储罐液位控制系统设计.
实训报告2 储罐工艺操作&液位控制

工程项目1 简单控制系统的分析与设计03子项目2 储罐工艺操作与液位控制班级12电气自动化3 姓名项目日期2012一、项目目标1、初步了解液位和流量的动态响应特性2、了解单回路控制系统的组态、投运过程3、了解自衡过程与非自衡过程动态特性以及原因4、初步掌握质量平衡的概念二、项目设备SMPT—1000三、项目方案(一)非线性液位与离心泵系统工艺流程a)非线性液位来自于卧式储罐V1101,圆形卧式储罐液位变化为非线性,当液位处于50%时,储罐水平截面积最大,惯性也最大。
当液位从50%向高或低端变化时,储罐水平截面积越来越小,惯性也变小。
由于储罐出口设有离心泵,强制排水,因此储罐液位是非自衡系统。
储罐液位为LI1101。
b)工艺流程图,定义了从原料到产品的过程,用框架加箭头的方法交代各个单元,用文字标明各个步骤的生产原料和产物,用数字和字母标识设备。
c)工艺流程图中的设备、仪表、执行机构等均具有用数字和字母表示的唯一性标识,称为号。
控制流程图(二)储罐工艺操作a)在没有打开任何工程的前提下,在SMPT-1000监控环境中打开储罐工程Tank for Control。
b)点击工具栏中的按钮,打开阀门/挡板控制配置对话框,确认阀门FV1106设置为手操状态,阀门FV1101设置为内控。
①在趋势画面中添加FI1106、FV1106和LI1101的实时曲线。
②选择趋势画面1窗口,在窗口中央空白处,鼠标右键单击。
在弹出的菜单中选择【属性】项,将弹出趋势画面属性对话框,选择曲线选项卡。
e)点击【添加】按钮,在曲线属性对话框中选择位号FI1106,该位号将自动添加到显示标题栏中,可以修改显示标题。
按【确定】返回上一对话框。
f)添加FV1106和LI1101曲线。
g)选中LI1101标签,点击【定义颜色】按钮,将LI1101显示曲线的颜色改为黑色。
按【确定】返回上一对话框。
在属性对话框中,还可以对现有的曲线属性进行修改、删除、隐藏和显示。
石油化工罐区自动控制系统和生产管理系统

石油化工罐区自动控制系统和生产管理系统张华莎【摘要】介绍了石油化工储运罐区自动控制系统的基本结构和功能,从工程设计角度讨论了罐区特有的设计内容和设计方法,库存量统计和信息管理是罐区特有的内容,从工程设计上考虑,罐区应配备相应的自动化仪表和储罐数据管理设备以实现罐容计算,提高罐区的控制和管理水平.特别介绍了储罐液位仪表和电动控制阀的通信连接方案及通信设备配置的注意事项,并给出了仪表接线的示例.阐述了罐区生产管理系统的结构、功能、各组成部分间的信号关系,列举了该系统应配备的基本硬件、软件,结合实际的罐区生产作业介绍了各软件的功能,提出了罐区自动控制系统和生产管理系统应遵循配置合理、功能齐全、层次清晰、管控兼顾的设计概念.【期刊名称】《石油化工自动化》【年(卷),期】2016(052)001【总页数】8页(P7-14)【关键词】石油化工罐区;罐区自动控制系统;储罐信号通信单元;电动阀通信单元;储罐数据管理单元;罐区生产管理系统【作者】张华莎【作者单位】中国石化工程建设有限公司,北京100101【正文语种】中文【中图分类】TP273近年来国内新建的石油化工厂储运罐区的自动化水平已经不仅局限于采用仪表测量加分散型控制系统(DCS),有些厂家还配有罐区生产管理系统。
将罐区的自动控制系统、生产管理系统与工厂信息管理系统结合起来,卓有成效地提高了储运系统的整体自动化水平和管理水平,实现了控制和管理的系统集成、数据共享、功能集成。
这是新建工厂储运系统的运行和管理模式,也是老厂改造的方向。
储运罐区在自控工程设计之初就应对将来的自动控制水平、设备和技术的先进程度、生产运行的管理层次和模式等多方面充分考虑,明确定位。
本文针对工程设计的范畴,重点讨论在设计目标明确定位的基础上,如何合理配置自动化测量仪表,建立适用的测量基础,配备以DCS为核心的过程控制系统,在此基础上实施罐区生产管理系统的设计方案和设计方法。
十几年前,国内炼油工业储运系统的自动化水平较低,自动测量仪表较少,配备的仪表精度不高,罐区过程控制和生产操作多采用小型控制仪或工业控制机。
组态王储油罐液位控制

1绪论随着工业自动化技术的不断发展,人们对系统监测性能的要求越来越高,组态王作为一个开发型的通用工业来监控系统,拥有良好的图形化操作界面,便于生产的组织与管理;同时,作为工业控制软件,它又可以很好的保证系统的可靠性与实时性。
组态王开发监控系统软件是新型的工业自动控制系统正以标准的工业计算机软、硬件平台构成的集成系统取代传统的封闭式系统,它具有适应性强、开放性好、易于扩展、经济、开发周期短等优点。
通常可以把这样的系统划分为控制层、监控层、管理层三个层次结构。
其中监控层对下连接控制层,对上连接管理层,它不但实现对现场的实时监测与控制,且在自动控制系统中完成上传下达、组态开发的重要作用。
尤其考虑三方面问题:画面、数据、动画。
通过对监控系统要求及实现功能的分析,采用组态王对监控系统进行设计。
组态软件也为试验者提供了可视化监控画面,有利于试验者实时现场监控。
而且,它能充分利用Windows 的图形编辑功能,方便地构成监控画面,并以动画方式显示控制设备的状态,具有报警窗口、实时趋势曲线等,可便利的生成各种报表。
它还具有丰富的设备驱动程序和灵活的组态方式、数据链接功能。
2系统需求分析在石油、化工、工矿等企业一般都有油库,这些油库是企业重要的燃料基地,是一个重要的生产环节。
各种油库的建设规模越来越大,造价也越来越高,为了确保油库的安全,必须要对影响油库安全的部分物理参数进行实时的数据采集,实现油库的自动化管理。
能及时掌握油库油罐的液位、温度、压力、油气浓度等状态参数可以大大提高油库的进油,储油和管理的工作效率,极大的提高安全保障,因此有广泛的应用价值。
通过对液位、温度、压力、油气浓度等状态量的实时监测,在智能仪表上实时显示并设置报警值,在越过限值时即可产生声光报警。
此外这些状态值也可以通过互联网传输,有访问权限的管理者可以在任何地方通过浏览器查看油库的安全参数,实现无人职守的远程监测系统。
3 系统方案论证在本设计中,为了实现对液位的控制,我使用了一个原油库,用来储存大量的原油,一个催化剂库用来存储大量的催化剂,它们分别在原料油罐催化剂罐液位少于20的时候进料,成品油罐用来存储成品油。
规范及文件对罐液位计的设置及联锁要求

5.4.3 储存I级和II及毒性液体的储罐、容量大于
或等于3000m3的甲B和乙A类可燃液体储罐、容量大 1.至少采用1台连续测量
于或等于10000m3的其他液体储罐应设高高液位报 液位计
警及联锁,高高液位报警应联锁关闭储罐进口管道 2.满足条件再设1台连续
控制阀。
测量液位计或液位开关
5.4.4装置原料储罐宜设低低液位报警,低低液位
行规定》
量、生产、使用工艺(方式)或者相关设备、设施等实际情况,按照下列 要求建立健全安全监测监控体系,完善控制措施: (一)重大危险源配备温度、压力、液位、流量、组份等信息的不间断采 集和监测系统以及可燃气体和有毒有害气体泄漏检测报警装置,并具备信 息远传、连续记录、事故预警、信息存储等功能;一级或者二级重大危险
安全监控装备设置
规范》
5.4.1 容量大于100m3的储罐应设液位连续测量远传仪表。
SH/T 3007-2014 5 《石油化工储运系
统罐区设计规范》
5.4.2 应在自动控制系统中设高、低液位报警并应符合下列规定: a)储罐高液位报警的设定高度,不应高于储罐的设计储存高液位; b)储罐低液位报警的设定高度,不应低于储罐的设计储存低液位。
5.4.5 储罐高高、低低液位报警信号和液位测量仪表应采用单独的液位连
续测量仪表或液位开关,报警信号应传送至自动控制系统。
SH 3136-2003 6 《液化烃球形储罐
安全设计规范》
5.3.2液化烃球形储罐应设高液位报警器和高高液位联锁。必要时应加设低 液位报警器。
安监总管三〔2014 〕68号 7 《关于进一步加强 化学品罐区安全管 理的通知》
至少采ห้องสมุดไป่ตู้1台连续测量液 位计或液位开关
罐区液位计和紧急切断阀的设置及联锁要求规范总结

罐区液位计和紧急切断阀设置及联锁要求规范总结•同一储罐至少配备几种不同类别的液位检测仪表?•构成重大危险源的液化气体、剧毒液体等重点储罐必须设置紧急切断装置吗?•所有的储罐,都必须设置高低液位报警及连锁吗?•如果设置紧急切断阀,对安装位置有要求吗?•现场需要设置紧急切断阀联锁按钮吗?安装位置有要求吗?01GB50074-2014《石油库设计规范》设置要求:15.1 自动控制系统及仪表15.1.1容量大于100m³的储罐应设液位测量远传仪表,并应符合下列规定:1 液位连续测量信号应采用模拟信号或通信方式接入自动控制系统;2 应在自动控制系统中设高、低液位报警;3 储罐高液位报警的设定高度应符合现行行业标准《石油化工储运系统罐区设计规范》SH/T 3007的有关规定;4 储罐低液位报警的设定高度应满足泵不发生汽蚀的要求,外浮顶储罐和内浮顶储罐的低液位报警设定高度(距罐底板)宜高于浮顶落底高度0.2m及以上。
15.1.4用于储罐高高、低低液位报警信号的液位测量仪表应采用单独的液位连续测量仪表或液位开关,并应在自动控制系统中设置报警及联锁。
联锁要求:15.1.2 下列储罐应设高高液位报警及联锁,高高液位报警应能同时联锁关闭储罐进口管道控制阀:1 年周转次数大于6次,且容量大于或等于10000m³的甲B、乙类液体储罐;2 年周转次数小于或等于6次,且容量大于20000m³的甲B、乙类液体储罐;3 储存I、II级毒性液体的储罐。
15.1.3 容量大于或等于50000m³的外浮顶储罐和内浮顶储罐应设低低液位报警。
低低液位报警设定高度(距罐底板)不应低于浮顶落底高度,低低液位报应能同时联锁停泵。
15.1.4用于储罐高高、低低液位报警信号的液位测量仪表应采用单独的液位连续测量仪表或液位开关,并应在自动控制系统中设置报警及联锁。
条文说明:15.1.4 “单独的液位连续测量仪表或液位开关”是指,除了“应设液位测量远传仪表”外,还需设置一套专门用于储罐高高、低低液位报警及联锁的液位测量仪表。
基于PLC的液位控制系统研究毕业设计(论文)

毕业设计论文基于PLC的液位控制系统研究摘要本文设计了一种基于PLC的储罐液位控制系统。
它以一台S7-200系列的CPU224和一个模拟量扩展模块EM235进行液位检测和电动阀门开度调节。
系统主要实现的功能是恒液位PID控制和高低限报警。
本文的主要研究内容:控制系统方案的选择,系统硬件配置,PID算法介绍,系统建模及仿真和PLC编程实现。
本设计用PLC编程实现对储罐液位的控制,具有接线简单、编程容易,易于修改、维护方便等优点。
关键字:储罐;液位控制;仿真;PLCAbstractThis article is designed based on PLC, tank level control system. It takes a series s7-200 CPU224 and an analog quantities of EM235 expansion module to level detection and electric valve opening regulation.System main function is to achieve constant low level PID control and limiting alarm.The main contents of this paper: the choice of the control system plan, system hardware configuration, PID algorithm introduced, system modeling and simulation, and PLC programming. PLC programming with the design of the tank level control have the advantage of simple wiring, easy programming, easy to modify, easy maintenance and so on.Key word: tank ; level ;control ;simulation ;plc目录摘要 (I)ABSTRACT ........................................................... I I 1 绪论. (1)1.1盐酸储罐恒液位控制任务 (1)1.2本文研究的意义 (2)1.3本文研究的主要内容 (2)2 控制系统方案设计 (3)2.1储罐液位控制的发展及现状 (3)2.2系统功能分析 (3)2.3系统方案设计 (4)3 系统硬件配置 (5)3.1电动控制阀的选择 (5)3.1.1 控制阀的选择原则 (5)3.1.2 ZAJP 精小型电动单座调节阀性能和技术参数介绍 (10)3.2液位测量变送仪表的选择 (13)3.2.1 液位仪表的现状及发展趋势 (13)3.2.2 差压变送器的测量原理 (13)3.2.3 差压式液位变送器的选型原则 (14)3.2.4 DP系列LT型智能液位变送器产品介绍 (15)3.3PLC机型选择 (16)3.3.1 PLC历史及发展现状 (16)3.3.2 PLC机型的选择 (18)3.3.3 S7-200系列CPU224和EM235介绍 (20)4 PID算法原理及指令介绍 (21)4.1PID算法介绍 (22)4.2PID回路指令 (24)5 系统建模及仿真 (28)5.1系统建模 (28)5.2系统仿真 (30)5.2,1 MATLAB语言中Simulink交互式仿真环境简介 (30)5.2.2 系统仿真 (31)第6章系统编程实现 (33)6.1硬件设计 (33)6.1.1 绘制控制接线示意图 (33)6,1.2 I/O资源分配 (33)6.2软件设计 (34)6.2.1 STEP 7 Micro/Win V4.0 SP6编程软件介绍 (34)6.2.2 恒液位PID控制系统的PLC控制流程 (35)6.2.3 编写控制程序 (36)6.2.4 程序清单 (39)结束语 (40)参考文献 (41)致谢 (42)1 绪论1.1 盐酸储罐恒液位控制任务如图1.1所示为某化工厂稀盐酸储罐,该罐为钢衬聚四氟乙烯储罐,罐体高6米,容量为50立方米,重500千克。
储油罐液位测量系统设计

显示电路
学生信息表 person
企业信息表 company
公共信息表 news
学生模块
企业模块
管理员模块
其它模块
键盘电路设计
键盘采用4×4矩阵式键盘,接单片机P2口,由程序扫P2口判断按下的是那个位置的键,然后查询键值表,执行相应的功能。
电源原理图
所设计的直流稳压电源电路的原理图如下所示,它由降压变压器、整流桥、滤波电路和集成稳压芯片组成。这样设计相对简单也能满足系统的需要
超声波测距原理
超声波回波检测法 超声波发射器发出单个或一组超声波脉冲,在发射时刻同时计时器开始计时,超声波在空气中传播,途中遇到被测目标,经过反射到达超声波接收端,此时停止计时 器计时,得到的时间t就是超声波在发射器和被测目标之间来回传播的时间。
超声波测距常用发射脉冲波形
Access 2000
超声波测距系统硬件设计
超声波发射电路图
本文采用变压器升压增加驱动能力。整个发射电路由555振荡电路、晶体管放大电路、变压器以及压电超声波传感器组成。40kHz振荡信号由555集成块和周围电路产生,然后送至放大电路驱动压电传感器发出一系列的脉冲群,每一个脉冲群持续时间大约为0.15ms 左右。信号经过三级管放大,再经过阻抗匹配电路即变压器(变压器输入输出比1∶10 ) 后,驱动超声波发射头,发射换能器两端就加上了高电压,内部的压电晶片开始震动,经过压电换能器将发出40kHZ的脉冲超声波。
初始化
查询是否 开始
发射超声波同时启动计数器
延时0.05ms
P1.7置0停止发射
调用子程序计算距离
报 警
调用显示子程序
开中断
再次发射超声波
P0.1=1
是
12 储罐液位-出口流量均匀控制

结构
串级均匀控制
在结构上它与一般的串级控制系统是一 在结构上与单回路控制系统是一样的, 致的,但是串级均匀控制不是为了提高 但是它们的控制目的不同 主变量的控制质量,副环的引入主要是 为了克服副变量本身的干扰 通常均匀控制系统的控制器整定在较 主控制器与简单均匀控制的处理相同, 小的比例增益和较大的积分时间上 以达到均匀控制的目的 (弱控制作用) 结构简单,投运方便,成本低廉 能克服较பைடு நூலகம்的干扰
14
实 验 步 骤
比例积分控制器的参数整定步骤:
按纯比例控制作用进行整定,得到合适的Kc;
在适当地减小Kc后,加入积分作用,逐步减小Ti,直到FI1101
曲线将要出现缓慢的周期性衰减振荡过程为止,而LI1101有
恢复到给定值的趋势; 最终根据工艺要求,调整参数,直到LI1101、FI1101的曲线 都符合要求为止。
8
储罐液位-储罐出口流量均匀控制系统设计
控制规律
均匀控制是把一个变化较大的流量通过一个适当容积的缓冲
作用,使其成为变化平缓的流量。即,使液位在一定范围内 波动,使流量尽量平稳。可见,在均匀控制时,主要目的不 是液位,而是一种流量控制。 如果使用简单回路控制,可以采用较小的比例增益Kc加上积 分作用。
均匀控制在有些场合不是简单地让两个参数平均分摊,而是
视前后设备的特性及重要性等因素来确定均匀的主次。
参数变化要限定范围 均匀控制系统中被控变量是非单一、定值的,允许它在给定 值附近一个范围内变化。即根据供求矛盾,两个参数的给定 值不是定点而是定范围。
5
基 础 知 识
均匀控制系统的常用结构形式
9
实 验 步 骤
打开储罐工程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
储罐液位控制系统设计学号:000000000姓名: 0000000目录设计任务与要求--------------------------------------------------------------3一、本课程设计系统概述-------------------------------------------------------41、系统原理--------------------------------------------42、系统结构图---------------------------------------------------------------43、控制方案说明------------------------------------------------------------54、系统组成及原理--------------------------------------5二、硬件设计-----------------------------------------------------------------------61、单片机最小系统电路设计------------------------------62、水位检测传感器的选用------------------------------------------------83、稳压电路的设计---------------------------------------------------------84、光报警电路的设计------------------------------------95、水泵的介绍-----------------------------------------106、继电器控制水泵加水电路-----------------------------147、电源电路-------------------------------------------168、看门狗技术-------------------------------------------------------------16三、软件设计---------------------------------------------------------------------191、系统总流程图----------------------------------------------------------192、系统总程序-----------------------------------------20四、小结---------------------------------------------------------------------------22五、参考文献---------------------------------------------------------------------23设计题目:储罐液位控制系统设计设计要求:在储罐的内部我们设计一个简易的水位探测传感器用来探测三个水位,即低水位,正常水位,高水位。
低水位时送给单片机一个高电平,驱动水泵加水,红灯亮;正常范围的水位时,水泵加水,绿灯亮;高水位时,水泵不加水,黄灯亮。
本设计过程中主要采用了传感技术、单片机技术、光报警技术以及弱电控制强电的技术。
技术参数和设计任务:1、利用单片机STC89C51实现对高塔进行水位的控制;2、把水位探测传感器探得高塔中的水位送给单片机以实现对水泵加水系统和显示系统的控制;3、光报警显示系统电路,采用不同颜色的发光二极管来表示不同的水位情况4、水泵加水电路由继电器进行控制;5、分析工作原理,绘出系统结构原理图及流程图;一、本课程设计系统概述1、系统原理当水位处于低水位的时候,传感器的低水位探测线没被+5V的电源导通进入稳压电路经过处理在稳压电路的输出端有一个高电平,送入单片机的P1.0口,另一个稳压电路输出的高电平进入单片机的P1.1口单片机经过分析,在P1.2口输出一低电平,驱动红灯亮,P1.5出来一个信号使光电耦合器GDOUHE导通,这样继电器闭合,使水泵加水;当水位处于正常范围内时,水泵加水,在P1.3引脚出来一个低电平,使绿灯亮;当水位在高水位区时,传感器的两根探测线均被导通,均被+5V的电源导通,送入单片机,单片机经过分析,在P1.4引脚出来一个低电平,使黄灯亮,在P1.5端出来一个低电平不能使光电耦合器导通,这样继电器不能闭合,水泵不能加水;当三灯闪烁表示系统出现故障。
2、系统结构图图1 系统结构图采用单片机STC89C51作为我们的控制芯片,主要工作过程是当高塔中的水在低水位时,水位探测传感器送给单片机一个高电平,然后单片机驱动水泵加水和显示系统使红灯变亮;当水位在正常范围内时,水泵加水,绿灯亮,;当水位在高水位时,单片机不能驱动水泵加水,黄灯亮。
3、控制方案说明这个方案中使用了单片机处理,单片机技术是信息时代用于精密测量的一种新技术。
此系统使用过程中采用稳压电路能够准确地把输入的电平送给单片机不会产生误判的情况,由于STC89C51单片机有四端口,20引脚能够非常方便地设计显示系统。
4、系统组成及原理本系统由电源电路、水位探测传感电路、稳压电路、单片机系统、光报警显示电路、继电器控制水泵加水电路、以及储罐模型组成。
主电气原理图如下:工作原理:当水位处于低水位的时候,传感器的低水位探测线没被+5V的电源导通进入稳压电路经过处理在稳压电路的输出端有一个高电平,送入单片机的P1.0口,另一个稳压电路输出的高电平进入单片机的P1.1口单片机经过分析,在P1.2口输出一低电平,驱动红灯亮,P1.5出来一个信号使光电耦合器GDOUHE 导通,这样继电器闭合,使水泵加水;当水位处于正常范围内时,水泵加水,在P1.3引脚出来一个低电平,使绿灯亮;当水位在高水位区时,传感器的两根探测线均被导通,均被+5V的电源导通,送入单片机,单片机经过分析,在P1.4引脚出来一个低电平,使黄灯亮,在P1.5端出来一个低电平不能使光电耦合器导通,这样继电器不能闭合,水泵不能加水;当三灯闪烁表示系统出现故障。
二、硬件设计1、单片机最小系统电路设计STC89C51是美国ATMEL公司生产的低电压、高性能CMOS 8位单片机,片内含2k bytes的可反复擦写的只读程序存储器(PEROM)和128bytes的随机数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash 存储单元,功能强大STC89C511单片机可为您提供许多高性价比的应用场合。
本设计中单片机采用STC89C51,它是一种高性能低价格单片机。
引脚(20个)和指令系统与8031单片机完全兼容。
片内有2 K字节的闪速程序存储器(采用电擦除编程, 可重复编程1000次,数据可保10年),除没有P0口、P2口外,具有8031所有功能结构,即一片STC89C51相当于8031、373 、2716 组成的最小系统。
用它构成的测量、控制系统具有电路简单、可靠性好、体积小和成本低等优点。
STC89C51 的P1 口为八位双向I/ O 口, P1.2~P1.7有内部上拉电阻, P1.0与P1.1无内部上拉电阻。
P1.0与P1.1具有第二功能, 分别作为片内精密比较器的同相、反相输入端。
P1 口输出驱动器能提供20mA 的灌电流驱动能力, 其锁存器写1 时可作为输入口。
STC89C51 的P3 口为七位双向I/ O 口, 有内部上拉电阻, P3 口输出驱动器能提供20mA 灌电流驱动能力, 其锁存器写1 时可作输入口。
P316作为输入线与片内精密比较器输出端在片内相连, 故无引出线, 但可读该位的值。
P310~ P315的第二功能与8031 P3 口相应口线的第二功能完全相同。
综上所述, P1 和P3 口中的各口线可直接驱动发光二极管, 不用再配置发光二极管驱动电路,P1.0与P1.1具有第二功能, 不用再配置比较器, 从而简化了控制电路的结构。
图2 最小系统电路图2、水位检测传感器的选用传感器是一种能感受被测物体物理量并将其转化为便于传输或处理的电信号的装置,在现代科技领域中,传感器得到了广泛应用,各种信息的采集离不了各种传感器,传感器的基本功能在于能感受外界的各种“刺激”并作出迅速反映。
本设计当中我们采用的水位探测传感器简单易做,经济实惠。
其外形轮廓如下:A图3 水位探测传感器外观图A为接+5V电源的线与水一直保持连通,B线为低水位控制线,当水位到达低水位的时候它不导通,水在正常范围内时,它导通。
C线为高水位控制线,当它导通时,表示水已经为高水位。
本设计中采用了细铜线作为我们的传感器的材料。
主要考虑了(1)细铜线的电阻率比较低,这样就可以避免由于电阻过大而使输出的电平过低,以致不能很好地驱动单片机工作(2)传电性能比较好,传电速率比较快,也就是说灵敏性非常好。
(3)细铜线便宜易找。
本传感器的尺寸是A线是30CM,B线是20CM,C线是15CM,铜线直径是15MM。
3、稳压电路的设计本电路的主要作用是使从传感器输出的电平能够稳定地输入单片机中,主要由三极管的两极放大稳定电路组成,其工作过程是水位探测传感器把探测到的电信号送给R12,如果送入的是高电平则R11、Q5、D3、Q4导通把低于1.4V的低电平稳定地送给单片机。
如果是低电平送给R12则R11、Q5、D3、Q4均不能导通二是R13导通将把高于1.4V的高电平稳定的送给单片机。
我查找了相关资料以及我们自己在设计过程当中免去此稳定电路,发现有时候也能实现我们的设计目的,但是也有很多时候发生水位误判的情况,产生不稳定现象,所以我们认为此电路是不可缺少的。
既然是控制系统,当然就要控制精确。
图4 稳压电路原理图4、光报警电路的设计发光二极管(LED)是用半导体材料制作的正向偏置的PN结二极管。
其发光机理是当在PN结两端注入正向电流时,注入的非平衡载流子(电子-空穴对)在扩散过程中复合发光,这种发射过程主要对应光的自发发射过程。
按光输出的位置不同,发光二极管可分为面发射型和边发射型。
发光二极管的发光原理同样可以用PN结的能带结构来解释。
制作半导体发光二极管的材料是重掺杂的,热平衡状态下的N区有很多迁移率很高的电子,P区有较多的迁移率较低的空穴。
由于PN结阻挡层的限制,在常态下,二者不能发生自然复合。
,而当给PN结加以正向电压时,沟区导带中的电子则可逃过PN结的势垒进入到P区一侧。