位似的性质

合集下载

初中数学 什么是位似

初中数学 什么是位似

初中数学什么是位似位似是初中数学中的一个重要概念,它是指由两个图形通过平移、旋转、翻转或者这些变换的组合而得到的相似图形。

在本文中,我们将详细介绍位似的定义、性质以及一些例子来帮助理解这个概念。

首先,让我们来定义位似。

如果有两个图形,它们的形状和大小是相似的,但位置可能不同,那么我们可以说这两个图形是位似的。

换句话说,位似是指通过平移、旋转、翻转或者这些变换的组合,将一个图形变换为另一个图形。

接下来,我们来讨论位似的性质。

位似具有以下性质:1. 形状相似:位似图形的形状是相似的,即它们的对应角相等,对应边的比例相等。

2. 大小相似:位似图形的大小是相似的,即它们的对应边的比例是相等的。

3. 位置可能不同:位似图形的位置可能不同,它们可以通过平移、旋转、翻转或者这些变换的组合来得到。

4. 变换保持相似性:位似图形之间的变换(如平移、旋转、翻转)保持它们的相似性,即变换前后仍然是位似图形。

让我们来看一些例子来帮助理解位似。

例子1:考虑两个三角形ABC和DEF,其中∠A = ∠D,∠B = ∠E,∠C = ∠F。

如果我们通过将三角形ABC沿顺时针方向旋转90度,并将它平移到DEF的位置,那么我们可以说三角形ABC和DEF是位似的。

它们具有相似的形状和大小,但位置可能不同。

例子2:考虑一个正方形和一个矩形,它们的边长比例是相等的,但是它们的形状和位置不同。

通过将正方形进行翻转或者旋转,我们可以得到一个与原正方形位似但位置不同的矩形。

例子3:考虑一个正三角形和一个等腰梯形,它们的形状和位置都不同,但是它们的对应边的比例相等。

通过将正三角形进行翻转或者旋转,我们可以得到一个与原正三角形位似但位置不同的等腰梯形。

通过这些例子,我们可以看到位似的性质和应用。

位似可以帮助我们在研究图形的形状和大小时,通过变换来得到相似的图形,从而简化问题的求解。

此外,位似也可以帮助我们理解和应用其他几何概念,如相似三角形、比例关系等。

位似图形及其性质

位似图形及其性质
平面上一圆和一定点O,三种情况:点在圆外,圆上,圆内。
圆上任取一点P与定点O连线,在OP线段上取点Q,使OQ=a×OP(a是一个常数),当P点取遍圆周,得到无数个符合条件的点Q,所有这些点形成的图形是什么呢?
这样的任意对应的三角形都相似,从而任意的曲线形都相似,如果下面的是圆,那么上面的图形也是圆。
该原理为祖暅原理提供了充分的证据!
上下平行的图形或几何体
平行投影
仿射几何学(affine geometry)是几何学的一个分支。属于高等数学的一种。主要应用于测量,建筑,摄影等等。
若一个图形具有某种性质或者某个量,在平行射影下,如果不变,称这个性质为仿射不变性质,这个量称为仿射不变量。经过仿射对应它们也是不变的。同素性、结合性都是仿射不变性质(也就是说,仿射对应把共点的线变成共点的线,把共线的点变成共线的点)。平行四边形在仿射对应下的象还是平行四边形。
位似图形(中心投影)
把幻灯片上的图形放大到屏幕上,形成的新图形和原图形就是典型的位似图形。
位似图形的任意一对对应点与位似中心在同一直线上,它们到位似中心的距离之比等于相似比。
同侧的位似(两者在位似中心的同一侧)
异侧的位似(位似中心在两图像之间)
性质
1.位似图形对应线段的比等于相似比。
2.位似图形的对应角都相等。
3.位似图形对应点连线的交点是位似中心。
4.位似图形面积的比等于相似比的平方。
5.位似图形高、周长的比都等于相似比。
6.位似图形对应边互相平行或在同一直线上。
在平面上由O点出发,作射线OK,交平面上的正方形ABCD与点K,取点K1使OK1=1.7OK,如此任意、无限操作,在新作射线上所取的点形成一个新图形,这个图形将与原图形——正方形ABCD相似。

位似图形的定义及性质

位似图形的定义及性质

位似图形的定义及性质什么是位似图形?位似图形(IsomorphicGraphs)是由同一类图形组成的图,它们的全部节点及边都相同,但是它们的外形可能不太一样。

位似图形的定义主要指的是一种同构的连通图,它们之间的节点和边都是相似的。

准确来说,这些图形之间的数量和结构是相同的,只是它们的外形不同。

位似图形的研究可以追溯到1890年,当时首先由荷兰数学家安德森威尔金斯提出。

它是一种独特的结构,可以通过某种形式从一个图中转换到另一个图,而且,只要这两个图是位似图形,它就能够完全保持它们之间的联系。

从数学上来看,位似图形可以被表示为一对有向图。

它们中可能包含一个或多个节点和一个或多个边,这些边可以有不同的方向。

两个位似图形的关系可以用一个分析函数来表示,这个函数的输入是一对图,而输出是一个布尔值,如果给定的两个图形是位似图形,它就会返回一个真值,反之亦然。

位似图形的性质是相当有用的,特别是在研究图论的早期,位似图形的研究有助于数学家们理解图论中的基本概念以及图结构之间的联系。

它也帮助人们发现更多有关任意给定图结构的细节,例如有关它的节点数量、边数量、节点之间的关系等等。

位似图形的研究也是一个重要的工具,它帮助数学家们研究不同图论结构之间的关系。

例如,研究人员可以比较两个不同的图形,看看它们之间有何不同,从而发现它们之间的联系,从而给出更深入的结论。

另外,位似图形在算法和机器学习方面也有很多应用,它们可以帮助计算机程序发现图形之间的关系,并找出有用的特征以及对它们进行分类。

有时,它们甚至可以帮助计算机解决复杂的问题,比如解决最短路径问题。

总的来说,位似图形的定义和性质有助于数学家们更好地理解图结构之间的联系,从而发现更多有用的信息。

它们也有许多应用,例如在计算机程序,机器学习,以及算法研究方面。

图形的位似—知识讲解

图形的位似—知识讲解

图形的位似--知识讲解【学习目标】1、了解位似多边形的概念,知道位似变换是特殊的相似变换,能利用位似的方法,将一个图形放大或缩小;2、能在同一坐标系中,感受图形放缩前后点的坐标的变化. 【要点梳理】要点一、位似多边形1.位似多边形定义:如果两个相似多边形任意一组对应顶点所在的直线都经过同一个点O,且每组对应点与点O 点的距离之比都等于一个定值k,例如,如下图,OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.要点诠释:位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.2.位似图形的性质:(1)位似图形的对应点相交于同一点,此点就是位似中心;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.3.平移、轴对称、旋转和位似四种变换的异同:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的;而位似变换之后图形是放大或缩小的,是相似的.4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接各对应点.要点诠释:位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.要点二、坐标系中的位似图形在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为|k|.要点诠释:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标等于原来点的坐标乘以(或除以)k或-k.【典型例题】类型一、位似多边形1.下列每组的两个图形不是位似图形的是().A. B. C. D.【思路点拨】根据位似图形的概念对各选项逐一判断,即可得出答案.【答案】D【解析】解:对应顶点的连线相交于一点的两个相似多边形叫位似图形.据此可得A 、B 、C 三个图形中的两个图形都是位似图形; 而D 的对应顶点的连线不能相交于一点,故不是位似图形. 故选D .【总结升华】位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点.举一反三【变式】在小孔成像问题中, 根据如图4所示,若O 到AB 的距离是18cm ,O 到CD 的距离是6cm ,则像CD 的长是物AB 长的 ( ).A. 3倍B.21C.31 D.不知AB 的长度,无法判断【答案】C2. 利用位似图形的方法把五边形ABCDE 放大1.5倍.A B DE【答案与解析】即是要画一个五边形A ′B ′C ′D ′E ′,要与五边形ABCDE 相似且相似比为1.5.画法是:1.在平面上任取一点O.2.以O 为端点作射线OA 、OB 、OC 、OD 、OE.3.在射线OA 、OB 、OC 、OD 、OE 上分别取点A ′、B ′、C ′、D ′、E ′,使OA ′:OA = OB ′:OB =OC ′:OC =OD ′:OD =OE ′:OE =1.5.4.连结A ′B ′、B ′C ′、C ′D ′、D ′E ′、E ′A ′.这样:A ′B ′AB =B ′C ′BC =C ′D ′CD =D ′E ′DE =A ′E ′AE=1.5. 则五边形A ′B ′C ′D ′E ′为所求. 另外一种情况,所画五边形跟原五边形分别在位似中心的两侧.【总结升华】由本题可知,利用位似的方法,可以把一个多边形放大或缩小.举一反三【变式】在已知三角形内求作内接正方形.A 1B 1C 1D 1E 1【答案与解析】作法:(1)在AB 上任取一点G ′,作G ′D ′⊥BC;(2)以G ′D ′为边,在△ABC 内作一正方形D ′E ′F ′G ′;(3)连接BF ′,延长交AC 于F ;(4)作FG∥CB,交AB 于G ,从F 、G 分别作BC 的垂线FE , GD; ∴四边形DEFG 即为所求.类型二、坐标系中的位似图形B C3.(优质试题•漳州)如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.(1)在图中画出四边形AB′C′D′;(2)填空:△AC′D′是三角形.【思路点拨】(1)延长AB到B′,使AB′=2AB,得到B的对应点B′,同样得到C、D的对应点C′,D′,再顺次连接即可;(2)利用勾股定理求出AC′2=42+82=80,AD′2=62+22=40,C′D′2=62+22=40,那么AD′=C′D′,AD′2+C′D′2=AC′2,即可判定△AC′D′是等腰直角三角形.【答案与解析】解:(1)如图所示:(2)∵AC′2=42+82=16+64=80,AD′2=62+22=36+4=40,C′D′2=62+22=36+4=40,∴AD′=C′D′,AD′2+C′D′2=AC′2,∴△AC′D′是等腰直角三角形.故答案为:等腰直角.【总结升华】本题考查了作图﹣位似变换.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.同时考查了勾股定理及其逆定理等知识.熟练掌握网格结构以及位似变换的定义是解题的关键.4.(优质试题春•威海期末)如图△ABC的顶点坐标分别为A (1,1),B(2,3),C(3,0).(1)以点O为位似中心画△DEF,使它与△ABC位似,且相似比为2.(2)在(1)的条件下,若M(a,b)为△ABC边上的任意一点,则△DEF的边上与点M对应的点M′的坐标为.【思路点拨】(1)把点A、B、C的横、纵坐标都乘以2可得到对应点D、E、F 的坐标,再描点可得△DEF;把点A、B、C的横、纵坐标都乘以﹣2可得到对应点D′、E′、F′的坐标,然后描点可得△D′E′F′;(2)利用以原点为位似中心的位似变换的对应点的坐标特征求解.【答案与解析】解:(1)如图,△DEF和△D′E′F′为所作;(2)点M对应的点M′的坐标为(2a,2b)或(﹣2a,﹣2b).故答案为(2a,2b)或(﹣2a,﹣2b).【总结升华】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.举一反三:【变式】如图,将△AOB中各顶点的纵坐标,横坐标分别乘-1,•得到的图形与原图形相比有什么变化?作出所得的图形,这个过程可以看作是一个什么图形变换?【答案】解:图形的形状和大小都没有变化;可以看作是△AOB绕O•点按逆时针方向旋转180°得到的.。

位似图形精品课件

位似图形精品课件

THANKS
感谢观看
相似多边形位似
总结词
多边形位似是指两个多边形在平面上 以相同的方向和比例放大或缩小,从 而得到的两个位似多边形。
详细描述
多边形位似的判断条件与四边形相似, 需要满足对应角相等和对应边成比例。 此外,还需要考虑多边形的边数和顶 点数是否相等。
相似圆位似
总结词
圆位似是指两个圆在平面上以相同的方向和比例放大或缩小,从而得到的两个位似圆。
图形。
利用位似变换作图
要点一
总结词
通过位似变换,可以将一个图形放大或缩小,从而得到另 一个图形。
要点二
详细描述
位似变换是一种常见的几何变换,它可以将一个图形放大 或缩小,同时保持其形状不变。利用这个变换,我们可以 方便地作出各种不同大小的位似图形。
利用位似图形构造复杂图形
总结词
通过组合和拼接位似图形,可以构造出复杂 的几何图形。
强化位似图形的应用能力培养
总结词
提升应用能力
详细描述
位似图形的应用是教学的重点和难点,教师需要结合实 际问题,引导学生运用位似图形的知识解决实际问题。 可以通过设计案例分析、数学建模等方式,提高学生的 应用能力。
提倡探究学习和合作学习相结合的教学方式
总结词
创新教学方式
详细描述
探究学习和合作学习是促进学生主动学习和合作学习 的有效方式。教师可以设置探究性问题,引导学生自 主探究,同时组织学生进行合作学习,通过交流、讨 论、分享等方式,促进学生对位似图形知识的深入理 解和掌握。
详细描述
位似图形是研究图形相似性的基础,它们在几何学中扮演着重要的角色。通过研 究位似图形的性质和特点,可以深入了解图形的相似性,进而解决各种几何问题 。位似图形在几何学中具有广泛的应用,如建筑设计、地图绘制等领域。

图形的位似

图形的位似

图形的位似要点一、位似多边形1.位似多边形定义:如果两个相似多边形任意一组对应顶点所在的直线都经过同一个点O,且每组对应点与点O 点的距离之比都等于一个定值k,例如,如下图,OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.要点诠释:位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.2.位似图形的性质:(1)位似图形的对应点相交于同一点,此点就是位似中心;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.3.平移、轴对称、旋转和位似四种变换的异同:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的;而位似变换之后图形是放大或缩小的,是相似的.4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接各对应点.要点诠释:位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.要点二、坐标系中的位似图形在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k (k ≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为|k |.要点诠释:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标等于原来点的坐标乘以(或除以)k 或-k.一、典型例题类型一、位似多边形1. 下列每组的两个图形不是位似图形的是( ).A. B. C. D.举一反三【变式】在小孔成像问题中, 根据如图4所示,若O 到AB 的距离是18cm ,O 到CD 的距离是6cm ,则像CD 的长是物AB 长的 ( ).A. 3倍B.21 C.31 D.不知AB 的长度,无法判断2. 利用位似图形的方法把五边形ABCDE 放大1.5倍.举一反三【变式】在已知三角形内求作内接正方形.类型二、坐标系中的位似图形3.如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.(1)在图中画出四边形AB′C′D′;(2)填空:△AC′D′是三角形.4.如图△ABC的顶点坐标分别为A(1,1),B(2,3),C(3,0).(1)以点O为位似中心画△DEF,使它与△ABC位似,且相似比为2.(2)在(1)的条件下,若M(a,b)为△ABC边上的任意一点,则△DEF的边上与点M对应的点M′的坐标为.举一反三:【变式】如图,将△AOB中各顶点的纵坐标,横坐标分别乘-1,•得到的图形与原图形相比有什么变化?作出所得的图形,这个过程可以看作是一个什么图形变换?二、巩固练习一. 选择题1.下面给出了相似的一些命题:(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似;其中正确的有().A.2个 B.3个 C.4个 D.5个2.下列说法错误的是().A.位似图形一定是相似图形.B.相似图形不一定是位似图形.C.位似图形上任意一对对应点到位似中心的距离之比等于相似比.D.位似图形中每组对应点所在的直线必相互平行.3.下列说法正确的是() .A.分别在ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,则ADE是ABC放大后的图形.B.两位似图形的面积之比等于相似比.C.位似多边形中对应对角线之比等于相似比.D.位似图形的周长之比等于相似比的平方.4.如图,在平面直角坐标系中,已知点A(﹣3,6),B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)5. 下列命题:①两个正方形是位似图形;②两个等边三角形是位似图形;③两个同心圆是位似图形;④平行于三角形一边的直线截这个三角形的两边,所得的三角形与原三角形是位似图形.其中正确的有( ).A.1个B.2个C.3个D.4个6.如果点C为线段AB的黄金分割点,且AC>BC,则下列各式不正确的是().A. AB:AC=AC:BCB. AC=512AB-C.AB=512AC+D.BC≈0.618AB7.已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=().A. 512-B.512+C.3D.2二.填空题8. 如果两个位似图形的对应线段长分别为3cm和5cm,且较小图形周长为30cm,则较大图形周长为__________.9.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心.若AB=1.5,则DE=.10.如图,以点O为位似中心,将五边形ABCDE放大后得到五边形A B C D E''''',已知OA=10cm,OA′=20cm,则五边形ABCDE的周长与五边形A B C D E'''''的周长的比值是__________.11. △ABC中,D、E分别在AB、AC上,DE∥BC,△ADE是△ABC缩小后的图形.若DE把△ABC的面积分成相等的两部分,则AD:AB=________.12. 把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为____________________.13.如图,以O为位似中心,将边长为256的正方形OABC依次作位似变换,经第一次变化后得正方形OA1B1C1,其边长OA1缩小为OA的,经第二次变化后得正方形OA2B2C2,其边长OA2缩小为OA1的,经第,三次变化后得正方形OA3B3C3,其边长OA3缩小为OA2的,…,依次规律,经第n次变化后,所得正方形OA n B n C n的边长为正方形OABC边长的倒数,则n=.14. 如图,△ABC中,AB=AC=4,∠BAC=36°,∠ABC的平分线与AC边的交点D为边AC的黄金分割点(AD>DC),则BC=______________.三.综合题15.如图,D、E分别AB、AC上的点.(1)如果DE∥BC,那么△ADE和△ABC是位似图形吗?为什么?(2)如果△ADE和△ABC是位似图形,那么DE∥BC吗?为什么?16.如图,F在BD上,BC、AD相交于点E,且AB∥CD∥EF,(1)图中有哪几对位似三角形,选其中一对加以证明;(2)若AB=2,CD=3,求EF的长.17. 如图1,矩形ODEF的一边落在矩形ABCO的一边上,并且矩形ODEF∽矩形ABCO,其相似比为1:4,矩形ABCO的边AB=4,BC=43.(1)求矩形ODEF的面积;(2)将图1中的矩形ODEF绕点O逆时针旋转一周,连接EC、EA,△ACE的面积是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,请说明理由.。

初中位似教案

初中位似教案教学目标:1. 让学生理解位似的概念,掌握位似的基本性质。

2. 培养学生运用位似知识解决实际问题的能力。

3. 培养学生合作交流、归纳总结的能力。

教学内容:1. 位似的概念及其性质2. 位似图形的画法3. 位似在实际问题中的应用教学重点:位似的概念、位似的基本性质教学难点:位似图形的画法、位似在实际问题中的应用教学过程:一、导入(5分钟)1. 利用多媒体展示一些生活中的相似图形,引导学生发现相似图形的特征。

2. 提问:什么是相似图形?相似图形有哪些性质?二、新课讲解(15分钟)1. 引入位似的概念:在平面内,如果两个图形的形状相同,但大小不一定相同,那么这两个图形称为位似图形。

2. 讲解位似的基本性质:(1)位似图形的大小不同,但形状相同。

(2)位似图形的对应边成比例。

(3)位似图形的角度相等。

3. 举例说明位似图形的性质,引导学生理解并掌握。

三、课堂练习(10分钟)1. 让学生独立完成教材中的练习题,巩固位似的概念和性质。

2. 教师选取部分学生的作业进行点评,指出优点和不足。

四、位似图形的画法(10分钟)1. 讲解位似图形的画法步骤:(1)确定位似中心。

(2)画出位似图形的大致形状。

(3)按照比例关系,调整图形的大小。

(4)检查位似图形的形状和大小是否符合要求。

2. 让学生动手画出一个位似图形,并讲解画法。

五、位似在实际问题中的应用(10分钟)1. 举例讲解位似在实际问题中的应用,如地图、设计图案等。

2. 让学生思考:位似在现实生活中有哪些应用?六、课堂小结(5分钟)1. 让学生总结本节课所学的内容,巩固知识点。

2. 教师点评本节课学生的表现,鼓励优秀学生,帮助后进生。

七、作业布置(5分钟)1. 让学生完成教材后的练习题。

2. 布置一道实际问题,让学生运用位似知识解决。

教学反思:本节课通过讲解位似的概念、性质和画法,以及实际应用,使学生掌握了位似知识。

在教学过程中,注意调动学生的积极性,让学生参与课堂讨论,提高学生的学习兴趣。

位似的定义及性质

位似的定义及性质位似是一种从源头上以不规则的形式传播不同出处的资讯的现代化的营销策略。

它被用于通过社交媒体和其他媒体传播有关产品和服务的信息,以帮助企业获得口碑和营销结果。

位似策略也被称为“病毒式营销”,其目标是将位似传播到媒体平台中,以实现最大的影响力。

一般来说,位似是一种让消费者感兴趣的营销策略,而分发位似内容时,管理者应该注意保持所传达的内容一致,同时也要考虑使用最新主题。

同时,位似还可以借助社交媒体来提高消费者的参与度,以及实现消费者和企业之间的长期关系。

在实践中,位似有多种形式,如:1.交网络位似是通过社交网络实现的位似。

它可以通过发布用户定制的内容来推动潜在客户的参与度,从而实现营销目标。

2.容营销位似是建立在分发内容和回应用户反馈的基础上形成的位似策略。

它可以帮助品牌创建深入的影响,并有助于形成持久的品牌形象。

3.频位似体视觉位似可以帮助把具有吸引力的影像、视频等内容分发到社交媒体平台上,从而提升口碑和实现营销目标。

4.件位似件位似是一种能够帮助品牌与客户建立长期关系的有效位似策略。

它通过发送有吸引力的邮件,将用户引导到品牌网站,从而达到营销目标。

此外,位似还能够激发客户端有创新精神,创造出新奇而有吸引力的故事或内容,可以提高客户端的参与,从而实现营销目标。

此外,位似也有许多优势,如:1.资回报率高位似的策略的投资回报率显著高于传统的投放媒体策略,可以帮助企业节省成本。

2.展社会联系位似策略可以帮助产品和服务的使用者与企业之间建立紧密的社会联系,从而为公司在市场上获得更多的竞争优势。

3.强关系位似策略能够帮助公司和客户之间建立更强有力的长期关系,从而有利于提高公司的口碑。

4.加曝光度位似策略可以大大增强产品和服务的曝光度,从而有助于提升公司的口碑和销量。

总而言之,位似是一种有效的营销手段,能够帮助企业实现营销目标,建立长期的客户关系,以及提高产品的曝光度和口碑。

因此,企业可以适当地使用位似策略,以实现营销和商业成功。

位似

位似一、知识要点1、位似的概念如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行,那么这两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。

2、性质(1)位似图形的对应点和位似中心在同一直线上,它们到位似中心的距离之比等于相似比。

①位似多边形的对应边平行或共线。

②位似可以将一个图形放大或缩小。

③位似图形的中心可以在任意的一点,不过位似图形也会随着位似中心的位变而位变。

(2)根据一个位似中心可以作两个关于已知图形一定位似比的位似图形,这两个图形分布在位似中心的两侧,并且关于位似中心对称。

(3)在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.注意:1、位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;2、两个位似图形的位似中心只有一个;3、两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;4、位似比就是相似比.利用位似图形的定义可判断两个图形是否位似;5、平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形位似。

1.位似图形上某一对对应顶点到位中心的距离分别为 5 cm和15 cm,则它们的相似比为_________2.如图27-33,蜡烛与成像板之间的距离为3m,小孔纸板距蜡烛1m,若蜡烛AB长20cm,则所成的像长为_________cm.图27-333.四边形ABCD和四边形A'B'C'D'是位似图形,O为位似中心,若OA∶OA',=1∶2,那么AB∶A'B'=________,S四边形ABCD∶S四边形A'B'C'D'=________.4.如图27-34所示,点O是等边△PQR的中心,P,Q',R'分别是OP、OQ、OR的中点,则△P'Q'R'与△PQR是________,点O是_____,相似比是________.图27-34 图27-355.如图27-35所示,矩形AOBC与DOEF是位似图形,且O为位似中心,相似比为1∶2,若A(0,1)、B(2,0),则F点的坐标为________.6.下列两个图形不是位似图形的是( )7.把△ABC三点坐标A(0,1)、B(2,0)、C(3,2)分别乘以3得△A'B'C',的坐标A',(0,3)、B'(6,0)、C(9,6),那么△ABC与△A'B'C'是______图形,位似中心是_______,相似比为________8.把△ABC三点坐标A(0,1)、B(2,0)、C(3,2)分别乘以-3,得△A'B'C',的坐标A'(0,-3)、B(-6,0)、C'(-9,-6),那么△A BC与△A'B'C'是_____图形,位似中心是_____,相似比为_____.9.如图27-36所示,按如下方法将△ABC 的三边缩小为原来的21,任取一点O ,连AO 、BO 、CO ,并取它们的中点D 、E 、F ,则下列说法: (1)△ABC 与△DEF 是位似形. (2)△ABC ∽△DEF.(3)△ABC 与△DEF 周长的比为2∶1(4)△ABC 与△D EF 面积的比为4∶1.其中正确的个数是( )图27-36A.1B.2C.3D.410.图27-36中,△ABC 与△DEF 是位似图形.那么,DE 与AB 平行吗?为什么?EF 与BC 呢?DF 与AC 呢?11.如图27-37所示,O 为四边形ABCD 上一点,以O 为位似中心,将四边形ABCD 放大为原来的2倍.12.如图27-38所示,O 为位似中心,将△ABC 缩小为原来的32(要求对应顶点在位似中心的同旁).13.如图27-39所示,O 为位似中心,将△ABC 放大为原来的2倍(要求对应顶点在位似中心的两旁).图27-37 图27-38 图27-3914.有一个正六边形,将其按比例缩小,使得缩小后的正六边形的面积为原正六边形面积的31,已知原正六边形一边为3,则后来正六边形的边长为( ) A.9 B.3 C.3 D.332 15.在任意一个三角形内部,画一个小三角形,使其各边与原三角形各边平行,则它们的位似中心是( )A.一定点B.原三角形三边垂直平分线的交点C.原三角形角平分线的交点D.位置不定的一点16.下列说法正确的个数是( )①位似图形一定是相似图形;②相似图形一定是位似图形;③两个位似图形若全等,则位似中心在两个图形之间;④若五边形ABCDE与五边形A'B'C'D'E'位似,则其中△ABC与△A'B'C'也是位似的且相似比相等.A.1个B.2个C.3个D.4个17.若两个图形位似,则下列叙述不正确的是( )A.每对对应点所在的直线相交于同一点;B.两个图形上的对应线段之比等于相似比C.两个图形上对应线段必平行D.两个图形的面积比等于相似比的平方18.如图27-40所示,在直角坐标系中,A(1,2),B(2,4),C(4,5),D(3,1)围成四边形ABCD.作出四边形ABCD的位似图形,使得新图形与原图形对应线段的比为2∶1,位似中心是坐标原点.图27-4019.(1)如图27-41所示,作山四边形ABCD的位似图形A'B'C'D',使四边形ABCD与四边形A'B'C'D'的相似比为2∶1;(2)若已知AB=2cm,BC=3cm,∠A=60°,AB⊥BC,CD⊥DA,求四边形A'B'C'D'的面积.图27-4120.正方形ABCD各顶点的坐标分别为A(1,1),B(-1,1),C(-1,2),D(1,2),以坐标原点为位似中心,将正方形ABCD放大,使放大后的正方形A'B'C'D'的边是正方形边的3倍。

位似图形的定义及性质

位似图形的定义及性质
位似图形是一种强大的几何图形,由它可以刻画出许多几何概念,从而使得几何知识更加容易理解和运用。

它已经被广泛应用于许多领域,如研究物理学,以及一些工程领域。

那么,位似图形究竟是什么?以及位似图形的性质有哪些?
一、位似图形的定义
位似图形是一种可以用来描述几何形状的图形。

它被称为位似图形,是因为它由一系列的位置感知的图案组成,它们几乎可以完全重叠,而不会改变它们的形状,大小以及位置。

例如,圆形是一个最常见的位似图形,它是一个由很多小的圆点组成,而这些小圆点几乎可以重叠并且完全相同。

二、位似图形的性质
1、符号化:位似图形能将复杂的空间状态用简单的符号来表示,从而使得几何知识更加容易理解和运用。

2、视觉感知:位似图形的形状和大小可以在视觉上进行感知,
可以更加直观地感受几何状态。

3、精确度高:位似图形可以很好地反映几何形状的精确度,它
可以准确地反映几何的形状和大小,使得几何知识更加有效。

4、信息量大:位似图形能够精确表达出几何形状的详细信息,
能够体现出几何形状的复杂性并反映出它在特定空间位置的信息。

由以上性质可知,位似图形是一种获取几何信息的有效工具,能够较为准确地描述出几何形状的精细细节。

它既适用于描述几何图形,
也可以用来描述物理、空间等属性。

位似图形性质的学习,可以帮助我们更好地理解几何知识,更好地应用几何知识。

综上所述,位似图形是一种具有符号化、视觉感知、精确度高、信息量大等性质的一种几何图形。

它为学习和应用几何知识提供了一个良好的视角,可以让我们更加清晰地感受到几何形状的变化,辅助我们更好地理解和应用几何知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《位似》教学设计
一、内容和内容解析
(一)内容
位似图形的概念,位似图形的性质,位似图形的画法.
(二)内容解析
位似是在学生已经掌握了相似的相关知识,积累了一定的图形研究方法的基础上,进行探究的.位似就是具有特殊位置关系的相似,是对相似的纵深挖掘与提升,可以让学生进一步体会相似的应用价值和丰富内涵.
根据给出的一系列图形,引导学生观察这些图形的共同特点,从而归纳出位似图形的概念和性质.通过归纳给出图形的共同特点,得出位似图形的概念,体现了研究几何问题的一般方法.对于图形的概念学习,尤其要注重概念的生成过程和基本含义.而利用作位似图形的方法,将一个图形放大或缩小,本质上是位似图形性质的应用,它也是一个集动手与动脑于一体的活动.
二、目标和目标解析
(一)教学目标
1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.
(二)目标解析
1.通过展示生活中的相似图形,引导学生观察图形的变化情况,继而产生位似图形.学生能说明相似与位似图形的联系和区别,并通过观察、归纳,掌握位似图形的性质;2.学生通过对作图方法的模仿和归纳,总结出作位似图形的方法和步骤,并能够利用作位似图形的方法将一个图形放大或缩小.
三、教学问题诊断分析
位似是相似的延续,学生已经学习了相似的相关知识,对图形已经有了丰富的认知基础,教学中通过实际生活中的图形引入,对位似图形有一个直观的认识,同时也体现了位似知识存在的必要性,增强学习的兴趣和信念.本节教学中应该注重学生自我动手操作能力的培养,使学生重视作图的准确性和规范性.
在形成位似图形的概念,探索位似图形的性质过程中,强调讨论和探究,提高学生分析问题、解决问题、发现和创新的能力,对初三学生是必须的,也是适可的.
本课的教学重点是位似图形的概念,位似图形的作图,以及位似与相似的关系.
教学难点是位似图形的准确作图,动手能力的落实.
四、教学过程设计
(一)创设情境,引入新知
位似图形的概念
问题1 在日常生活中,我们经常见到下面所给的这样一类相似的图形,他们有什么特征?
师生活动:教师展示图片,提出问题.学生观察、欣赏图形.
设计意图:教师通过展示的图片调动学生的注意力,激发起好奇心和求知欲.使学生充分感知位似,欣赏位似图形.
问题2 下列图形中,每个图中的四边形ABCD和四边形A′B′C′D′都是相似图形.分别观察这五个图,你发现每个图中相似图形有哪些共同特征?
师生活动: 学生从相似图形的对应顶点、对应边、对应角出发,通过观察了解到有一类相似图形,除具备相似的所有性质外,还有其特性,学生思考,并总结位似图形的概念.
教师加以归纳,得到位似图形的定义:如果两个图形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.
设计意图:通过几个图形的观察,使学生初步意识到位似的特征:对应点连线交于一点.(二)巩固提高,运用新知
问题1 判断下列各对图形是不是位似图形?
(1)正五边形ABCDE与正五边形A′B′C′D′E′;
(2)等边三角形ABC与等边三角形A′B′C′.
师生活动:学生观察图形,依据位似图形的概念进行判断.利用本题让学生学会使用定义,会判断位似图形,巩固概念
设计意图:通过辨别位似图形,巩固位似图形的概念,让学生理解位似图形必须满足的条件:(1)两个图形是相似图形;(2)两个相似图形每对对应点所在直线都经过同一点.
问题2 是否相似图形都是位似图形?举例说明.
问题3 位似图形与相似图形有什么区别和联系?
师生活动:学生举例说明相似图形不一定是位似图形,并总结出位似图形具备相似的所有性质,除此之外,还有其特性,所以位似图形是特殊的相似图形.
设计意图:通过思考位似图形和相似图形的联系与区别,让学生进一步理解位似图形的概念.
位似图形的性质
问题4 观察几组位似图形,猜想对应边之间有什么位置关系?
师生活动:学生通过观察,猜想位似图形对应边是互相平行或者重合的.教师通过多媒体演示,让学生直观的感受到位似图形对应边平行或重合.
问题5 已知问题1中的图形,思考对应点到位似中心的距离之比与相似比之间的关系.师生活动:学生通过观察图形的特点,教师引导学生运用相似的知识证明对应点到位似中心的距离之比与相似比的关系.最终总结出位似图形的性质:位似图形上任意一对对应点到位似中心的距离之比等于相似比.
设计意图:位似的性质通过讨论、对比、证明自然得到,能使学生比较牢固地掌握,比直接给出效果要好,同时让学生意识到数学知识之间的联系性,把新知识转化为旧知识.
位似图形的画法
问题6 如图,已知△ABC ,求作△ABC的位似图形△,使△是原来的1
2

师生互动:教师引导学生,若把原图形缩小到原来的,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2.学生小组讨论,位似中心与△ABC有哪些位置关系?并画出图形,之后小组展示,分享、交流,会发现作出的图形不唯一.
作法一:如图,(1)在△ABC外任取一点O;
(2)过点O分别作射线OA,OB,OC;
(3)分别在射线上取点,使得;
(4)顺次连接,得到所要画的△.
作法二:如图,(1)在△ABC外任取一点O;
(2)过点O分别作射线OA,OB,OC;
(3)分别在射线的反向延长线上取点,使得
(4)顺次连接,得到所要画的△.
作法三:如图,(1)在△ABC 内任取一点O ;
(2)过点O 分别作射线OA ,OB ,OC ; (3)分别在射线上取点,使得; (4)顺次连接,得到所要画的△

设计意图:本次活动是学生初步感知位似之后的第一次实践,目的是培养学生独立思考问题、解决问题的能力,以及动手操作的能力.使学生能按照(1)先取定位似中心;(2)再正确确定各对应点;(3)最后画出位似图形的步骤,完成作图的过程.
(三)简单应用,加深理解
问题1 某同学的座位到黑板的距离是6m,老师在黑板上要写多大的字,才能使这个学生在看黑板上的字时,同他看相距30cm的教科书的字感觉相同?(教科书上的小四号字的大小约为0.35 cm x0.4cm)
师生互动:学生计算,回答.教师关注学生对数学知识应用于实际问题的兴趣,计算结果的正确性
设计意图:用与学生关系密切的一个实际问题来说明位似图形的实际应用,同时使学生更深刻地认识到位似与相似之间的特殊与一般的关系.
(四)归纳小结,反思提高
请学生总结今天这节课所学内容.
教师引导学生小结:
1.什么是位似图形?
2.什么是位似中心?
3.位似图形的性质是什么?
4.相似与位似的关系是什么?
5.怎样画位似图形?
(五)布置作业:教科书第51页,习题27.3,复习巩固:第1, 2题.。

相关文档
最新文档