a e ππππ∞+=-∞∞=-∞∞=-∞+===-∑∑∑It is noticed that k is odd integers or k=0.That means()()2Tx t x t =-+(ii )Because of ()()2Tx t x t =-+,we get the coefficients of Fourier Series222/200/222(/2)/2/20022/2/200111()()()11()(/2)11()()(1)jk t jk t jk t T T T T T T k T jk t jk t T T T T Tjk t jk t T T k TT a x t e dt x t e dt x t e dtT T T x t e dt x t T e dt T T x t e dt x t e dt T T πππππππ-----+--==+=++=--⎰⎰⎰⎰⎰⎰⎰ 2/21[1(1)]()jk t T kT x t e dt T π-=--⎰It is obvious that 0k a = for every non-zero even k. So ()x t is odd harmonic ,(b)Extra problems:∑∞-∞=-=k kT t t x )()(δ, π=T(1). Consider )(t y , when )(jw H ist(2). Consider )(t y , when )(jw H isSolution:∑∞-∞=-=k kT t t x )()(δ↔π11=T , 220==Tw π(1).kt j k k tjkw k k e k j H a ejkw H a t y 20)2(1)()(0∑∑∞-∞=∞-∞===ππ2=(for k can only has value 0)(2).kt j k k tjkw k k e k j H a e jkw H a t y 20)2(1)()(0∑∑∞-∞=∞-∞===πππte e t j t j 2cos 2)(122=+=- (for k can only has value –1 and 1)。
信号与系统王明泉科学出版社第三章习题解答

左右对t求导,得:
显然, 的指数傅里叶级数为 (式中 )
3.9求题图3.9所示各信号的傅里叶变换。
题图3.9
解:根据定义
3.10计算下列每个信号的傅里叶变换。
(1) ;(2) ;
(3) ;(4)
(5) ;(6)
解: (1)
(2)
(3)由于
根据卷积乘积性质,得
(4)由于
所以
(5) ,设
第3章傅里叶变换与连续系统的频域分析
3.6本章习题全解
3.1证明函数集 在区间 内是正交函数集。
证明:对任意的自然数n,m (n m),有
=0
证毕
3.2一个由正弦信号合成的信号由下面的等式给出:
(1)画出这个信号的频谱图,表明每个频率成分的复数值。对于每个频率的复振幅,将其实部和虚部分开或者将其幅度和相位分开来画。
图3-19-3
3.21用傅里叶变换法求题图3.21所示周期信号 的傅里叶级数。
题图3.21
解:对x(t)一个周期信号x0(t)的傅里叶变换为
X0(j )=
=
傅里叶级数
3.22求题图3.22所示周期性冲激信号的频谱函数。
题图321-1
3.23已知 的幅频与相频特性如题图3.23所示,求其傅里叶逆变换 。
(a)(b)
题图3.12
解:令傅里叶变换对 ,
(1)根据已知图形可知:
,
已知有
所以
根据傅里叶变换的微积分性质
所以
即
(2) ,
根据(1)的结论得
根据傅里叶变换的微积分性质
所以
即
3.13利用傅里叶变换的对称性求下列信号的频谱函数。
(1) ;(2) ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
页脚内容1信号与系统 习题1一、填空题1.离散信号()2()k f k k ε=,则该信号的单边Z 变换为① 。
2.信号()f t 的傅里叶变换为()F j ω,则(23)f t -的傅里叶变换为 ① 。
3.已知周期信号()cos(230)sin(4+60)f t t t =++,则其周期为 ① s ,基波频率为 ② rad/s 。
4、已知)(1t f 和)(2t f 的波形如下图所示,设)()()(21t f t f t f *=,则=-)1(f ① ,=)0(f ② 。
5、单边拉氏变换())4(22+=s s s F ,其反变换()=t f ① 。
6、一离散系统的传输算子为23)(22+++=E E EE E H ,则系统对应的差分方程为 ① ,单位脉冲响应为 ② 。
二、单项选择题1. 下列说法不正确的是______。
A. 每个物理系统的数学模型都不相同。
页脚内容2B. 同一物理系统在不同的条件下,可以得到不同形式的数学模型。
C. 不同的物理系统经过抽象和近似,有可能得到形式上完全相同的数学模型。
D. 对于较复杂的系统,同一系统模型可有多种不同的数学表现形式。
2. 周期信号f (t )的傅立叶级数中所含有的频率分量是______。
A. 余弦项的奇次谐波,无直流 B. 正弦项的奇次谐波,无直流 C. 余弦项的偶次谐波,直流 D. 正弦项的偶次谐波,直流 3. 当周期矩形信号的脉冲宽度缩小一半时,以下说法正确的是_____。
A. 谱线间隔增加一倍 B. 第一个过零点增加一倍 C. 幅值不变 D. 谱线变成连续的 4. 图3所示的变化过程,依据的是傅立叶变换的_____。
图3 A. 时移性 B. 频移性 C. 尺度变换 D. 对称性 5. 对抽样信号进行恢复,需将信号通过_____。
A. 理想带通滤波器 B. 理想电源滤波器 C. 理想高通滤波器 D. 理想低通滤波器 6. 连续周期信号的频谱有_____。
A. 连续性、周期性B. 连续性、收敛性ω(ω)ωπ2πτ4πτ(d )2πτ-4πτ-o-πϕ(b )(a )-1页脚内容3C. 离散性、周期性D. 离散性、收敛性7. 若对)(t f 进行理想取样,其奈奎斯特取样频率为s f ,对)231(-t f 进行取样,其奈奎斯特取样频率为_____。
A. 3s fB.s f 31 C. 3(s f -2) D. )2(31-s f 8. 信号f (t )变成)121(+t f 的过程为_____。
A. 先将f (t )的图形向左移一个单位,再时间上展宽1/2倍B. 先将f (t )的图形向左移一个单位,再时间上展宽1/2倍C. 先将f (t )的图形向左移一个单位,再时间上展宽1/2倍D. 先将f (t )的图形向左移一个单位,再时间上展宽1/2倍 9. 下列傅里叶变换性质中错误的是_____。
A. 时间与频率标度)(1)(ω↔F aat f FB. 时移特性)()(00ω-ω-↔F e t t f t j FC. 频移特性)()(00ω-ω↔ωF t f eFtjD. 域相乘特性)()(21)()(ω*ωπ↔G F t g t f F三、画图题页脚内容41、()t f 1和()t f 2信号波形如下图所示,计算下列卷积,画出其波形。
(1) ()()t f t f 21*; (2) ()()t f t f 11*2、已知门函数()⎪⎩⎪⎨⎧><=2021τττt t t g ,画出其对应的幅度谱和相位谱。
3、画出信号())(cos t e t f t ε-=的波形图。
四、计算题1.理想低通滤波器具有特性012()j t H j g e ωωω-=,当输入信号分别为11()()f t Sa t ω=和21()()f t t πδω=时,求系统的响应1()y t 和2()y t 。
2.描述某离散系统的差分方程为()3(1)(2)()3(1)y k y k y k f k f k --+-=+-,若系统的输入()0.2()k f k k ε=,零输入响应初始条件(0)0x y =,(0)1x y =。
试求系统的零输入响应、零状态响应和完全响应。
页脚内容53.如图4所示电路,已知11R C F =Ω=,,3()(1)()t s v t e t ε-=+,(0)1C v V -=,画出s 域等效模型电路,并()C v t 求响应电压。
习题1参考答案一、填空题1. ① zz a -2. ① 321()22j F j e ωω-3. ① π ② 24、 ① -2 ② -35、 ①)()2cos 1(21t t ε- 6、 ① )1()2()(2)1(3)2(+++=++++k f k f k y y k y ② )()2(k k ε- 二、单项选择题题号1 2 3 4 5 6 7 8 9答案B C D A C D B C A页脚内容6三、画图题1、(1)()()())]()()1([121t t t t f t f t f δδδ+++*=*,结果如图1所示(4分)(4分)图1 图2(2)结果如图2所示2、门函数的幅度谱页脚内容7(5分)相位谱(5分)3、(6分)四、计算题1.解:因为1121()()Sa t g ωπωωω↔,所以1()f t 的傅里叶变换1()F j ω=121()g ωπωω (2分)页脚内容811121()()()()j t Y j F j H j g e ωωπωωωωω-=⋅=(2分)对1()Y j ω进行傅里叶反变换得 110()[()]y t Sa t t ω=-(2分)2()f t 的傅里叶变换为 211()()f t t ππδωω=↔ (2分)12221()()()()j t Y j F j H j g e ωωπωωωωω-=⋅=(1分)对2()Y j ω进行傅里叶反变换得 210()[()]y t Sa t t ω=- (1分)2. 解:将差分方程转换成算子方程:121(132)()(13)()E E y k E f k ---++=+ (2分)其传输算子为1212213321()()1323212E E E H E E E E E E E E ---++===-++++++ (2分)系统的单位响应为 ()[2(1)(2)]()k k h k k ε=--- (2分)因为()H E 极点121,2r r =-=-,所以零输入响应为112212()(1)(2),0k k k k x y k c r c r c c k =+=-+-≥结合初始条件(0)0x y =,(1)1x y =,得121,1c c ==-,所以零输入响应为 1122()(1)(2),0k k k k x y k c r c r k =+=---≥ (3分) 零状态响应为页脚内容9521()()*()2()*[2(1)(2)]()[2(1)(2)]()634k k k k k k f y k f k h k k k k εεε==---=⋅+---(3分)系统的全响应 555()2(1)(2),0634k k k y k k =⋅+---≥(3分)3. (本小题10分)解:11()3s V s s s =++, 【1分】 等效算子电路模型:【3分】由:(0)()()1C s v V s s I s R sC --=+【2分】 得:(0)()(0)(0)1()()1C s C C C v V s v s V s I s sC s RsC sν----=+=++【2分】带入得全响应:311()1(0)22t t C v t e e t --=-+≥【2分】习题二一、单项选择题1.单边拉氏变换2()1sse F s s -=+,则其原函数()f t =______。
页脚内容10A .sin(1)()t t ε- B.sin(1)(1)t t ε-- C.cos(1)()t t ε- D.cos(1)(1)t t ε--2.卷积和12(5)*(3)f k f k +- 等于。
A.12()*()f k f kB.12()*(8)f k f k -C.12()*(2)f k f k - D .12()*(2)f k f k +3.已知信号()(100)f t Sa t π=,则该信号的奈奎斯特频率等于 。
A. 50HzB. 100HzC. 150HzD. 200Hz4.LTI 连续时间系统输入为(),0at e t a ε->,冲激响应为()()h t t ε=,则输出为 。
A. ()at te t δ-B. ()at te t ε-C.()()11at e t aε--D.()()11at e t aδ-- 5.离散序列1()f k 和2()f k 如下图所示,设12()()*()y k f k f k =,则(2)y =______。
A. -1B. 0C. 1D. 36.以下 特点不属于周期信号频谱的特点。
A .离散性B 谐波性C. 周期性D. 收敛性7.符号函数()Sgn t 的傅里叶变换等于 。
A .πB. 1C.1j ωD.2j ω8.已知某LTI 连续系统当激励为()f t 时,系统的零状态响应为1()f y t ,零输入响应为1()x y t ,全页脚内容11响应为1()y t ,若系统的初始状态不变,激励为2()f t ,系统的全响应2()y t 等于 。
A.112()()f x y t y t +B.1()f y tC.11()2()f x y t y t +D. 12()y t9.拉氏变换在满足 条件下,信号的傅立叶变换可以看成是拉氏变换的特例。
A.拉普拉斯变换的收敛域包含虚轴B.拉普拉斯变换的收敛域包含单位圆C.拉普拉斯变换的收敛域不包含单位圆D.拉普拉斯变换的收敛域不包含虚轴 10.某二阶LTI 系统的频率响应22()()32j H j j j ωωωω+=++,则该系统的微分方程形式为______。
A .'''()3()2()()2y t y t y t f t ++=+ B. ''''()3()2()()2y t y t y t f t --=+ C. ''''()3()2()()2y t y t y t f t ++=+ D. ''''()3()2()()2()y t y t y t f t f t ++=+二、填空题1、()⎰-=--+5122)4sin(dt t t t t δπ① ;()()=-++2*1)5.0(1k k k εε ② 。