液位控制系统设计

合集下载

精馏塔回流罐液位控制系统设计

精馏塔回流罐液位控制系统设计

精馏塔回流罐液位控制系统设计
系统结构设计:
精馏塔回流罐液位控制系统的结构设计通常包括液位传感器、液位控
制器、执行器以及控制回路。

其中,液位传感器用于实时测量液位,并将
测量值传输给液位控制器;液位控制器通过对接收到的液位信号进行处理,并输出控制信号给执行器,以调节回流液流入罐内的流量。

传感器选择:
在液位传感器的选择上,可以考虑使用压力传感器、雷达传感器、超
声波传感器等。

不同的传感器具有不同的测量原理和特性,选择合适的传
感器需要考虑到系统的要求,例如精度、可靠性、响应速度等。

液位控制器选择:
液位控制器的选择可以根据控制要求和技术特性进行。

常见的液位控
制器包括PID控制器、模糊控制器、自适应控制器等。

选择合适的液位控
制器需要考虑到系统的动态性能、抗干扰能力、稳态误差等因素。

控制策略设计:
控制参数调整:
控制参数调整是液位控制系统设计中一个重要的环节。

通过对液位控
制器的参数进行调整,可以提高系统的响应速度、稳定性和抗干扰能力。

常用的方法包括试验法、数学建模法、自整定法等。

系统性能评估:
对于设计好的精馏塔回流罐液位控制系统,需要进行系统性能评估。

评估指标通常包括系统的稳态误差、调节时间、超调量等。

通过对系统性能的评估,可以判断设计的优劣,并进行优化改进。

总结:
精馏塔回流罐液位控制系统设计是一个综合性的工程项目,需要考虑多个因素的综合影响。

通过合理的系统结构设计、传感器选择、液位控制器选择、控制策略设计、参数调整和系统性能评估,可以设计出一个性能优良的精馏塔回流罐液位控制系统。

基于PLC的液位控制系统设计

基于PLC的液位控制系统设计

基于PLC的液位控制系统设计液位控制系统是工业自动化中常见的一种控制系统,主要用于监测和控制液体或粉末在容器中的液位。

PLC(可编程逻辑控制器)是一种常用的自动化控制器,它通过编程逻辑和输入输出模块实现自动控制。

本文将基于PLC的液位控制系统进行设计和讨论。

首先,我们需要了解液位控制系统的基本原理。

液位控制系统主要由三个组成部分组成:传感器、控制器和执行器。

传感器用于监测液位高度,常用的传感器有浮球传感器、电容传感器和超声波传感器。

控制器根据传感器获得的液位信号,通过编程逻辑判断液位是否达到设定值,并根据结果控制执行器的开关状态。

执行器可以是电磁阀、泵或搅拌器,用于调节液位。

PLC作为控制器可以实现复杂的逻辑控制,并且具有可编程性和可扩展性。

下面是基于PLC的液位控制系统的设计步骤:第一步是确定系统需求和设计目标。

根据具体的液位控制需求,确定液位控制系统的功能要求和性能指标,例如需要实现液位的自动控制、报警功能和远程监控等。

然后确定设计目标,例如控制系统的稳定性、精度和可靠性。

第二步是选择适当的控制器和传感器。

根据设计目标和系统需求,选择适合的PLC控制器和液位传感器。

PLC控制器应具有足够的输入输出模块和计算能力,以满足液位控制系统的需求。

液位传感器的选择应考虑液体的性质、工作环境和控制精度等因素。

第三步是进行系统硬件设计。

根据选定的PLC控制器和传感器,设计系统的硬件连接和布置。

将传感器与PLC控制器连接,确保信号的稳定传输。

同时,还需要考虑系统的电气安全和防护措施。

第四步是进行PLC编程。

根据设计需求和目标,编写逻辑控制程序。

程序应能够实现液位的监测、判断和控制,同时具备保护和报警功能。

编程语言通常使用ladder diagram(梯形图),也可以使用其他编程语言如指令列表和函数图。

第五步是进行系统调试和优化。

完成PLC编程后,进行系统调试和优化。

对系统进行全面的测试,确保液位的检测和控制功能正常运行。

液位控制系统设计

液位控制系统设计

摘要本文主要设计了一种液位控制器,它以8051作为控制器,通过8051单片机和模数转换器等硬件系统和软件设计方法,实现具有液位检测报警和控制双重功能,并对液位值进行显示。

本系统是基于单片机的液位控制,在设计中主要有水位检测、按键控制、水位控制、显示部分、故障报警等几部分组成来实现液位控制。

主要用水位传感器检测水位,用六个控制按键来实现按健控制,用三位7段LED显示器来完成显示部分,用变频器来控制循环泵的转速,并且通过模数转换把这些信号送入单片机中。

把这些信号与单片机中内部设定的值相比,以判断单片机是否需要进行相应的操作,即是否需要开启补水泵或排水泵,来实现对液面的控制,从而实现单片机自动控制液面的目的。

本设计用单片机控制,易于实现液位的控制,而且有造价低、程序易于调试、一部分出现故障不会影响其他部分的工作、维修方便、等优点.关键词: 8051单片机; 模数转换;水位控制; 自动控制目录1 前言 (3)1.1课题背景 (3)1。

2国内外研究的现状 (3)1.3使用单片机实现水体液位控制的优点 (4)2 系统硬件设计 (6)2。

1核心芯片8051单片机 (6)2.2液位传感器设计 (9)2.4ADC0809A/D转换器 (13)2.5键盘及显示接口 (16)2。

6自动报警电路 (17)下列二种情况发生系统报警。

(18)1)当水位达到上限极限水位时报警,水位到达上限极限水位时系统发出报警; (18)2)当水位达到下限极限水位时报警,水位到达下限极限水位时系统发出报警 (18)3 系统软件的设计 (19)3。

1软件设计流程图 (19)致谢 (23)1 前言1。

1 课题背景液位控制系统是以液位为被控参数的控制系统,它在工业生产的各个领域都有广泛的应用。

在工业生产过程中,有很多地方需要对容器内的介质进行液位控制,使之高精度地保持在给定的数值,如在建材行业中,玻璃窑炉液位的稳定对窑炉的使用寿命和产品的质量起着至关重要的作用。

PLC水箱液位控制系统毕业设计

PLC水箱液位控制系统毕业设计

PLC水箱液位控制系统毕业设计PLC水箱液位控制系统是一种基于可编程逻辑控制器(PLC)的自动控制系统,用于监测和调节水箱中的液位。

这个系统可以应用于各种场景,比如工业生产中的水箱液位控制、建筑物的水池液位控制等。

在本篇文章中,将详细介绍PLC水箱液位控制系统的设计和实现。

首先,我们需要对PLC水箱液位控制系统的硬件进行设计。

其中包括传感器模块、执行器模块和PLC控制器。

传感器模块用于监测水箱中的液位,可以选择合适的液位传感器,如浮球开关、超声波传感器等。

执行器模块用于控制水箱中的液位,可以选择水泵或阀门等执行器。

PLC控制器用于接收传感器模块的信号,根据预设的控制策略来控制执行器模块的工作。

同时,还需要考虑电源模块、通信模块等其他辅助模块。

接下来,我们需要对PLC水箱液位控制系统的软件进行设计。

PLC控制器通常使用Ladder Diagram(梯形图)进行编程。

在本设计中,我们可以根据液位传感器的信号来控制执行器的开关。

当液位低于一定阈值时,PLC控制器可以启动水泵或打开阀门,以增加水箱中的液位。

当液位高于一定阈值时,PLC控制器可以停止水泵或关闭阀门,以减少水箱中的液位。

同时,我们还可以增加一些安全措施,如设置最大液位和最小液位报警,当液位超出范围时,PLC控制器可以发出警报信号或采取相应的措施。

在实际应用中,我们还可以通过人机界面(HMI)来对PLC水箱液位控制系统进行监控和操作。

通过HMI,我们可以实时查看水箱中的液位,修改控制策略,记录操作日志等。

同时,我们还可以将PLC水箱液位控制系统与上位机进行通信,实现远程监控和控制。

最后,我们需要对PLC水箱液位控制系统进行实验验证。

在实验中,我们可以模拟不同的液位情况,观察PLC控制器的响应和执行器的工作情况。

通过实验,我们可以测试系统的稳定性、精度和可靠性,并对系统进行优化和改进。

总结而言,PLC水箱液位控制系统是一种自动控制系统,用于监测和调节水箱中的液位。

基于PLC的液位控制系统设计

基于PLC的液位控制系统设计

基于PLC的液位控制系统设计液位控制系统是一种自动控制系统,用于控制液体在容器中的液位。

PLC(可编程逻辑控制器)被广泛应用于液位控制系统中,因为它具有可编程性、易于安装和维护以及可靠性高的特点。

在本文中,我们将基于PLC设计一个液位控制系统。

首先,我们需要选择适合的PLC设备。

根据液位控制系统的规模和需求,我们可以选择不同型号和品牌的PLC,例如西门子、施耐德等。

一个PLC系统通常包括CPU、输入和输出模块、通信模块等组成部分。

根据液位控制系统的需求,我们可以选择适当的输入和输出模块来连接传感器和执行器。

接下来,我们将设计液位传感器和执行器的布置。

液位传感器用于检测液位的高度,并将信号传输给PLC系统。

常用的液位传感器包括浮球传感器、压力传感器等。

根据液位控制系统的需求,我们可以将传感器布置在不同的位置和高度。

执行器用于控制液位,例如开关泵来增加液位或者打开泄水阀来降低液位。

然后,我们需要设计PLC的逻辑控制程序。

PLC的逻辑控制程序决定了液位控制系统的工作方式。

我们可以使用PLC编程语言(如ladder diagram)来编写逻辑控制程序。

在程序中,我们可以定义液位的上下限,并根据实际液位与设定值之间的偏差来控制执行器的开关状态。

例如,当液位低于设定值时,PLC会启动泵来增加液位;当液位高于设定值时,PLC会打开泄水阀来降低液位。

最后,我们需要测试和调试液位控制系统。

在测试过程中,我们可以使用仿真工具来模拟真实情况,并验证PLC的逻辑控制程序是否正确。

如果发现问题,我们可以对逻辑控制程序进行修改或优化。

一旦测试通过,我们就可以将液位控制系统部署到实际环境中,并进行调试。

在调试过程中,我们需要确保PLC系统能够稳定地控制液位,并及时响应外部输入和输出信号。

总结起来,基于PLC的液位控制系统设计包括选择PLC设备、设计液位传感器和执行器布置、编写逻辑控制程序以及测试和调试系统等步骤。

通过合理设计和调试,PLC可以有效地控制液位,提高系统的自动化程度和稳定性。

基于PID的液位控制系统的设计与实现

基于PID的液位控制系统的设计与实现

基于PID的液位控制系统的设计与实现液位控制系统是工业生产过程中常用的控制技术之一、PID(比例-积分-微分)控制器是一种经典的控制算法,可以有效地实现液位控制。

本文将设计和实现基于PID的液位控制系统。

液位控制系统一般由传感器、执行器和控制器组成。

传感器用于测量液位高度,执行器用于调节液位,而控制器则根据测量值和设定值之间的差异来控制执行器的运动。

在这个过程中,PID控制器起到关键的作用。

首先,我们需要设计传感器来测量液位高度。

常见的液位传感器有浮子式、压力式和电容式传感器。

根据实际应用需求,选择适合的传感器。

传感器的输出值将作为反馈信号输入到PID控制器中。

其次,我们需要选择合适的执行器来调节液位。

根据液位的控制需求,可以选择阀门、泵等执行器。

这些执行器的动作是由PID控制器输出的控制信号来控制的。

接下来,我们将重点介绍PID控制器的设计和实现。

PID控制器由比例、积分和微分三个部分组成。

比例部分输出和误差成正比,积分部分输出和误差的累积和成正比,微分部分输出和误差的变化率成正比。

PID控制器的公式为:输出=Kp*错误+Ki*积分误差+Kd*微分误差其中,Kp、Ki、Kd是PID控制器的三个参数。

这些参数的选择对于系统的稳定性和响应速度有重要影响。

参数的选择需要通过实验和调试来确定。

在PID控制器的实现中,有两种常用的方式:模拟PID和数字PID。

模拟PID控制器基于模拟电路实现,适用于一些低要求的应用场景。

数字PID控制器基于微处理器或单片机实现,适用于更复杂的控制场景。

在具体的实现中,我们需要先进行系统建模和参数调整。

系统建模是将液位控制系统转化为数学模型,以便进行分析和设计。

常见的建模方法有传递函数法和状态空间法。

参数调整是通过实验和仿真等手段来确定PID控制器的参数。

接下来,根据建模和参数调整的结果,我们可以进行PID控制器的实际设计和实现。

在设计过程中,需要注意选择合适的控制算法和调试方法,以保证系统的稳定性和性能。

水箱液位控制系统设计设计

水箱液位控制系统设计设计

水箱液位控制系统设计设计一、系统概述水箱液位控制系统是一个智能化的系统,用于控制水箱液位并保持在设定的范围内。

该系统由传感器、控制器和执行器组成,通过传感器检测水箱液位,并将液位信号传输给控制器,控制器根据设定的参数进行判断和控制,最终通过执行器完成控制动作。

二、系统组成1.传感器:使用浮球传感器或超声波传感器来检测水箱液位。

传感器将液位转化为电信号,并传输给控制器。

2.控制器:控制器是系统的核心部分,它接收传感器的信号,并进行处理和判断。

控制器可以根据设定的参数来判断液位是否达到目标范围,并通过输出信号来控制执行器的动作。

此外,控制器还需要具备人机界面,方便用户进行参数设置和监测。

3.执行器:执行器根据控制器的控制信号,完成相应的动作。

例如,当液位过高时,执行器可以控制水泵关闭或排水阀打开,以降低液位;当液位过低时,执行器可以控制水泵开启或进水阀打开,以提高液位。

4.电源:为整个系统提供电能。

三、系统设计思路1.确定液位控制的范围:根据实际需求,确定水箱液位的上限和下限。

一般情况下,液位控制范围应在50%至85%之间。

2.选择合适的传感器:根据水箱的结构和液位控制要求,选择合适的传感器。

浮球传感器适用于小型水箱,超声波传感器适用于大型水箱。

3.设计控制器:控制器的主要功能是接收传感器的信号、处理和判断液位,并输出控制信号。

在设计控制器时,需要考虑如下几个方面:-信号处理:传感器的信号可能存在噪声,需要进行滤波处理,保证信号的准确性。

-参数设置:控制器应提供人机界面,方便用户根据实际需求设置参数,例如液位上下限、启停时间等。

-控制算法:根据设定的参数,控制器需要实现相应的控制算法,例如比例控制、积分控制等。

-控制输出:控制器根据判断结果输出控制信号,控制执行器的动作。

4.选用适配的执行器:根据液位控制要求,选择适合的执行器,例如水泵、进水阀、排水阀等。

5.系统集成与调试:将传感器、控制器和执行器进行连接和集成,进行系统调试和性能测试。

「基于PLC的液位控制系统设计1」

「基于PLC的液位控制系统设计1」

「基于PLC的液位控制系统设计1」液位控制系统是工业领域最常见的自动控制系统之一,它可以实现对液体的实时监控和自动控制。

本文将介绍基于可编程逻辑控制器(PLC)的液位控制系统的设计。

首先,我们需要了解液位控制系统的基本组成部分。

液位控制系统一般包括液位传感器、执行器(如泵或阀门)、PLC和人机界面。

液位传感器用于检测液体的高度,然后将信号传输到PLC。

PLC通过逻辑控制算法,根据液位传感器的信号来控制执行器的操作,从而达到对液位的控制。

人机界面用于操作人员与液位控制系统直接交互,如设置液位控制参数、显示液位信息等。

在设计液位控制系统时,首先需要确定液体的容器类型和液位的测量范围,选择适合的液位传感器。

常见的液位传感器包括浮球传感器、压阻式传感器和超声波传感器等。

然后,选择合适的执行器来控制液位,如泵或阀门。

根据液位控制的需求,确定PLC的规格和类型,如简单控制任务可以选择小型PLC,而复杂控制任务可能需要使用高性能PLC。

接下来,需要进行液位控制的逻辑设计。

液位控制系统的逻辑设计可以使用Ladder Diagram或Structured Text进行编程。

通过编程实现对液位的监测和控制。

例如,当液位低于一定值时,PLC通过控制执行器来注入液体,当液位高于一定值时,PLC通过控制执行器来排出液体。

在设计过程中,要考虑到液位变化的延迟和波动。

针对这个问题,可以使用滤波技术和控制算法来解决。

滤波技术可以减少传感器信号中的噪音和干扰,控制算法可以根据液位变化的速率来调整执行器的操作,从而使液位控制更加精确和稳定。

最后,测试和调试液位控制系统。

在测试中,需要验证液位传感器的准确性和PLC的控制性能。

通过对系统的模拟和实际运行进行测试,可以发现和解决潜在问题,确保液位控制系统的正常运行。

总结起来,基于PLC的液位控制系统设计需要考虑液位传感器的选择、执行器的选择、PLC的规格和类型、逻辑设计、滤波技术、控制算法以及测试和调试。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液位控制系统设计学院:专业班级:学生姓名:指导老师:液位控制系统设计本文主要讲了压力传感器实现的液位控制器的设计方法,以单片机为核心。

通过外围硬件电路来达到实现控制的目的,根据需要设定液位控制高度,同时具备报警、高度显示等功能,具有与液面不接触的特点,可用于有毒、腐蚀性液体液位的控制,具有较高的研究价值。

该控制器不仅可用于学校进行教学研究,还可用于生产实际,是目前比较缺少的一种产品。

随着微电子工业的迅速发展,单片机控制的智能型控制器广泛应用于电子产品中,为了使学生对单片机控制的智能型控制器有较深的了解。

关键词:单片机;水位检测;控制系统;仿真0 引言随着微电子工业的迅速发展,单片机控制的智能型控制器广泛应用于电子产品中,为了使学生对单片机控制的智能型控制器有较深的了解。

经过综合分析选择了由单片机控制的智能型液位控制器作为研究项目,通过训练充分激发学生分析问题、解决问题和综合应用所学知识的潜能。

另外,液位控制在高层小区水塔水位控制,污水处理设备和有毒,腐蚀性液体液位控制中也被广泛应用。

通过对模型的设计可很好的延伸到具体应用案例中。

中国使用单片机的历史只有短短的30年,在初始的短短五年时间里发展极为迅速。

1986 年在上海召开了全国首届单片机开发与应用交流会,很多地区还成立了单片微型计算机应用协会,那是全国形成的第一次高潮。

单片机应用技术飞速发展,我们上因特网输入一个“单片机”的搜索,将会看到上万个介绍单片机的网站,这还不包括国外的。

电子界,在2003年7月, (91 猎头网)在上海、广州、北京等大城市所做的一次专业人才需求报告中,单片机人才的需求量位居第一。

大家都有些奇怪一块小小的片子,为何有这样的魔力?我们首先从它的构成说起:单片机,亦称单片微电脑或单片微型计算机。

它是把中央处理器(CPU)、随机存取存储器(RAM)、只读存储器(ROM)、输入/输出端口(I/0)等主要计算机功能部件都集成在一块集成电路芯片上的微型计算机。

正因为如此他才改变了我的生活它为我们改变了什么?纵观我们现在生活的各个领域,从导弹的导航装置,到飞机上各种仪表的控制,从计算机的网络通讯与数据传输,到工业自动化过程的实时控制和数据处理,以及我们生活中广泛使用的各种智能IC 卡、电子宠物等,这些都离不开单片机。

以前没有单片机时,这些东西也能做,但是只能使用复杂的模拟电路,然而这样做出来的产品不仅体积大,而且成本高,并且由于长期使用,元器件不断老化,控制的精度自然也会达不到标准。

在单片机产生后,我们就将控制这些东西变为智能化了,我们只需要在单片机外围接一点简单的接口电路,核心部分只是由人为的写入程序来完成。

这样产品的体积变小了,成本也降低了,长期使用也不会担心精度达不到了。

所以,它的魔力不仅是在现在,在将来将会有更多的人来接受它、使用它。

据统计,我国的单片机年容量已达3 亿片,且每年以大约20%的速度增长,但相对于世界市场我国的占有率还不到1%。

特别是沿海地区的玩具厂等生产产品多数用到单片机,并不断地辐射向内地。

所以,学习单片机在我国是有着广阔前景的。

1 系统设计方案比较说明对于液位进行控制的方式有很多,而应用较多的主要有2种,一种是简单的机械式控制装置控制,一种是复杂的控制器控制方式。

两种方式的实现如下:(1)简单的机械式控制方式。

其常用形式有浮标式、电极式等,这种控制形式的优点是结构简单,成本低廉。

存在问题是精度不高,不能进行数值显示,另外很容易引起误动作,且只能单独控制,与计算机进行通信较难实现。

(2)复杂控制器控制方式。

这种控制方式是通过安装在水泵出口管道上的压力传感器,把出口压力变成标准工业电信号的模拟信号,经过前置放大、多路切换、A/D变换成数字信号传送到单片机,经单片机运算和给定参量的比较,进行PID运算,得出调节参量;经由D/A变换给调压/变频调速装置输入给定端,控制其输出电压变化,来调节电机转速,以达到控制水箱液位的目的。

针对上述2种控制方式,以及设计需达到的性能要求,这里选择第二种控制方式,同时考虑到成本需要把PID控制去掉。

最终形成的方案是,利用单片机为控制核心,设计一个对供水箱水位进行监控的系统。

根据监控对象的特征,要求实时检测水箱的液位高度,并与开始预设定值做比较,由单片机控制固态继电器的开断进行液位的调整,最终达到液位的预设定值。

检测值若高于上限设定值时,要求报警,断开继电器,控制水泵停止上水;检测值若低于下限设定值,要求报警,开启继电器,控制水泵开始上水。

现场实时显示测量值,从而实现对水箱液位的监控。

P0.039P0.138P0.237P0.336P0.435P0.534P0.633P0.732P2.021P2.122P2.223P2.324P2.425P2.526P2.627P2.728P3.1(TXD)11P3.2(INT0)12P3.3(INT1)13P3.414P3.515P3.6(W R)16P3.7(R D)17XTAL218XTAL119R ST 9PS EN 29ALE/PR OG 30EA/Vp p 31P1.01P1.12P1.23P1.34P1.45P1.56P1.67P1.78P3.0(R XD)10Vcc 40GND 20U1AT89C51+574LS373D0D1D2D3D4D5D6D7G Q0Q1Q2Q3Q4Q5Q6Q7OE EOCOE ALE STAR T D0D1D2D3D4D5D6D7A C B C LK ADC 0809VR(+)VR(-)(+)(-)基准电压IN0IN1IN2IN3IN4IN5IN6IN78路模拟输入0.5 74LS74D C KQ QU2U31≥U4NOR 21≥U5NOR 2a 11b 7c 4d 2e 1f 10g 5dp3D 112D 29D 38D 46DPY4x16.000MHZC 14.7p FC 24.7p FS5SW -P BR 510KVCCC 310uF图5显示电路及A/D 转换程序4 软件设计液位控制器模型的软件设计框,首先进行键盘设计。

每个按键都有它的行值和列值,行值和列值的组合就是识别这个按键的编码矩阵的行线和列线分别通过两并行接口和CPU 通信键盘的一端(列线)通过电阻接VCC ,而接地是通过程序输出数字“0”实现的键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么?还要消除按键在闭合或断开时的抖动两个并行口中,一个输出扫描码,使按键逐行动态接地;另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能从键盘输入目的液位高度,单片机控制的电磁阀开启液位升高。

液位的实际高度通过压力传感器SY 一9411L —D 测量转换为标准电压信号,再经过运算放大电路、A/D 转换电路将测量值送给控制芯片判断与目的液位的偏差,偏差值再通过D/A 转换电路送给电磁阀控制其开度。

下图即为原理框图。

心自己的选题最后做不出来,所以当时选题时的原则是尽量的简单可行,因为毕竟我们没有实验课,一学期下来必定会比物理系的同学在具体的实验方面落后不少,同时平时我们都在南新校区,与老师和同学的交流都很困难,在后来的具体制作过程中遇到什么困难几乎不可能跑到实验室去向老师请教,同时现在社会上都在大力提倡节能,于是我们打算从这点出发在我们的身边发现问题,当时我们听周围的同学说起夏天白天相当的炎热,可是晚上退凉很快特别是深夜的时候温度其实已经不高了,但是同学们一般晚上睡觉都比较早,都会叫风扇一直开着最大档,可是到了深夜后已经没有必要这么强的风速了,这样一夜下来将会浪费很多电能,同时还容易把同学们吹感冒。

于是我们想能不能做一个单片机系统来解决这个问题,基于以上原因我们确定了这个方案,在最初的计划中我们还准备加入对风扇转向的控制,使之能实现人体追踪功能,不过在后来的具体设计中发现现在风扇的风扇转向控制基本都是纯机械装置,要用单片机控制比较的困难,而电子控制装置一般都出现在高端的风扇之中且价格比较昂贵,而且机械部分方面我们也无法解决。

所以最后决定放弃对转向的控制,等以后对机械方面的只是有所学习之后再做。

通过这次的课程设计作品的制作让我对单片机的理论有了更加深入的了解,同时在具体的制作过程中我们发现现在书本上的知识与实际的应用存在着不小的差距,书本上的知识很多都是理想化后的结论,忽略了很多实际的因素,或者涉及的不全面,可在实际的应用时这些是不能被忽略的,我们不得不考虑这方的问题,这让我们无法根据书上的理论就轻易得到预想中的结果,有时结果甚至很差别很大。

通过这次实践使我更深刻的体会到了理论联系实际的重要性,我们在今后的学习工作中会更加的注重实际,避免称为只会纸上谈兵的赵括。

基于单片机实现液位控制器模型设计的关键在于硬件电路的正确构建,只有在电路准确的前提下再进行软件编程才能取得成功。

经过两个星期的努力,课程设计终于大告成功了。

整个设计通过了软件和硬件上的调试、仿真。

我想这对于自己以后的学习和工作都会有很大的帮助。

在这次设计中遇到了很多实际性的问题,在实际设计中才发现,书本上理论性的东西与在实际运用中的还是有一定的出入的,所以有些问题不但要深入地理解,而且要不断地更正以前的错误思维。

一切问题必须要靠自己一点一滴的解决,而在解决的过程当中你会发现自己在飞速的提升。

对于单片机设计,其硬件电路是比较简单的,主要是解决程序设计中的问题,而程序设计是一个很灵活的东西,它反映了你解决问题的逻辑思维和创新能力,它才是一个设计的灵魂所在。

因此在整个设计过程中大部分时间是用在程序上面的。

很多子程序是可以借鉴书本上的,但怎样衔接各个子程序才是关键的问题所在,这需要对单片机的结构很熟悉。

因此可以说单片机的设计是软件和硬件的结合,二者是密不可分的。

通过这次课程设计我也发现了自身存在的不足之处,虽然感觉理论上已经掌握,但在运用到实践的过程中仍有意想不到的困惑,经过一番努力才得以解决。

这也激发了我今后努力学习的兴趣,我想这将对我以后的学习产生积极的影响。

相关文档
最新文档