缸内直喷式汽油机工作
缸内直喷技术(新技术) ppt课件

TSI
• 在国外大众的1.4T发动机上以及进口发动机,TSI代 表的是Twincharger Fuel Stratified Injection这几个单 词首字母的缩写,可以理解为双增压+分层燃烧+喷 射。
• 国内生产的1.4T发动机则省掉了机械增压和分层燃烧
,仅保留了涡轮增压和缸内直喷。
• 大众1.8/2.0TSI中的“TSI”则代表着Turbo Fuel Stratified Injection,可以理解为涡轮增压+分层燃烧+ 缸内直喷的意思,不过国内则省掉了分层燃烧。
传统多点燃油喷射
PPT课件
2
在对能源和环保要求日趋严格的今天,传统多点燃 油喷射技术已不能满足人们要求,于是更为精确的燃油
喷射技术诞生,那就是缸内直喷技术。
PPT课件
3
•
汽油机直喷技术是指发动机采取和柴油机相同的
喷射工作方式,直接向气缸内喷射汽油。因此也有人
认为汽油直喷技术就是将柴油机的形式移植到汽油发
• 稀薄燃烧是提高汽油机燃油经济性的重要手段。缸内直喷汽 油机稀薄燃烧技术可以分为均质稀燃和分层燃烧两种燃烧模 式。
PPT课件
14
在火花塞间隙周围局部形成具有良好着火 条件的较浓混合气(12~13.4),在燃烧室大 部分区域是较稀混合气,两者之间为了有利于 火焰传播,混合气浓度从火花塞开始由浓到稀 逐步过渡,这就是所谓的分层燃烧。
PPT课件
35
2、进气歧管翻板关闭时的均匀燃烧
在发动机转速低于3750 转/分 或发动机负荷低于40% 时, 进气歧管翻板是关闭的。 下部进气道被封闭,于是被吸 入的空气就会通过上部进气道 加速后呈紊流状流入燃烧室, 利于混合气的形成与雾化。
汽车发动机:发动机缸内直喷工作原理

汽车发动机:发动机缸内直喷工作原理
汽车发动机是汽车的心脏,而发动机缸内喷油技术在汽车发动机中占据了重要的位置。
那么,发动机缸内直喷工作的原理是什么呢?
发动机缸内直喷技术,又称为汽油直喷技术,是一种先进的汽车喷油技术。
该技术采用了高压喷油系统和电脑控制,实现了发动机缸内直接喷油,使汽车发动机的性能和效率得到了大幅度提升,同时也减少了污染排放。
发动机缸内直喷的工作原理可以简要概括为以下几个步骤:
第一步:高压油泵将汽油从油箱中抽取并压缩至高压状态。
第二步:高压油泵将压缩后的汽油经过高压油管送到发动机缸内的喷嘴。
第三步:电脑控制喷嘴的开闭,将汽油在缸内形成雾状。
由于发动机缸内温度和压力的高涨,汽油几乎瞬间就能被蒸发和气化,形成一个高温、高压的喷油峰值。
第四步:发动机活塞缸通过压力推动活塞向下运动,汽油燃烧,推动
活塞向上运动,完成了一次工作循环。
总体来说,发动机缸内直喷工作的过程可以看作是喷油、燃烧、推动
活塞这三个过程的不断重复。
在喷油、燃烧、推动活塞等过程中,高
压燃油能够精准地定量喷入发动机缸内,提高了发动机的功率和效率,同时也能够显著降低燃油的消耗和污染排放。
此外,发动机缸内直喷技术的应用,也促进了发动机压缩比和燃烧效
率的提高,从而增强了发动机在启动时的动力表现,使汽车更加省油、环保、安全。
因此,发动机缸内直喷技术被广泛应用于现代汽车上,
成为现代汽车零部件中不可或缺的一部分。
总之,发动机缸内直喷技术的工作原理对于现代化的汽车制造不可或缺,它通过燃油的喷射使发动机功率和效率得到巨大提升,并在减少
环境污染方面发挥了重要作用。
缸内直喷式发动机工作原理

缸内直喷式发动机工作原理缸内直喷式发动机工作原理是指燃油直接喷射到发动机气缸内进行点火燃烧的一种燃油喷射系统。
相比传统的多点喷射系统,缸内直喷式发动机具有更高的效率和更低的排放。
缸内直喷式发动机的工作原理主要可以分为四个步骤:进气过程、压缩过程、燃烧过程和排气过程。
首先是进气过程。
缸内直喷式发动机通过进气门将空气吸入气缸中。
在进气过程中,喷油嘴关闭,不进行燃油喷射。
接下来是压缩过程。
当活塞向上运动时,气缸内的空气被压缩,增加气体的压力和温度。
在压缩过程中,也不进行燃油喷射。
然后是燃烧过程。
在活塞接近顶点时,喷油嘴通过高压燃油电磁阀喷射燃油直接进入气缸内。
由于汽油的挥发性,在活塞顶点附近的高压和高温条件下,燃油快速喷雾化并与空气混合。
由于直接喷射在气缸内,燃烧更加充分,提高了燃烧效率。
最后是排气过程。
在燃烧过程完成后,活塞向下运动,将燃烧产生的高温废气通过排气门排出。
排气门打开时,喷油嘴关闭,不再进行燃油喷射。
缸内直喷式发动机的主要特点是燃油直接喷射到气缸内,与空气混合后再点火燃烧。
相比传统的多点喷射系统,它具有以下优势:1. 提高燃烧效率:燃油直接喷射到气缸内,与空气混合更加均匀,燃烧更加充分,有效提高了燃烧效率,减少了能量的损失。
2. 减少燃油消耗:由于燃烧更加充分,缸内直喷式发动机可以在相同功率输出下使用更少的燃油,减少了燃油消耗,提高了燃油经济性。
3. 降低尾气排放:缸内直喷式发动机可以更准确地控制燃油的喷射量和喷射时机,使燃烧更加充分和彻底,减少了尾气排放,降低了对环境的污染。
4. 提高动力输出:燃烧更加充分和高效,使得缸内直喷式发动机可以在相同排量下提供更大的功率输出,提高了动力性能。
总之,缸内直喷式发动机的工作原理是通过燃油直接喷射到气缸内进行充分燃烧,从而提高燃烧效率、降低燃油消耗、减少尾气排放和提高动力输出。
这种喷射技术的应用,为汽车行业带来了更高效能和更清洁环境的发动机技术。
简述缸内直喷汽油机的原理

简述缸内直喷汽油机的原理
缸内直喷汽油机是一种燃烧室内部直接喷射燃油的发动机。
它的工作原理主要包括以下几个步骤:
1. 进气阶段:汽缸内的活塞向下移动,使进气门开启,进入混合气。
此时,燃油喷射器关闭,只有空气通过进气道进入缸内。
2. 压缩阶段:活塞上升,压缩进入缸内的混合气。
这种压缩相对较高,确保了燃油完全燃烧。
3. 燃烧阶段:在活塞达到顶点的时候,燃油喷射器开始喷射燃油进入高压喷油器中,并喷射到燃烧室内。
喷油器通过压力和控制系统控制燃油的喷射量和喷射时间。
4. 排气阶段:燃烧后,气体产生高温高压,向外推动活塞下降。
此时进气门关闭,排气门开启,将燃烧后的废气排出缸外。
总体来说,缸内直喷汽油机通过直接喷射燃油进入燃烧室,使燃油可以更充分地与空气混合,提高燃烧效率和动力输出。
这种发动机具有燃油利用率高、动力强、排放少的特点,广泛应用于现代汽车。
缸内直喷式的汽油机工作原理

缸内直喷式的汽油机工作原理缸内直喷式的汽油机是一种高效的内燃机,它采用了直喷技术,能够更好地控制燃油的喷射和燃烧过程。
这种发动机结构简单,燃油的利用率高,能够在提供足够动力的同时减少尾气排放。
缸内直喷式汽油发动机的工作原理如下:1.压缩行程:在发动机的第一次行程中,活塞从上死点开始向下移动,压缩燃料和空气混合物。
在这里,燃油被喷入燃烧室的底部,然后与空气充分混合。
引入燃油的方式有两种:均质混合和分层注射。
2.点火和燃烧行程:当活塞接近下死点时,点火塞设备会在燃料喷射完成后自动点燃混合气。
点火塞会产生火花,点燃燃料和空气混合物,从而引发爆炸。
爆炸产生的高温和高压推动活塞向下运动,驱使曲轴旋转。
3.排气行程:在活塞运动向上行驶时,废气通过排气门排出。
通过排气管可以将废气导出汽车。
缸内直喷式发动机的特点是可以更好地控制燃油的喷射和燃烧过程,从而提高燃油的利用率和发动机的效率。
这是通过以下几点实现的:1.精确的燃油喷射:缸内直喷式发动机直接将燃油喷射到燃烧室内,而不是喷射到进气歧管。
这种直接喷射的方式可以更精确地控制燃油的喷射量和喷射时间,从而获得更好的燃烧效果。
2.高效的燃烧过程:由于燃油直接喷射到燃烧室内,混合气的温度和密度更高,形成更好的燃烧条件。
这种高温高压的燃烧过程可以提高燃油的利用率,并减少污染物的排放。
3.灵活的喷射方式:缸内直喷式发动机可以根据需要和条件灵活地调整喷射的方式。
根据引擎工作负荷和转速的不同,喷射可以采用均质混合和分层注射两种方式。
均质混合可以获得良好的燃烧效果,而分层注射可以提高低负荷工况下的燃油经济性。
缸内直喷式汽油发动机相比传统的多点喷射发动机具有更高的燃油利用率和更低的尾气排放。
同时,由于直喷系统更加复杂,需要更高的精确度和控制能力,因此缸内直喷式发动机的研发和制造成本也较高。
尽管如此,由于其高效节能和环保的特点,缸内直喷式发动机已经成为了主流的汽车发动机技术。
直燃机的工作原理

直燃机的工作原理引言概述:直燃机是一种常见的内燃机,其工作原理是通过燃油在气缸内燃烧产生高压气体推动活塞运动,从而驱动机械设备工作。
下面将详细介绍直燃机的工作原理。
一、燃油混合1.1 燃油喷射直燃机通过喷油器将燃油喷射到气缸内,形成可燃混合气体。
1.2 空气进气同时,空气也被吸入气缸内,与燃油混合形成可燃气体。
1.3 混合气体压缩活塞向上运动时,将混合气体压缩,增加其压力和温度,为点火创造条件。
二、点火燃烧2.1 点火系统直燃机通常采用火花塞点火系统,通过高压电流产生火花点燃混合气体。
2.2 燃烧过程一旦混合气体被点燃,燃烧迅速蔓延,产生高温高压气体推动活塞向下运动。
2.3 排气燃烧后的废气通过排气阀排出气缸,为下一次循环做准备。
三、动力传递3.1 活塞运动高温高压气体推动活塞向下运动,转动曲轴。
3.2 曲轴转动活塞的运动带动曲轴旋转,将线性运动转化为旋转运动。
3.3 输出动力曲轴通过连杆和传动装置将动力传递给机械设备,驱动其工作。
四、循环往复4.1 工作循环直燃机的工作是一个连续的循环过程,包括吸气、压缩、点火、燃烧、排气等阶段。
4.2 连续运转活塞在气缸内往复运动,不断进行工作循环,保持引擎持续运转。
4.3 节奏稳定直燃机的循环过程具有稳定的节奏,确保燃烧效率和输出功率。
五、性能调节5.1 油气比调节通过调节燃油喷射量和空气进气量,控制混合气体的油气比,影响燃烧效率。
5.2 点火时机调节点火时机可以影响燃烧的速度和效率,优化引擎性能。
5.3 输出功率通过调节燃油喷射量和点火时机等参数,调节直燃机的输出功率和燃油效率。
总结:直燃机的工作原理是通过燃油燃烧产生高压气体推动活塞运动,驱动机械设备工作。
混合气体的形成、点火燃烧、动力传递、循环往复和性能调节是直燃机工作原理的关键环节,影响着引擎的性能和效率。
深入了解直燃机的工作原理,有助于更好地维护和优化引擎性能。
摩托车用发动机的缸内直喷技术

摩托车用发动机的缸内直喷技术摩托车是一种广泛应用于日常交通和娱乐活动的交通工具。
与汽车相比,摩托车通常具有较小的尺寸和重量,因此对于发动机性能和燃油效率的要求更加严格。
为了提高摩托车的动力性能和燃油经济性,发动机技术一直在不断地创新和改进。
其中,缸内直喷技术成为摩托车工程师的一个重要研究方向。
本文将深入探讨摩托车用发动机的缸内直喷技术,包括其原理、优势和应用前景。
缸内直喷技术是一种在发动机的燃烧室内直接将燃油喷射进入缸内的燃油喷射技术。
与传统的缸外喷射技术相比,缸内直喷技术可以在燃烧室内实现更好的燃油空气混合,从而提高燃烧效率和动力输出。
它通过喷油嘴将燃油以高压喷入燃烧室内,喷油时间和喷油量可以根据发动机工况和驾驶者需求进行精确控制,从而提高燃料利用率和动力输出。
摩托车用发动机的缸内直喷技术具有许多优势。
首先,它可以提高发动机的燃烧效率。
由于燃油直接喷射到燃烧室内,燃料和空气混合均匀,燃烧过程更加充分,从而增加了动力输出和燃料经济性。
其次,缸内直喷技术可以减少尾气排放。
通过精确控制喷油量和喷油时间,缸内直喷技术可以合理调控空燃比,降低氮氧化物和颗粒物的排放。
此外,缸内直喷技术还能减少发动机的噪音和振动,提高驾驶的舒适性和稳定性。
缸内直喷技术在摩托车领域的应用前景广阔。
首先,它可以显著提高摩托车的动力性能。
由于燃油喷射更精确,燃烧效率更高,因此发动机的压缩比可以提高,进一步增加了动力输出。
其次,缸内直喷技术可以降低摩托车的燃料消耗。
通过合理的燃油喷射策略,摩托车发动机可以实现更好的燃料经济性,降低消费者的使用成本。
此外,缸内直喷技术还为摩托车的减重提供了可能。
由于燃油喷射更加准确,可以有效地减少燃油和喷油系统的重量,进一步提高了摩托车的整体性能。
然而,摩托车用发动机的缸内直喷技术在实际应用中还面临一些挑战。
首先,由于摩托车发动机通常较小且重量轻,缸内直喷技术的实现将面临更加严格的空间限制。
其次,燃油喷射的控制策略需要更加精确,以适应不同工况下的动力需求。
缸内直喷技术

2、汽车发动机新技术---缸内直喷式
近年来,当代汽车汽车飞速发展,汽车新技术不断涌现和应用,带动汽车性能不断改善。下面就现代缸内直喷式汽油机进行简单介绍。
汽油机的发展经历了100多年的漫长历史,其中具有里程碑意义的发展阶段无不是以油气混合方式和机理的变迁为标志的。
早期的化油器式汽油机依靠化油器喉口气流流速增加所产生的真空度将汽油吸出被高速进气空气流雾化以及汽油油滴本身的蒸发而与空气形成可燃混合汽。油气混合比(空燃比=进气空气质量/燃油质量)取决于化油器喉口的设计和量孔直径,负荷的调节是由节气门的开度来调节进入汽缸的油气混合汽量来实现的,因此属于混合汽外部形成的量调节方式,且没有任何反馈控制。由于汽油-空气混合汽能在相当宽的空燃比范围内点燃,这种不太精确的控制对早期汽油机的正常运行并不存在什么问题。
既然油气混合物能有如此惊人的杀伤力,那在汽车上引入显然也会获得更高的动力和更省油的表现。根据云爆弹原理,大众为高压泵设计了一个非常精巧的结构,通过进气阀的凸轮轴来为油泵提供动力,这样很好的解决了油泵和进气阀之间的正时问题,也提高了燃油效率;同时作为一个纯机械的结构,这个高压泵具备了非常高的可靠性,大众(博世)甚至还设计了一个内部保护回路防止油压过高。可惜的是,大众和博世的设计尽管确保了机械自身的可靠性,但高压燃油轨(Rail)里的高压燃料是无法保护的,为了保证发动机运转的顺畅性,燃油轨中必须保持一定的压力。这个在平时是没有问题的,问题就出在了碰撞上。当发动机受到巨大的外力撞击时,位于发动机前部的高压共轨喷射系统就成了发动机首先受到撞击的部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、故又称:“超越柴 油机的低油耗、低污 染、高功率”汽油机, 虽压缩比较高 (12~13:1),但不 易爆燃,并对汽油质 量的好坏要求不高, 这一特点是传统汽油 机所不及的优势。
4、随着汽车保有量和排放污染物的骤增,能源危机和 社会公害己成为现实,随着社会环保法规要求的提升, 缸内直喷式汽油机将成为今后普及推广的方向。
5、高压旋流式喷油器—由ECU直接用脉冲电流的宽度, 控制喷油量的多少,利用特殊的喷孔形状,向气缸内喷 出旋转的雾状燃油,与挤压涡流快速的混合,以便点火 燃烧。它没有进气管沉积油膜的缺点,又因喷油压力较 高,喷油器的自洁功能高,不易产生脏堵故障。
6、特别指出:喷油器是属于瞬时高电压和大电流“峰值 保持型”驱动方式(用100~110V和17~20A打开;又用 限流电阻以3~5A的电流,保持开启状态)。又称为,强 劲、高频、量化控制方式。喷油器可小型化,又缩短了 “无效喷射时间”,开启速度快,响应性好,计量准确。 为此,喷油器的检测方式,应使用专门的仪器(MVT-2诊 断仪),以防触电和逆变电源过载。
六、三菱车系4G6—GDI发动机故障代码表:
1、三菱系列电#—4#孔,SW—ON,故障灯即闪显ECU 代码。 2、消码—拆下保险合中ECI保险丝20秒。
• 大众集团旗下各大汽车品牌现在均采用了FSI发动 机,在国内的合资品牌上,奥迪的A4和A6、大众 的迈腾、高尔夫、斯柯达的明锐也都采用了具备 FSI燃油缸内直喷技术的发动机。 • 在大众集团的品牌优势和前期的宣传推广的影响 下,人们都会认为燃油缸内直喷技术是大众最先 发明的。 • 其实不然,最早使用这一技术的并非大众的FSI发 动机,而是日本三菱的GDI发动机。作为现在主 流的两大燃油直喷技术的代表,FSI发动机和GDI 发动机在国内的命运却是截然不同。
2、直立式进气管—产生下降大进气流,直接流 入气缸,流速快,可达40~50m/s,充气效果好。与
传统的横向进气管相比,它的进气涡流方向是相反旋 转,喷油后能在火花塞处形成浓油雾区。
3、顶面弯曲活塞—引导空气产生进气涡流和挤压高
速旋转涡流,以便形成理想地分层燃烧的可燃混合气。旋 转涡流为“正向涡流”,与传统的“逆向涡流”方向相反, 有利于混合气按浓稀方式层状分布,进行分层燃烧。
应该说明:三菱车系GDI发动机的结构特 点,除上述内容外,尚有如下特点:
(1)多采用卡门涡流式空气流量计,对进入的空气 量计量检测。 (2)采用电机驱动的智能型节气门体,装有双电位 器的加速踏板传感器(APS-1和2)和双电位器节气 门位置传感器(TPS-1和2),提高了综合控制功能, 简化了各控制系统的结构。 (3)采用了VTEC电控可变配气相位与升程的配气机 构,使汽车的动力性、经济性、净化性得到大幅度的 提高。 (4)其他控制系统与传统的电控喷油系统,包括各 种传感器,无大的结构差异,极易使汽油机结构快速 转型更新(缸盖、活塞、进气管),推广普及使用。
2、高压旋转油雾的产生—高压旋转式喷油器,在压缩冲 程的后期(此时,缸内压力为0.6~1.5Mpa),以5Mpa 的高压喷射出旋转的油雾,卷入“滚动涡流”中,迅速吸 热汽化,以层状混合状态,被卷到火花塞附近。此时,火 花塞附近为“高浓度”混合气,极易点燃,缸内的燃气呈 “稀包浓”状态(O2分子包围HC分子) ,在旋转中逐层 的剥离,并从内向外稳定地、彻底的分层燃烧。
7、高压缩比和高速涡流及涡流分层高效率燃烧的结果, 即:进气涡流、压缩涡流、燃烧涡流的综合效果,与传统 的电喷汽油机相比,输出的功率和输出扭矩提高了10%。
8、因为采用超稀薄混合气分层燃烧,使有害的NOx生成 量加大,故来采用“存储式两级三元催化器”净化方式, 使尾气在催化器中有较长的滞留时间(2s),从而使尾 气中的CO、HC、NOx成分转化还原为CO2、H20、N2无
二、缸内直喷式汽油机的主要结构:
缸内直喷式汽油机,是在传统的电控喷射系统的基础 上,改进研发的。在其他结构方面无过多的变化,只 是在可燃混合气的形成方法上和燃烧过程方面发生了 概念性的变革。为此,仅就三菱车系GDI系统的主要 结构介绍如下:
1、轨道压力传感器为ECU提供轨道压力的高低, 当压力达5Mpa时,ECU指令仃供电磁阀动作,推 开高压油泵的进油阀,使高压油泵仃止吸油而仃 供。此时,低压油泵也同步仃止供油,维持规定 的油压。
4、中小负荷工况时的喷油特点:
乘用车在市内行驶占有的时间为75%~85%,多 在中、小负荷工况下工作,应在压缩行程后期喷 油,以经济超稀薄混合气成分为主,为分层燃烧 方式。
5、大负荷工况时的喷油特点: 为了获得大负荷时的功率值(包括其他工况),应加浓 可燃混合气,以动力性为主,采用“两次喷油方式”。 第一次是在进气行程,喷入适量燃油,形成均质燃烧混 合气,此为“补救功能”;此时,还可利用燃油的汽化 热,来降低进气温度,提高充气效率。第二次是在压缩 行程的后期喷油,形成浓稀不均的层状混合气,再点火 燃烧。
因此,在大负荷工况时,一个工作循环中,喷油器发生 两次脉冲信号,脉冲宽度各不相同。 “两次喷射”的功能,也可在起动工况、急加速工况出 现,以调节空燃比A/F的大小,改善使用性能。
• 视频
6、高压缩比的实现—汽油机高功率的输出:
一是,加大进气量; 二是,提高压缩比; 三是,控制燃烧过程。 传统式的电控喷射系统,因燃油质量的制约,压缩比已难突破10: 1的大关,还需要使用辛烷值97#的汽油。而直喷式汽油机却能突 破这个界限值,使压缩比提高到12~13:1。且对汽油的辛烷值 无过高要求。究其原因如下: (1)因吸入的空气量大幅度增加,进气冷却效果较好。因而, 使对“爆燃”的抑制作用也加大。 (2)直接喷入气缸内的超稀薄混合气燃料的汽化热,可降低气 体温度和增大空气密度的目的,因而不易产生“爆燃”
所谓“无效喷射时间”—是因为电磁线圈有一定的阻抗, 故开启时间较Tr管导通时间迟后,该时间无燃油喷出, 故针阀升起和座落与喷油脉冲宽度并不吻合,故而需要 改善。
三、缸内直喷式汽油机的工作原理:
1、气缸内涡流的运动—在进气过程中,通过“直立 式进气管”,在气缸吸力的作用下,产生强大的下降 气流,使充气效率得到提高。又在“顶面弯曲活塞” 的作用下,形成比传统汽油机更强大的“滚动涡流”。 这个滚动涡流,将压缩后期喷射出的旋转油雾,带到 燃烧室中央的火花塞附近,及时点火燃烧,这是一种 革新手段。
我国上海大众和一 汽大众已引进生产 了“斯克达-明锐” (SKODA-Octavia1.8T-FSI)和“迈腾” (Magotan-1.8T-FSI) 缸内直喷式汽油机 乘用车,己经投入 市场。
缸内直喷式汽油机,简称:GDI系统 (Gasoline Direct Injection);又因为燃油 是分层燃烧,又称:FSI系统(Fuel Stratified Injection)。 传统式的电喷汽油机,是将汽油 喷射在进气门外侧的进气歧管中,在进气过程 和压缩过程中,利用时间和空间的混合方式, 完成可燃混合气的形成,再点火燃烧作功。
四、三菱车系的两种汽油 机型的速度特性比较—
汽油机的速度特性,是在一定的 节气门开度下,功率Pe、扭矩 Me、油耗ge等参数,随转速变 化的规律,它是衡量汽油机动力 性、经济性好坏的重要指标。 注—扭矩曲线呈二次弯曲状, 是可变配气相位机构投入工作造 成的结果。
五、三菱车系的两种汽油机型主要结构 差异比较:
“稀包浓”的超稀薄的混合气,空燃比A/F可达30~40: 1,与传统的汽油机相比,节油率可达40%,可使排 气中的CO、HC、NOx等有害物质大幅度降低。它与 气缸壁间形成了绝热层,提高了热效率,使功率提高, 油耗降低。
3、起动性能的提高:
因燃油为直接喷入气缸,无燃油的粘结损耗,又因火花 塞处为高浓度混合气,与传统的均质混合方式相比,起 动性能得到提高,发动机在1~2个循环,即可起爆运转。 而传统的均质混合发动机,需要十几个循环,才能起爆 运转。
2、它抛弃了传统的利用空间和时间的混合方式,采用缸 内强涡流运动混合方式,在压缩冲程的后期,和柴油机一 样,直接向缸内喷射燃油,实现“质的调节”,它对燃油 的质量要求不高,摆脱了汽油质量对压缩比提高的制约。 相继点火后,实现分层燃烧,利用A/F=30~40:1的超稀 薄混合气稳定燃烧,极大的改善了汽油机的动力性、经济 性、净化性。
缸内直喷式汽油机(GDI ) 工作原理
•
随着近些年油价的不断飙升,汽车日常使用 中的油耗问题也愈发突出,对于家用经济型轿车 来说更是如此,各大汽车生产厂也是在油耗上大 做文章。
• 现在,以丰田、本田、日产为主的日系车在油耗 表现上更是让欧美的各大汽车生产厂自愧不如。 为了回应日系车的强大攻势,欧美的各汽车厂商 也纷纷深挖自己的发动机的潜能,采用新技术最 大限度的为车主节省在燃油上的支出。
•
• 在这一方面,德国 大众率先做出了表 率,大众公司对自 己旗下的新车型所 配用的发动机开始 采用FSI燃油缸内 直喷技术,保时捷、 奥迪、大众、斯柯 达的新车均采用了 这一技术。
大众研发燃油缸内直喷技术意义
• 实际上,汽油缸内直喷技术源于柴油发动机的喷油技术, 为了能使汽油发动机能像柴油发动机那样具备较高的燃烧 效率,使燃油燃烧更充分,从而达到尽可能的节省燃油的 目的。 • 汽油缸内直喷技术是实现汽油在气缸内分层燃烧的一种特 有技术,而汽油分层燃烧又是实现汽油稀薄燃烧的手段。 • 所谓稀薄燃烧就是让发动机运转时的空燃比低于理论空燃 比,采用较少的燃油量,使燃油充分燃烧,并将废气中的 可燃气体也进行燃烧,将其转化为热能,降低尾气中有毒 气体的排放,提高发动机的燃烧效率,达到节省燃油的目 的。大众集团为了使其发动机做到稀薄燃烧,实现分层燃 烧的技术要求,达到节省燃油降低有害气排放的目的,因 此采用了燃油缸内直喷技术。
害气体,并加装温度传感器监控。
再者,在中小负荷工况,使EGR系统投入工作,并采 用较大的EGR率(传统式电喷系统为5%~15%,而 GDI系统为20%),并采用专门的双级存储式的三元 催化器TWC,进行废气净化处理。