小学数学竞赛十二、列简易方程解应用题

合集下载

小学数学列方程解应用题-方程

小学数学列方程解应用题-方程

小学数学列方程解应用题-方程1、用字母表示数。

(1)用任何一个字母,都可以表示我们所学过的自然数、分数、小数和百分数。

(2)用含有字母的式子,可以简明地表达数学概念、运算定律、计算公式、数量关系。

注意:(1)在含有字母的乘法里,乘号可以省略不写或用“?”表示。

如a×x可写成a?x或ax。

(2)数字和字母相乘时,可以简化,数字放在最前面。

如:a×4×b可以写成4ab。

(3) 1与字母相乘时,1省略不写。

如a×1可写成a。

2、简易方程及解法。

(1)等式:表示相等关系的式子叫等式。

(2)方程:含有未知数的等式叫方程。

(3)方程的解:使方程左右两边相等的未知数的值叫方程的解。

(4)求方程的解的过程叫解方程。

(5)解法步骤:?对于只有一步运算的方程,可用加法与减法、乘法与除法的互逆关系求;对于含有二、三步运算的方程,先根据方程确定运算顺序,再根据四则运算的互逆关系求出方程解。

?把求出的未知数的值分别代入原方程等号两边的式子中计算,如果等号两边的式子相等,则所求的未知数的值就是原方程的解。

3、列方程解决问题的步骤。

(1)设未知数。

(2)找等量关系,列方程。

(3)解方程并验算。

典例解析及同步练习1、用字母表示数典例1 中国常用的“摄氏度”表示温度,如小静的体温是36.6摄氏度;还有一些国家用“华氏度”表示温度,二者的关系是:华氏温度数比摄氏温度数的1.8倍还多32.:1: a摄氏度是多少华氏度, 用式子表示。

:2: 某人的体温是97.7华氏度,他在发烧吗,解析:此题贴近生活,以表示温度为情境,一方面要求学生能正确地用字母示数,另一方面感知字母表示数量关系的优点——简捷,同时要求同学们能利用关系式解决实际问题。

(1)“摄氏a度”,华氏温度就是比a的1.8倍多32,a的1.8倍是1.8a,比1.8a多32,用式子表示为:1.8a,32 。

(2)97.7华氏度,代入上式即:1.8a,32=97.7 a=36.5。

人教版五年级上册数学简易方程招 用“方程法”解典型应用题

人教版五年级上册数学简易方程招 用“方程法”解典型应用题

解:设大船有x条,则小船有(12-x)条。 5x+3(12-x)=46
x=5 12-5=7(条) 答:大船有5条,小船有7条。
题型 2 列方程解盈亏问题
4.美术课上老师给表现优秀的小朋友分糖,如果每人 分4颗糖,就多5颗糖;如果每人分5颗糖,就少4颗 糖。表现优秀的小朋友有多少人?
根据总数不变列方程
题型 1 列方程解鸡兔同笼问题
1.2分和5分的硬币共36枚,共值99分,两种硬币各有 多少枚?
(36-x)枚
x枚 5x+2(36-x)=99
解:设5分硬币有x枚,则2分硬币有(36-x)枚。 5x+2(36-x)=99 x=9 36-9=27(枚) 答:5分硬币有9枚,2分硬币有27枚。
2.动物园里有仙鹤和长颈鹿共17只,共54条腿。仙鹤、 长颈鹿各有多少只? (17-x)只
人教版五年级上册数学:简易方程招 用“方程法”解典型应用题
解:设预定时间是x分钟。 120(x-3)=90(x+3) x=21 120×(21-3)=2160(m) 答:小红家离学校有2160 m。
人教版五年级上册数学:简易方程招 用“方程法”解典型应用题
人教版五年级上册数学:简易方程招 用“方程法”解典型应用题
RJ 五年级上册
第11招 用“方程法”解典型应用题
学习第5单元后使用
经典例题
(50-x)张
x张
小明给班里买了甲、乙两种电影票共50张,甲电影 票每张20元,乙电影票每张14元,共花了784元, 甲、乙电影票各买了多少张?
20x+14(50-x)=784 等量关系式是:
买甲电影票的钱+买乙电影票的钱=共花的钱。
人教版五年级上册数学:简易方程招 用“方程法”解典型应用题

(完整版)六年级奥数列方程解应用题

(完整版)六年级奥数列方程解应用题

(完整版)六年级奥数列方程解应用题列方程解应用题列方程解应用题,就是用代数算法解应用题。

它以布列方程为前提,先不考虑求得数,只把所求未知数设x。

一般所求问题与已知条件的数量关系明显者,采取设直接未知数的办法,即求什么就设什么为x;而所求问题与已知条件的数量关系隐蔽者,则采取设间接未知数的办法,即设一个跟所求问题与已知条件相关联的未知数为x。

但是,无论设哪种未知数为x,均将其放在与已知数同等的地位,一起参加数量关系的分析和运算。

列方程解应用题,一般分四步进行:①弄清题意,用x表示未知数;②找出数量间的等量关系,列出方程式;③解方程;④检验并作答。

正确的方程式,应符合下列条件:①等号两边的意义的相同;②等号两边的数量相等;③等号两边的单位一致。

例1.光明小学买回一批图书,如果每班发15本,则少20本,如果每班发12本,则剩下16本,这个学校一共有多少个班?买回图书多少本?1、一批游客过一条河,如果每只船坐10个人,还剩4人,如果每船坐12个人,那么多出1只船,你知道这批游客有多少人?有多少只船?2、小明每天同一时间从家出发去学校,如果每分钟行60米,则可提前1分钟到校,如果每分钟行50米,则迟到2分钟,小明家离学校多少米?3、某班班主任给同学们分巧克力,如果每个人分10块,则剩下8块,如果每个人分12块,有6个同学分不到。

这个班有多少个学生?例2.一个两位数,十位上的数字比个位上的数字少1,如果十位上的数字扩大4倍,个位上的数字减去2,那么所得的两位数比原来大58,求原来的两位数是多少?1、有一个两位数,它的十位数字和个位数字和是14,如果把十位上的数字和个位2、甲数是乙数的3倍,甲数减去85,乙数减去5,则两数相等,甲乙两数各是多少?3、一个三位数,十位数字是0,其余两位数字之和是12,如果个位数字减2,百位数字加1,那么所得的新数比原数的百位数字与个位数字互换位置后的数小100,求原三位数。

例3.100个和尚吃100个馒头,大和尚每人吃3个,小和尚每3人吃一个,那么一共有几个大和尚,几个小和尚?1、鸡兔同笼,从上面数,有15个头。

小学奥数解方程应用练习题

小学奥数解方程应用练习题

小学奥数解方程应用练习题在小学奥数中,解方程是一项重要的技能,它在实际生活中有着广泛的应用。

本文将介绍一些小学奥数解方程应用练习题,帮助同学们更好地掌握解方程的方法和技巧。

问题一:小朋友们排队买冰淇淋,每人买一块冰淇淋,用了12块钱。

如果冰淇淋的价格是3块钱一块,问队伍中有几个小朋友?解法:设队伍中有x个小朋友,根据题意可得方程:3x = 12。

解方程:3x = 12x = 12 ÷ 3x = 4所以队伍中有4个小朋友。

问题二:小明买了一些苹果,每袋装6个苹果,一共装了5袋。

如果小明一共买了多少个苹果?解法:设小明买的苹果的个数为y,根据题意可得方程:6y = 5。

解方程:6y = 5y = 5 ÷ 6所以小明一共买了5 ÷ 6个苹果。

问题三:某天放学后,小红骑自行车回家,发现家里的门锁坏了。

她用了30分钟才找到了钥匙,然后用了20分钟才打开门锁。

如果小红骑自行车回家的时间是整个回家时间的三分之一,那么她一共用了多少时间?解法:设小红回家用的总时间为t,根据题意可得方程:t = 30 + 20 + 3t。

解方程:t = 30 + 20 + 3tt - 3t = 50-2t = 50t = -50 ÷ -2t = 25所以小红一共用了25分钟回家。

问题四:小张比小明大10岁,两人的年龄之和是40岁。

请问小明多大?解法:设小明的年龄为m,根据题意可得方程:m + (m + 10) = 40。

解方程:m + (m + 10) = 402m + 10 = 402m = 30m = 15所以小明15岁。

通过以上的练习题,同学们可以体会到解方程在实际生活中的应用。

解方程是一种重要的数学思维方式,能够帮助我们更好地理解和解决实际问题。

希望同学们能够通过不断的练习和实践,掌握解方程的方法和技巧,提高数学解题的能力。

本文介绍了一些小学奥数解方程应用练习题,希望对同学们有所帮助。

方程解决问题50道

方程解决问题50道

方程解决问题50道方程是数学中的重要概念,它可以帮助我们解决各种各样的问题。

下面是50道方程解决问题的例子,希望对大家的学习有所帮助。

1. 一个数的三倍加上5等于20,求这个数。

解:设这个数为x,根据题意可以得到方程3x+5=20,解得x=5。

2. 一个数的一半加上10等于30,求这个数。

解:设这个数为x,根据题意可以得到方程x/2+10=30,解得x=40。

3. 一个数的平方减去5等于20,求这个数。

解:设这个数为x,根据题意可以得到方程x^2-5=20,解得x=±5。

4. 一个数的平方加上3倍的这个数等于10,求这个数。

解:设这个数为x,根据题意可以得到方程x^2+3x=10,解得x=2或x=-5。

5. 一个数的平方减去2倍的这个数等于15,求这个数。

解:设这个数为x,根据题意可以得到方程x^2-2x=15,解得x=5或x=-3。

6. 一个数的平方减去4等于12,求这个数。

解:设这个数为x,根据题意可以得到方程x^2-4=12,解得x=±4。

7. 一个数的平方加上2倍的这个数等于16,求这个数。

解:设这个数为x,根据题意可以得到方程x^2+2x=16,解得x=4或x=-6。

8. 一个数的平方减去3倍的这个数等于10,求这个数。

解:设这个数为x,根据题意可以得到方程x^2-3x=10,解得x=5或x=-2。

9. 一个数的平方加上4等于20,求这个数。

解:设这个数为x,根据题意可以得到方程x^2+4=20,解得x=±4。

10. 一个数的平方减去5等于15,求这个数。

解:设这个数为x,根据题意可以得到方程x^2-5=15,解得x=±4。

11. 一个数的平方加上5等于25,求这个数。

解:设这个数为x,根据题意可以得到方程x^2+5=25,解得x=±5。

12. 一个数的平方减去6等于18,求这个数。

解:设这个数为x,根据题意可以得到方程x^2-6=18,解得x=±6。

六年级简易方程计算题

六年级简易方程计算题

六年级简易方程计算题一、解方程。

1. 2x + 5 = 17解析:将方程中的常数项移到等号右边,得到2x = 17 - 5,即2x = 12。

然后,两边同时除以 2,得到x = 6。

2. 3(x - 2) = 12解析:先将方程左边的括号展开,得到3x - 6 = 12。

接着,将常数项移到等号右边,得到3x = 12 + 6,即3x = 18。

两边同时除以 3,得到x = 6。

3. 5x - 3x = 16解析:左边合并同类项,得到2x = 16。

两边同时除以 2,解得x = 8。

4. (x)/(4) + 2 = 7解析:将方程中的常数项移到等号右边,得到(x)/(4) = 7 - 2,即(x)/(4) = 5。

然后,两边同时乘以 4,得到x = 20。

5. 2(x + 3) - 5 = 15解析:先将方程左边的括号展开,得到2x + 6 - 5 = 15,即2x + 1 = 15。

接着,将常数项移到等号右边,得到2x = 15 - 1,即2x = 14。

两边同时除以 2,得到x = 7。

二、列方程解应用题。

1. 一个数的 5 倍加上 3 等于 38,求这个数。

设这个数为x,则方程为5x + 3 = 38解析:因为这个数的 5 倍是5x,再加上 3 等于 38,所以列出方程5x + 3 = 38。

解方程可得5x = 35,x = 7。

2. 小明买了 5 个练习本,付出 10 元,找回 2.5 元,每个练习本多少元?设每个练习本x元,则方程为5x + 2.5 = 10解析:5 个练习本的价钱是5x元,付出 10 元,找回 2.5 元,说明 5 个练习本的价钱加上找回的 2.5 元等于付出的 10 元,所以列出方程5x + 2.5 = 10。

解方程可得5x = 7.5,x = 1.5。

3. 果园里有苹果树和梨树共 360 棵,苹果树的棵数是梨树的 3 倍,苹果树和梨树各有多少棵?设梨树有x棵,则苹果树有3x棵,方程为x + 3x = 360解析:梨树的棵数加上苹果树的棵数等于总棵数 360 棵,所以列出方程x + 3x = 360。

五年级数学竞赛解方程练习题

五年级数学竞赛解方程练习题解方程是数学竞赛中常见的题型,它考察了学生在代数运算和逻辑推理方面的能力。

本文将提供一些适合五年级学生的解方程练习题,以帮助他们提高解方程的能力。

1、简单的一步方程解方程时,一步方程是最基础的类型。

它们通常形如"ax = b",其中a和b是已知的数。

学生需要找到一个未知数x的值,使得等式成立。

例题1:5x = 20解:由于5乘以什么数能够得到20,所以我们可以通过除以5来求得x 的值。

解方程得到:x = 20 ÷ 5 = 4例题2:7m = 35解:同样,我们可以通过除以7来求得m的值。

解方程得到:m = 35 ÷ 7 = 52、多步方程多步方程是由两个或更多的操作组成的方程。

学生在解多步方程时需要运用逆运算的原理,逐步推导出未知数的值。

例题3:2x + 3 = 9解:首先,我们可以通过减去3来消去等式中的常数项。

得到:2x = 9 - 3 = 6然后,将等式两边都除以2,得到x的值。

解方程得到:x = 6 ÷ 2 = 3例题4:3y - 5 = 4解:将等式两边加5,得到3y = 4 + 5 = 9然后,将等式两边都除以3,得到y的值。

解方程得到:y = 9 ÷ 3 = 33、含有括号的方程有时候,方程会涉及到括号的运算。

学生需要通过展开括号,化简方程,最终求得未知数的值。

例题5:2(x - 3) = 8解:首先,将括号内的表达式展开,得到2x - 6 = 8然后,我们可以通过加6,消去等式中的常数项,得到2x = 8 + 6 = 14最后,将等式两边都除以2,求得x的值。

解方程得到:x = 14 ÷ 2 = 7例题6:3(2y + 4) = 30解:将括号内的表达式展开,得到6y + 12 = 30然后,我们可以通过减去12,消去等式中的常数项,得到6y = 30 - 12 = 18最后,将等式两边都除以6,求得y的值。

简易方程应用题分类(全)

【解方程应用题类型分类】●购物问题1、食堂买了8千克黄瓜,付出15元,找回1.4元,每千克黄瓜是多少钱?思路1:付出的钱-用掉的钱=找回的钱思路2:用掉的钱+找回的钱=付出的钱2、王老师带500元去买足球。

买了12个足球后,还剩140元,每个足球多少元?3、奶奶买4袋牛奶和2个面包,付给售货员20元,找回5.2元,每个面包5.4元,每袋牛奶多少元?4、明明家买了一套桌椅,6张椅子配一张桌子,一共用了1120元。

如果一张餐桌730元,那么一把椅子多少元?5、大瓜去买大米和面粉,每千克大米2.6元,每千克面粉2.3元,他买了20千克面粉和若干大米,共付款61.6元,买大米多少千克?●“谁是谁的几倍多(少)几”(形如ax±b=c的方程)问题:1. 乙两个书架.已知甲书架有540本书,比乙书架的3倍少30本.乙书架有多少本书?思路:设什么?关键字:乙书架的3倍乙书架的3倍 -30本 = 甲书架2、一只鲸的体重比一只大象的体重的37.5倍多12吨.已知鲸的体重是162吨,大象的体. 专业资料可编辑 .重是多少吨?3、某饲养场养鸡352只,比鸭的只数的4倍还多32只。

养鸭多少只?形如ax±bx=c的方程问题:1、育新小学共有108人参加学校科技小组,其中男生人数是女生人数的1.4倍。

参加科技小组的男、女生各有多少人?设什么?关键字:女生人数的1.4倍思路:女生人数 + 男生人数 = 总人数2、强强和丽丽共有奶糖40粒,强强比丽丽少6粒,强强有奶糖多少粒?设什么?关键字:比丽丽少6粒思路:丽丽的糖 + 强强的糖 = 总共的糖3、一支钢笔比一支圆珠笔贵6.8元。

钢笔的价钱是圆珠笔价钱的4.4倍。

钢笔和圆珠笔的价钱各是多少元?4、体育比赛中参加跳绳的人数是踢毽子人数的3倍,已知踢毽子的人数比跳绳的人数少20人,跳绳、踢毽子各有多少人?(两种不同的设法)5、食堂买来一些黄瓜和西红柿,黄瓜的质量是西红柿的1.2倍,黄瓜比西红柿多6.4千克。

小学奥数之列简易方程解应用题(一)

列简易方程解应用题(一)二. 重点、难点:在解答一些数量关系比较复杂的应用题时,我们可以用列简易方程的方法来求出答案。

列方程解应用题的一般步骤是:(1)根据题意设题中某一个未知数为x ;(有时候还需要用含有x 的式子表示其它的未知数)(2)找出题中的等量关系,并根据等量关系列出方程(3)解方程(4)检验并写出答案在这个过程中,认真分析数量关系,找出题中的等量关系是解题的关键【典型例题】例1. 看图找出数量关系,列方程。

故事书: 50本 130本科技书:x 本分析解答:等量关系故事书+科技书本数=130本方程:50130+=x例2. 一辆车平均每小时行驶x 千米,6小时行驶了360千米。

求速度是多少千米? 分析解答:等量关系速度×时间=路程方程6360x =x =÷3606x =60答:速度是60千米。

例3. 某班有男生30人,比女生的2倍少10人,这个班有女生多少人?分析解答:这道题求女生人数,所以我们设女生有x 人。

从题中可以知道女生的2倍减去10人,正好等于男生人数。

也就是:女生人数×2-10=男生人数可以这样解答:解:设女生有x 人。

21030x -=240x =x =÷402x =20答:女生有20人。

例4. 小明和哥哥的年龄和是23岁,哥哥比小明大5岁,问小明和哥哥各多少岁? 分析解答:在这道题中,小明和哥哥的年龄都是未知数。

我们可以设小明有x 岁,则x+5岁。

小明和哥哥的年龄和是23岁,等量关系式就是:小明年龄+哥哥年龄=哥哥有()23岁。

x+5岁解:设小明有x岁,哥哥有()()523x x++=x+=2523x=218x=959514x+=+=答:小明有9岁,哥哥有14岁。

想一想:如果设哥哥有x岁,小明就怎样表示?怎样列方程解答?【模拟试题】(答题时间:30分钟)1. 某班46名同学去划船,一共乘坐10只船,大船坐6人,小船坐4人,全部坐满。

小学奥数之列方程组解应用题(完整版)

1、设未知数的主要技巧和手段:找出与其他量的数量关系紧密的关键量2、用代数法来表示各个量:利用“,x y ”表示出所有未知量或变量3、找准等量关系,构建方程(明显的等量关系与隐含的等量关系)一、列方程解应用题的主要步骤 ⒈ 审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密数量关系; ⒈ 用字母来表示关键量,用含字母的代数式来表示题目中的其他量;⒈ 找到题目中的等量关系,建立方程;⒈ 解方程;⒈ 通过求到的关键量求得题目最终答案.二、解二元一次方程(多元一次方程)消元目的:即将二元一次方程或多元一次方程化为一元一次方程.消元方法主要有代入消元和加减消元. 模块一、列方程组解应用题【例 1】 30辆小车和3辆卡车一次运货75吨,45辆小车和6辆卡车一次运货120吨。

每辆卡车和每辆小车每次各运货多少吨?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设每辆卡车和每辆小车每次各运货x y 、吨,根据题意可得:30375456120x y x y +=⎧⎨+=⎩,解得25x y =⎧⎨=⎩所以,每辆卡车每次运货2吨,每辆小车每次运货5吨。

【答案】每辆卡车每次运货2吨,每辆小车每次运货5吨【巩固】 甲、乙二人2时共可加工54个零件,甲加工3时的零件比乙加工4时的零件还多4个.问:甲每时加工多少个零件?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲每小时加工x 个零件,乙每小时加工y 个零件.则根据题目条件有:2254344x y x y +=⎧⎨-=⎩,解得1611x y =⎧⎨=⎩所以甲每小时加工16个零件,乙每小时加工11个零件.【答案】甲每小时加工16个零件【例 2】 已知练习本每本0.40元,铅笔每支0.32元,老师让小虎买一些练习本和铅笔,总价正好是老师所给的10元钱.但小虎将练习本的数量与铅笔的数量记混了,结果找回来0.56元,那么老师原来打算让小虎买多少本练习本?教学目标 知识精讲列方程组解应用题【解析】 设老师原本打算让小虎买x 本练习本和y 支铅笔,则由题意可列方程组:0.40.32100.40.32100.56x y y x +=⎧⎨+=-⎩,整理得403210004032944x y y x +=⎧⎨+=⎩,即54125(1)54118(2)x y y x +=⎧⎨+=⎩,将两式相加,得9()243x y +=,则27(2)x y +=, ⑴ 4-⨯⒈,得17x =.所以,老师原打算让小虎买17本练习本.【答案】老师原打算让小虎买17本练习本【巩固】 商店有胶鞋、布鞋共45双,胶鞋每双3.5元,布鞋每双2.4元,全部卖出后,胶鞋比布鞋收入多10元.问:两种鞋各多少双?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设布鞋有x 双,胶鞋有y 双.453.5 2.410x y x y +=⎧⎨-=⎩,解得2025x y =⎧⎨=⎩所以布鞋有20双,胶鞋有25双.【答案】布鞋有20双,胶鞋有25双【例 3】 松鼠妈妈采松子,晴天每天可以采20个,雨天每天可以采12个,它一连几天采了112个松子,平均每天采14个,问这几天当中有几天是下雨天?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 根据题意,松鼠妈妈采的松子有晴天采的,也有雨天采的,总的采集数可以求得,采集天数也确定,因此可列方程组来求解.设晴天有x 天,雨天有y 天,则可列得方程组:()()20121121112214x y x y +=⎧⎪⎨+=⎪⎩ ()1化简为5328x y += …………()3用加减法消元:()()253⨯-得:5()(53)4028x y x y +-+=-解得6y =.所以其中6天下雨.【答案】其中6天下雨【例 4】 运来三车苹果,甲车比乙车多4箱,乙车比丙车多4箱,甲车比乙车每箱少3个苹果,乙车比丙车每箱少5个苹果,甲车比乙车总共多3个苹果,乙车比丙车总共多5个苹果,这三车苹果共有多少个?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设乙车运来x 箱,每箱装y 个苹果,根据题意列表如下:()()()()433455x y xy xy x y ⎧+--=⎪⎨--+=⎪⎩,化简为4315(1)5415(2)y x x y -=⎧⎨-=⎩ ⒈+⒈,得:230x =,于是15x =.将15x =代入⒈或⒈,可得:15y =.所以甲车运19箱,每箱12个;乙车运15箱,每箱15个;丙车运11箱,每箱20个.三车苹果的总数是:191215151120673⨯+⨯+⨯=(个).【答案】三车苹果的总数是:673个【例 5】 有大、中、小三种包装的筷子27盒,它们分别装有18双、12双、8双筷子,一共装有330双筷子,其中小盒数是中盒数的2倍.问:三种盒各有多少盒?【解析】 设中盒数为x ,大盒数为y ,那么小盒数为2x ,根据题目条件有两个等量关系:227181282330x x y y x x ++=⎧⎨++⨯=⎩ 该方程组解得69x y =⎧⎨=⎩,所以大盒有9个,中盒有6个,小盒有12个. 【答案】大盒有9个,中盒有6个,小盒有12个【巩固】 用62根同样长的木条钉制出正三角形、正方形和正五边形总共有15个.其中正方形的个数是三角形与五边形个数和的一半,三角形、正方形和五边形各有多少个?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设三角形的个数为x ,五边形的个数为y ,那么正方形的个数为2x y +⎛⎫ ⎪⎝⎭,由此可列得方程组: 152345622x y x y x y x y ⎧+⎛⎫++= ⎪⎪⎪⎝⎭⎨+⎛⎫⎪++= ⎪⎪⎝⎭⎩该方程组解得:46x y =⎧⎨=⎩,所以52x y +⎛⎫= ⎪⎝⎭,因此三角形、正方形、五边形分别有4、5、6个. 【答案】三角形、正方形、五边形分别有4、5、6个【例 6】 有1克、2克、5克三种砝码共16个,总重量为50克;如果把1克的砝码和5克的砝码的个数对调一下,这时总重量变为34克.那么1克、2克、5克的砝码有多少个?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】5克砝码比1克砝码每多1个,对调后总重量将减少514-=克,所以5克砝码比1克砝码多()503444-÷=(个). 在原来的砝码中减掉4个5克砝码,此时剩下12个砝码,且1克砝码与5克同样多,总重量为30克.设剩下1克、5克各x 个,2克砝码y 个,则212(15)230x y x y +=⎧⎨++=⎩,解得36x y =⎧⎨=⎩所以原有1克砝码3个,2克砝码6个,5克砝码347+=个.【答案】原有1克砝码3个,2克砝码6个,5克砝码347+=个【巩固】 某份月刊,全年共出12期,每期定价2.5元.某小学六年级组织集体订阅,有些学生订半年而另一些学生订全年,共需订费1320元;若订全年的同学都改订半年,而订半年的同学都改订全年,则共需订费1245元.则该小学六年级订阅这份月刊的学生共有 人.【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设订半年的x 人,订全年的y 人,则:2.5(612)13202.5(126)1245x y x y ⨯+=⎧⎨⨯+=⎩,得288283x y x y +=⎧⎨+=⎩,两式相加,得3()171x y +=, 所以57x y +=,即该小学六年级订阅这份月刊的学生共有57人.【答案】小学六年级订阅这份月刊的学生共有57人【例 7】 有两辆卡车要将几十筐水果运到另一个城市,由于可能超载,所以要将两辆卡车中的一部分转移到另外一辆车上去,如果第一辆卡车转移出20筐,第二辆卡车转移出30筐,那么第一辆卡车剩下的水果筐数是第二辆的1.2倍,如果第一辆卡车转移出21筐,第二辆卡车转移出25筐,那么第三辆车上的水果筐数是前面两辆车水果筐数和的一半,求原来两辆车上有多少筐水果?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设第一辆卡车上的水果有x 筐,第二辆卡车上的水果有y 筐,则有()()2030 1.2(1)212521252(2)x y x y ⎧-=-⨯⎪⎨-+-=+⨯⎪⎩,由⒈得 1.216x y =-,代入⒈得2.26292y -=,解得70y =,所以 1.21668x y =-=,原来两辆车上分别装有68筐水果和70筐水果.【答案】两辆车上分别装有68筐水果和70筐水果【巩固】 大、小两个水池都未注满水.若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水.已知大池容量是小池的1.5倍,问:两池中共有多少吨水?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设大池中有x 吨水,小池中有y 吨水.则根据题目条件,两池一共有x y +吨水,大池可装5x y +-吨水,小池可装30x y +-吨水,所以可列得方程5(30) 1.5x y x y +-=+-⨯,方程化简为80x y +=,所以两池中共有80吨水.【答案】两池中共有80吨水【例 8】 某公司花了44000元给办公室中添置了一些计算机和空调,办公室每月用电增加了480千瓦时,已知,计算机的价格为每台5000元,空调的价格为2000元,计算机每小时用电0.2千瓦时,平均每天使用5小时,空调每小时用电0.8千瓦时,平均每天运行5小时,如果一个月以30天计,求公司一共添置了多少台计算机,多少台空调?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设添置了x 台计算机,y 台空调.则有5000200044000(1)0.25300.8530480(2)x y x y +=⎧⎨⨯⨯+⨯⨯=⎩⒈式整理得416x y +=,则164x y =-;代入⒈得()5000164200044000y y -+=,解得2y =,则8x =,所以公司一共添置了8台计算机和2台空调.【答案】8台计算机和2台空调【巩固】 甲、乙两件商品成本共600元,已知甲商品按45%的利润定价,乙商品按40%的利润定价;后来甲打8折出售,乙打9折出售,结果共获利110元.两件商品中,成本较高的那件商品的成本是多少?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲、乙两件商品成本分别为x 元、y 元.根据题意,有方程组:600(145%)0.8(140%)0.9600110x y x y +=⎧⎨+⨯+⨯+⨯-=⎩,解得460140x y =⎧⎨=⎩所以成本较高的那件商品的成本是460元.【答案】成本较高的那件商品的成本是460元【巩固】 某市现有720万人口,计划一年后城镇人口增涨0.4%,农村人口增长0.7%,这样全市人口增加0.6%,求这个城市现在的城镇人口和农村人口.【解析】 假设这个城市现在的城镇人口是x 万人,农村人口是y 万人,得:7200.4%0.7%7200.6%x y x y +=⎧⎨+=⨯⎩,解得240480x y =⎧⎨=⎩, 即这个城市现在的城镇人口有240万,农村人口有480万.【答案】城镇人口有240万,农村人口有480万【例 9】 某次数学竞赛,分两种方法给分.一种是先给40分,每答对一题给4分,不答题不给分,答错扣1分,另一种是先给60分,每答对一题给3分,不答题不给分,答错扣3分,小明在考试中只有2道题没有答,以两种方式计分他都得102分,求考试一共有多少道题?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设小明答对了x 道题,答错了y 道题.由题目条件两种计分方式,他都得102分,可得到两条等量关系式:4041026033102x y x y +-=⎧⎨+-=⎩ 解得162x y =⎧⎨=⎩,所以考试一共有162220++=道题. 【答案】考试一共有162220++=道题【巩固】 某次数学比赛,分两种方法给分.一种是答对一题给5分,不答给2分,答错不给分;另一种是先给40分,答对一题给3分,不答不给分,答错扣1分.某考生按两种判分方法均得81分,这次比赛共多少道题?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设答对a 道题,未答b 道题,答错c 道题,由条件可列方程()()52811403812a b a c +=⎧⎪⎨+-=⎪⎩由()1式知,a 是奇数,且小于17.()2式可化简为()3413c a =-由()3式知,a 大于13.综合上面的分析,a 是大于13小于17的奇数,所以15a =.再由()()13式得到3b =,4c =. 153422a b c ++=++=,所以共有22道题.【答案】共有22道题【巩固】 下表是某班40名同学参加数学竞赛的分数表,如果全班平均成绩是2.5分,那么得3分和5分的各有多少人?【考点】列方程组解应用题【解析】 根据题意,只要设得3分和5分的各有多少人,即可利用总人数和总分数而列方程组求解,等量关系有两条:一是各分数段人数之和等于总人数,各分数段所有人得分之和等于总分数.设得3分的人数有x 人,得5分的人数有y 人,那么:471084017210348540 2.5x y x y +++++=⎧⎨⨯+⨯++⨯+=⨯⎩,化简为:()()11135412x y x y +=⎧⎪⎨+=⎪⎩ ()()213-⨯,得到28y =,即4y =,再代入()1,最后得到方程组得解47x y =⎧⎨=⎩,所以40名学生当中得3分的有7人,得5分的有4人.【答案】得3分的有7人,得5分的有4人【例 10】 在S 岛上居住着100个人,其中一些人总是说假话,其余人则永远说真话,岛上的每一位居民崇拜三个神之一:太阳神、月亮神和地球神.向岛上的每一位居民提三个问题:⑴您崇拜太阳神吗?⑴您崇拜月亮神吗?⑴您崇拜地球神吗?对第一个问题有60人回答:“是”;对第二个问题有40人回答:“是”;对第三个问题有30人回答:“是”.他们中有多少人说的是假话?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 我们将永远说真话的人称为老实人,把总说假话的人称为骗子.每个老实人都只会对一个问题“是”.而每个骗子则都对两个问题答“是”.将老实人的数目计为x ,将骗子的数目计为y .于是2130x y +=.又由于在S 岛上居住着100个人,所以100x y +=,联立两条方程,解得30y =.所以岛上有30个人说的是假话.【答案】30个人说的是假话【例 11】 甲、乙两人生产一种产品,这种产品由一个A 配件与一个B 配件组成.甲每天生产300个A 配件,或生产150个B 配件;乙每天生产120个A 配件,或生产48个B 配件.为了在10天内生产出更多的产品,二人决定合作生产,这样他们最多能生产出多少套产品?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 假设甲、乙分别有x 天和y 天在生产A 配件,则他们生产B 配件所用的时间分别为(10)x -天和(10)y -天,那么10天内共生产了A 配件(300120)x y +个,共生产了B 配件150(10)48(10)198015048x y x y ⨯-+⨯-=--个.要将它们配成套,A 配件与B 配件的数量应相等,即300120198015048x y x y +=--,得到7528330x y +=,则3302875y x -=. 此时生产的产品的套数为330283001203001201320875y x y y y -+=⨯+=+,要使生产的产品最多,就要使得y 最大,而y 最大为10,所以最多能生产出132********+⨯=套产品.【答案】最多能生产出1400套产品【巩固】 某服装厂有甲、乙两个生产车间,甲车间每天能生产上衣16件或裤子20件;乙车间每天能生产上衣18件或裤子24件.现在要上衣和裤子配套,两车间合作21天,最多能生产多少套衣服?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 假设甲、乙两个车间用于生产上衣的时间分别为x 天和y 天,则他们用于生产裤子的天数分别为(21)x -天和(21)y -天,那么总共生产了上衣(1618)x y +件,生产了裤子20(21)24(21)9242024x y x y ⨯-+⨯-=--件.根据题意,裤子和上衣的件数相等,所以16189242024x y x y +=--,即67154x y +=,即15476y x -=.那么共生产了15472216181618410633y x y y y -+=⨯+=-套衣服.要使生产的衣服最多,就要使得y 最小,则x 应最大,而x 最大为21,此时4y =.故最多可以生产出22410440833-⨯=套衣服. 【答案】最多可以生产出408套衣服【例 12】 一片青草,每天长草的速度相等,可供10头牛单独吃20天,供60只羊单独吃10天.如果1头牛的吃草量等于4只羊的吃草量,那么,10头牛与60只羊一起吃草,这片草可以吃________天.【考点】列方程组解应用题 【难度】3星 【题型】填空【解析】 把1只羊每天的吃草量当作单位“1 ”,则1头牛每天的吃草量为4,设原有草量为x ,每天的长草量为y ,那么:20410201016010x y x y +=⨯⨯⎧⎨+=⨯⨯⎩解得400x =,20y =,如果10头牛与60只羊一起吃草,这片草可以吃400(41016020)5÷⨯+⨯-=(天).【答案】5【例 13】 甲、乙、丙沿着环形操场跑步,乙与甲、丙的方向相反.甲每隔19分钟追上丙一次,乙每隔5分钟与丙相遇一次.如果甲4分钟跑的路程与乙5分钟跑的路程相同,那么甲的速度是丙的速度的多少倍?甲与乙多长时间相遇一次?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 把环形操场的周长看作1,设甲每分钟跑的路程为x ,丙每分钟跑的路程为y .根据题意可知乙每分钟跑的路程为45x .有: 1194155x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩,解得857557x y ⎧=⎪⎪⎨⎪=⎪⎩. 所以甲的速度是丙的速度的85 1.65757÷=倍; 甲与乙相遇一次所用的时间为884231()35757524÷+⨯=分钟. 【答案】甲的速度是丙的速度的1.6倍;甲与乙相遇一次所用的时间为23324分钟【例 14】 甲、乙二人从相距60千米的两地同时出发,沿同一条公路相向而行,6小时后在途中相遇.如果两人每小时所行走的路程各增加1千米,则相遇地点距前一次地点差1千米.求甲、乙两人的速度.【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲速为每小时x 千米,乙速为每小时y 千米.根据第一次相遇的条件,可知:()660x y +=,则10x y +=,即甲、乙两人的速度和为10千米/小时,所以第二次相遇两人的速度和为12千米/小时.第二次相遇时,甲走的路程可能比第一次少1千米或多1千米,即(61)x -千米,或(61)x +千米.由此可列第二条方程:5(1)61x x +=-或5(1)61x x +=+.因此可列的方程组有:105(1)61x y x x +=⎧⎨+=-⎩解得64x y =⎧⎨=⎩,或105(1)61x y x x +=⎧⎨+=+⎩解得46x y =⎧⎨=⎩. 所以甲、乙(或乙、甲)两人的速度分别为6千米/小时和4千米/小时.【答案】甲、乙(或乙、甲)两人的速度分别为6千米/小时和4千米/小时【例 15】 从甲地到乙地的公路,只有上坡路和下坡路,没有平路.一辆汽车上坡时每小时行驶20千米,下坡时每小时行驶35千米.车从甲地开往乙地需9小时,从乙地到甲地需7.5小时,问:甲乙两地公路有多少千米?从甲地到乙地须行驶多少千米的上坡路?【考点】列方程组解应用题 【难度】3星 【题型】解答【关键词】华杯赛,复赛【解析】 (法1)从甲地到乙地的上坡路,就是从乙地到甲地的下坡路;从甲地到乙地下坡路,就是从乙地到甲地的上坡路.设从甲地到乙地的上坡路为x 千米,下坡路为y 千米,依题意得:920351735202x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得140x =,70y =,所以甲、乙两地间的公路有14070210+=千米,从甲地到乙地须行驶140千米的上坡路.答:甲、乙两地间的公路有210千米,从甲地到乙地须行驶140千米的上坡路.【答案】甲、乙两地间的公路有210千米,从甲地到乙地须行驶140千米的上坡路【巩固】 从A 村到B 村必须经过C 村,其中A 村至C 村为上坡路,C 村至B 村为下坡路,A 村至B 村的总路程为20千米.某人骑自行车从A 村到B 村用了2小时,再从B 村返回A 村又用了1小时45分.已知自行车上、下坡时的速度分别保持不变,而且下坡时的速度是上坡时速度的2倍.求A 、C 之间的路程及自行车上坡时的速度.【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设A 、C 之间的路程为x 千米,自行车上坡速度为每小时y 千米,则C 、B 之间的路程为(20)x -千米,自行车下坡速度为每小时2y 千米.依题意得:2022203124x x y y x x yy -⎧+=⎪⎪⎨-⎪+=⎪⎩, 两式相加,得:202032124y y +=+,解得8y =;代入得12x =. 故A 、C 之间的路程为12千米,自行车上坡时的速度为每小时8千米.【答案】A 、C 之间的路程为12千米,自行车上坡时的速度为每小时8千米【巩固】 华医生下午2时离开诊所出诊,走了一段平路后爬上一个山坡,给病人看病用了半小时,然后原路返回,下午6时回到诊所.医生走平路的速度是每小时4千米,上山的速度是每小时3千米,下山的速度是每小时6千米,华医生这次出诊一共走了 千米.【考点】列方程组解应用题 【难度】3星 【题型】填空【关键词】2004年,南京市,冬令营【解析】 设平路长a 千米,山坡长b 千米,则共走了2()a b +千米,根据题意,列方程3.54346a b a b +++=,1() 3.52a b +=, 2()14a b +=.所以,华医生这次出诊一共走了14千米.【答案】14【例 16】 小明从自己家到奶奶家时,前一半路程步行,后一半路程乘车;他从奶奶家回家时,前13时间乘车,后23时间步行.结果去奶奶家的时间比回家所用的时间多2小时.已知小明步行每小时行5千米,乘车每小时行15千米,那么小明从自己家到奶奶家的路程是多少千米?【考点】列方程组解应用题 【难度】3星 【题型】解答【关键词】迎春杯,决赛【解析】 设小明家到奶奶家的路程为x 千米,而小明从奶奶家返回家里所需要的时间是y 小时,那么根据题意有:112225*********x x y x y y ⎧⎪+=+⎪⎨⎪=⨯+⨯⎪⎩,解得: 15018x y =⎧⎨=⎩ 答:小明从自己家到奶奶家的路程是150千米.【答案】小明从自己家到奶奶家的路程是150千米【例 17】 (保良局亚洲区城市小学数学邀请赛)米老鼠从A 到B ,唐老鸭从B 到A ,米老鼠与唐老鸭行走速度之比是65∶,如下图所示.M 是A 、B 的中点,离M 点26千米的C 点有一个魔鬼,谁从它处经过就要减速25%,离M 点4千米的D 点有一个仙人,谁从它处经过就能加速25%.现在米老鼠与唐老鸭同时出发,同时到达,那么A 与B 之间的距离是 千米.【考点】列方程组解应用题 【难度】3星 【题型】填空【解析】 设AM MB x ==,米老鼠的行走速度为6k ,则唐老鸭的行走速度为5k (0k ≠),如下图,则有米老鼠从A 到B 需要时间 2630466(125%)6(125%)(125%)x x k k k --++⨯-⨯-⨯+ 11614(4)615x x k ⎧⎫=++-⎨⎬⎩⎭, 唐老鸭从B 到A 需要时间4302655(125%)5(125%)(125%)x x k k k --++⨯+⨯-⨯+ 11620(26)515x x k ⎧⎫=++-⎨⎬⎩⎭. 因为米老鼠与唐老鸭用的时间相同,所以列方程11611614(4)20(26)615515x x x x k k ⎧⎫⎧⎫++-=++-⎨⎬⎨⎬⎩⎭⎩⎭, 解得46x =.所以,A 、B 两地相距92千米.【答案】A 、B 两地相距92千米x -430x -26A C M D【例 18】 甲、乙两人分别从A 、B 两地同时出发相向而行,5小时后相遇在C 点.如果甲速度不变,乙每小时多行4千米,且甲、乙还从A 、B 两地同时出发相向而行,则相遇点D 距C 点10千米.如果乙速度不变,甲每小时多行3千米,且甲、乙还从A 、B 两地同时出发相向而行,则相遇点E 距C 点5千米.问:甲原来的速度是每小时多少千米?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 甲速度不变,乙每小时多行4千米,相遇点D 距C 点10千米,出发后5小时,甲到达C ,乙到达F ,因为乙每小时多行4千米,所以4520FC =⨯=千米,那么10FD DC ==千米,也就是说相遇后相同的时间内甲、乙走的路程相同,也就是说原来甲比乙每小时多行4千米. 乙速度不变,甲每小时多行3千米,相遇点E 距C 点5千米,出发后5小时乙到达C ,甲到达G ,因为甲每小时多行3千米,所以3515GC =⨯=千米.那么10GE =千米,5EC =千米.所以2EG EC =,即相遇后在相同的时间甲走的路程是乙的2倍,所以甲每小时多行3千米后,速度是乙的两倍.于是可列得方程组:432v v v v =+⎧⎪⎨+=⎪⎩乙甲乙甲,解得117v v =⎧⎨=⎩甲乙,所以甲原来每小时11千米. 【答案】甲原来每小时11千米【例 19】 甲、乙二人共存款100元,如果甲取出49,乙取出27,那么两人存款还剩60元.问甲、乙二人各有存款多少元?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲存款x 元,乙存款y 元,根据题目条件有两条等量关系,一是两人存款加起来等于100元,二是取钱后两人存款加起来有60元.由此可列得方程组:100421006097x y x y +=⎧⎪⎨+=-⎪⎩ 方程组最终解得7228x y =⎧⎨=⎩,所以甲存款72元,乙存款28元. 【答案】甲存款72元,乙存款28元【巩固】 甲、乙两个容器共有溶液2600克,从甲容器取出14的溶液,从乙容器取出15的溶液,结果两个容器共剩下2000克.问:两个容器原来各有多少溶液?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲容器有溶液x 克,乙容器有溶液y 克,根据题目条件有两条等量关系,一是两容器溶液加起来等于2600克,二是取溶液后两容器加起来有2000克.由此可列得方程组: 26001111200045x y x y +=⎧⎪⎨⎛⎫⎛⎫-+-= ⎪ ⎪⎪⎝⎭⎝⎭⎩ 方程组最终解得16001000x y =⎧⎨=⎩,所以甲容器中有溶液1600克,乙容器中有溶液1000克. 【答案】甲容器中有溶液1600克,乙容器中有溶液1000克【例 20】 某班有45名同学,其中有6名男生和女生的17参加了数学竞赛,剩下的男女生人数正好相等.问:这个班有多少名男生?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设有x 名男生和y 名女生,那么根据题目条件有两条等量关系:一是原来男女生人数和为45人,二是剩下的男女生人数相等,由此可列得方程组:451617x y x y +=⎧⎪⎨⎛⎫-=- ⎪⎪⎝⎭⎩该方程组解得2421x y =⎧⎨=⎩,所以这个班有24名男生.【答案】这个班有24名男生【巩固】 甲、乙两班人数都是44人,两班各有一些同学参加了数学小组的活动,甲班参加的人数恰好是乙班未参加人数的13,乙班参加的人数恰好是甲班未参加人数的14,那么共有多少人未参加数学小组?【考点】列方程组解应用题 【难度】3星 【题型】解答 【解析】 设甲、乙两班参加数学小组的人数分别为x 人、y 人,未参加人数分别为()44x -人、()44y -人,由题设已知条件可以得到:1(44)31(44)4x y x y⎧=-⎪⎪⎨⎪-=⎪⎩,解之得128x y =⎧⎨=⎩ 所以未参加兴趣小组的人数()()444468x y =-+-=人.【答案】未参加兴趣小组的人数68人【例 21】 一群小朋友去春游,男孩戴小黄帽,女孩戴小红帽.在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍.问:男孩、女孩各有多少人?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设男孩有x 人,女孩有y 人.根据条件可列方程:(1)52(1)x y x y --=⎧⎨=-⎩由第一条方程可以得到6x y =+,代入第二条方程得到62(1)y y +=- .解得8y =,再代入第一条方程.方程解得148x y =⎧⎨=⎩.所以男孩有14人,女孩有8人.【答案】男孩有14人,女孩有8人【巩固】 有大小两盘苹果,如果从大盘中拿出一个苹果放在小盘里,两盘苹果一样多;如果从小盘里拿出一个苹果放在大盘里,大盘苹果的个数是小盘苹果数的3倍.大、小两盘苹果原来各有多少个?【考点】列方程组解应用题 【难度】3星 【题型】解答 【解析】 设原来大盘有苹果x 个,小盘有苹果y 个.那么可列方程组:()11131x y x y -=+⎧⎪⎨+=-⎪⎩,方程组解得53x y =⎧⎨=⎩,所以大盘原来有苹果5个,小盘原来有苹果3个.【答案】大盘原来有苹果5个,小盘原来有苹果3个【巩固】 教室里有若干学生,走了10名女生后,男生是女生人数的2倍,又走了9名男生后,女生是男生人数的5倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十二、列简易方程解应用题
到目前为止,我们学过许多应用题的算术解法,下面我们来列方程解答应用题,请看例题.
一个数加上2,减去3,差乘以4,积再除以5,最后得12,你猜这个数是多少?
用算术方法解,从12开始,因为12是积除以5所得的商,所以积为(12×5=)60.这个60是差乘以4得出的,那么差为(60÷4=)15,15是被减数减3得来的,故被减数为(15+3=)18,18是由这个数加2得来的,所以这个数为(18-2=)16,这就是说这个数是16.
如果采用方程的方法解,可这样想:先设这个数为x,按题意可以列出方程:
(x+2-3)×4÷5=12
解这个方程,得x=16.
对比上面两种解法我们可以看出,用算术方法解应用题就是把所求的量直接用算式表达出来;列方程解应用题就是先把所求的数用字母表示,然后寻找一个等量关系,用已知数和字母表示出来,最后算出字母表示的数.一般来说,用方程解应用题比用算术方法解应用题简便.
例1 一个机床厂,今年第一季度生产车床198台,比去年同期的产量的2倍多36台,去年第一季度产量是多少台?
分析与解题目要我们求去年第一季度产量是多少台,我们就先设去年第一季度产量为x台,下面利用数量关系建立方程.
因为去年第一季度的产量为x台,那么它的2倍就是2x台,又因为去年第一季度产量的2倍加上36台跟今年第一季度的产量198台相等,所以有方程:2x+36=198.
解这个方程: 2x=198-36
2x=162, x=81
答:去年第一季度的产量是81台.
例2 一个生产队共有耕地208亩,计划使水浇地比旱地多62亩,那么水浇地和旱地各应是多少亩?
分析与解题目中有两问,水浇地和旱地各多少亩,我们可设其中一个量为x亩,如假设旱地的亩数为x亩.因为生产队共有耕地208亩,所以水
浇地的亩数为(208-x).根据水浇地比旱地多62亩这一条件,可列下面方程:
208-x=x+62
解这个方程: 2x=208-62
2x=146, x=73
代入208-x,得208-73=135.
答:水浇地是135亩,旱地是73亩.
请读者想一想,当我们设旱地是x亩后,建立下面的方程:x+(x+62)=208,你认为这个方程对吗?应怎么解释?
从上面的例子可以知道,列一元方程解应用题的一般步骤如下:
1.弄清题意,看哪些是已知数,哪些是未知数,它们之间有什么关系.选择一个未知数用字母x(也可以用其他字母y、z等)来表示它,根据题目中所说的已知数与未知数之间的关系,用含有x的式子来表示其他的未知数.
2.利用上面1中没有用过的等量关系,列出方程.
3.解所得方程.
4.根据方程的解,得出题目里所求的未知数的值,并进行验算,最后写出答案.
例3 汽车若干辆装运一批货物.如果每辆装3.5吨,这批货物就有2吨不能运走;如果每辆装4吨,装完这批货物后,还可以装其他货物1吨.这批货物有多少吨?
分析与解如果与例1、例2一样,题目问什么就设什么,这里便应设货物共有x吨,如果每辆装3.5吨,运走的货
面的方程:
解这个方程要用到比和比例知识,这部分知识小学六年级才学,下面我们看能否采用别的方法来列方程.
题目问这批货物有多少吨,如果我们知道运货物的汽车的辆数,也可以算出货物有多少吨.下面我们先假定运货的汽车共有x辆,如果每辆装3.5吨,运走的货物为3.5x吨,这批货物就是(3.5x+2)吨.如果每辆装4吨,这批货物就是(4x-1)吨.因为3.5x+2和4x-1都表示这批货物的吨数,所以有方程:3.5x+2=4x-1.
解这个方程: 2+1=4x-3.5x
0.5x=3, x=6
代入4x-1得:4×6-1=23
答:这批货物有23吨.
在列方程解应用题时,有时不直接设题目里所求的未知数是x,而间接设题目里另外一个未知数是x,这样解起来比较方便,称这种间接设题目里另外一个未知数为x的设元方法为间接设元法.直接设题目里所求的未知数是x的方法,叫直接设元法.
例4 某县农机厂金工车间共有77个工人,已知每天每个工人平均可加工甲种部件5个,或者乙种部件4个,或丙种部件3个.但加工3个甲种部件,1个乙种部件和9个丙种部件才恰好配成一套.问应安排加工甲、乙、丙种部件各多少人时,才能使生产出来的甲、乙、丙三种部件恰好都配套?
分析与解如采用直接设元,就要用三个字母分别表示加工甲、乙、丙三种部件的人数,解决这种问题的方法要到中学才能学到.下面我们试着用间接设元法来解答这一问题.
如果我们深入考虑一下,题目中除了上面提到的加工甲、乙、丙三种部件的人数这三个未知数外,还有别的未知数,即甲、乙、丙三种部件的件数.而题目中有关甲、乙、丙三种部件的件数之间又存在内在联系,这个内在联系可用等量关系表示,乙种部件的件数在等量关系中起媒介作用,因此我们可选择乙种部件的个数为未知数.
设加工后乙种部件有x个,那么甲种部件应有3x个,丙种部件有9x 个.
解此方程:0.6x+0.25x+3x=77
3.85x=77,x=20
将x=20代入:0.6x=0.6×20=12(人)
0.25x=0.25×20=5(人)
3x=20×3=60(人)
答:应安排加工甲、乙、丙三种部件工人人数分别为12人、5人、60人.
综上所述,列方程解应用题中,重要的不在列出某个方程,而关键在学好分析问题的方法,对应用题中数量关系分析越深刻,所列方程就越优化.这样才能触类旁通,水到渠成.。

相关文档
最新文档