实验常用工程材料的显微组织观察
金相显微镜的原理及用途

金相显微镜的原理及用途
金相显微镜是一种常用的显微镜,主要用于金属材料的显微观察和组织结构分析,以及金相检测。
金相显微镜的原理是利用光学显微镜原理和金相制样技术,通过透射光观察金属材料的显微结构。
金相显微镜通常由光源、物镜、目镜、聚光镜、显微镜支架、变倍筒、工作台等组成。
金相显微镜在金属材料研究和工程实践中具有广泛应用。
主要用途包括:
1. 显微观察与分析:金相显微镜可以观察金属材料的显微结构,如晶粒、晶界、相分布等。
通过观察和分析,可以评估其组织特征、相变现象、晶粒尺寸、晶界和析出相的形态等信息。
2. 材料检测与质量控制:金相显微镜可用于检测金属材料的质量和性能,通过观察和分析金属材料的组织结构,可以判断是否存在缺陷、夹杂物、裂纹、气孔等问题,以及评估材料的强度、硬度、韧性等性能。
3. 金相制样与观测:金相显微镜配合金相制样技术,可用于制备金属材料用于显微观察的样品。
制样过程一般包括样品切割、研磨、腐蚀、脱蜡、抛光等步骤。
制样后,可通过显微镜观察金属材料的显微结构,从而了解材料的组织特征和性能。
综上所述,金相显微镜在材料科学和工程领域中具有重要的应用价值,可用于金属材料的显微观察、组织结构分析和质量控制。
工程材料实验指导书(附参考答案)西南交通大学

⼯程材料实验指导书(附参考答案)西南交通⼤学⼯程材料实验指导书陈俊英⾼国庆杨萍编冷永祥万国江王良辉西南交通⼤学材料系2011 年10 ⽉实验须知1. 实验不得⽆故缺席,否则取消期未考试资格;2. 实验前认真做好预习,明确实验⽬的和原理,了解实验内容和步骤,以及注意事项;3. 实验过程中必须服从指导教师的指导,严格遵守安全及设备操作规章制度;4. 损坏设备、仪器根据情节轻重按学校规定进⾏全部或部分赔偿;5. 在实验过程中认真记录好实验数据,实验完毕后,实验数据及结果经指导教师认可并签字后⽅能离开实验室;6.,实验报告格式在本指导书后;交实验报告时同时还必须附上指导教师签字的实验数据及结果;7. 实验⼀⾄实验五在⽹上进⾏,⽹址是:/doc/931f19cdbfd5b9f3f90f76c66137ee06eff94e82.html /,进⼊材料系主页后,到⼯程材料精品课程⽹页的⽹上实验相应拦⽬中,时间在相应教学内容结束后⾃⼰安排,实验报告在所有实验结束后统⼀交;8. 实验六(材料综合实验)在材料实验室进⾏,具体时间在相应教学内容结束后安排。
9. 实验部分成绩占期末总成绩的20%,即20分;10. 在考试内容中涉及实验内容部分占20-30%,即20-30分。
⽬录实验实验⼀⾦属材料的硬度和冲击韧性测定┅┅┅┅┅┅┅┅┅┅( 3)实验⼆铁碳合⾦组织观察第⼀实验部分铁碳合⾦平衡显微镜组织观察┅┅┅┅┅┅( 5)第⼆实验部分铁碳合⾦⾮平衡显微镜组织观察┅┅┅┅┅( 7)实验三铸铁⾦相组织观察┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅( 9)实验四有⾊⾦相组织观察┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅(10)实验五常规热处理┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅(11)实验六综合实验┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅(12)附录附录⼀┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅(14)附录⼆┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅(20)附录三┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅(24)实验报告实验报告⼀┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅(28)实验报告⼆第⼀实验部分报告┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅(30)第⼆实验部分报告┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅(32)实验报告三┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅(34)实验报告四┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅(35)实验报告五┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅(36)综合实验报告┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅(37)实验⼀⾦属材料的硬度和冲击韧性测定⼀、实验⽬的1. 了解材料硬度测定原理及⽅法;2. 了解布⽒和洛⽒硬度的测量范围及其测量步骤和⽅法;3. 了解显微硬度的测量范围及⽅法;4. 了解冲击韧性设备的测定原理、⽅法;5. 了解脆性、韧性材料冲击后的断⼝及冲击值的区别。
材科基实验显微照相技术及材料显微组织的体视学定量析

材科基实验显微照相技术及材料显微组织的体视学定量析材料科学是研究材料结构与性能之间关系的学科,而显微照相技术是材料科学中常用的一种分析工具。
通过显微镜观察和摄影,可以获取材料的微观结构信息,并通过图像分析来定量化研究各种显微组织参数。
首先,显微照相技术的原理和方法有多种。
其中,光学显微镜是应用最广泛的一种显微镜,它通过聚焦、放大和投射来实现对样品的观察。
由于光学显微镜对样品的需求较低,使用方便且成本较低,因此它是最主要的显微照相技术之一、此外,透射电子显微镜(TEM)和扫描电子显微镜(SEM)是常用的高分辨率显微照相技术,它们能够提供材料的更高分辨率和更详细的信息。
然后,材料显微组织的体视学定量分析是通过对显微照相图像进行数字图像处理来实现的。
首先,需要对显微图像进行预处理,包括图像增强、噪声去除以及边缘检测等步骤,以提高图像的质量和清晰度。
接下来,可以使用图像分割技术将图像中的不同组织区域分离出来,以便进一步的定量分析。
常用的图像分割方法包括阈值分割和基于边缘检测的分割等。
分割完成后,可以利用图像特征提取技术来获取各种显微组织参数,比如颗粒尺寸分布、颗粒形状、晶粒尺寸和晶界角等。
最后,通过对显微组织参数的分析,可以得到对材料性能的一些定量判断。
例如,颗粒尺寸的分布可以反映材料的颗粒大小均匀性;颗粒形状的分析可以评估材料的颗粒形貌特征;晶粒尺寸和晶界角等参数则可以标示材料的晶粒变化和晶界性质。
这些显微组织参数对于材料的性能和制备有着重要的影响,因此,通过显微照相技术的定量分析可以帮助我们更深入地研究和了解材料的微观结构与性能之间的关系。
综上所述,材料科学中的显微照相技术及材料显微组织的体视学定量分析是一门非常重要的技术。
它通过对显微照相图像的处理和分析,可以获得材料的微观结构信息,进而揭示材料性能与结构之间的关系,对于材料研究和工程应用都具有重要的意义。
金相显微镜实验报告内容

金相显微镜实验报告内容一、引言金相显微镜是一种常用的金属材料显微分析工具。
通过观察金属材料的组织结构, 可以分析其性能和质量。
本实验旨在使用金相显微镜观察不同材料的金相组织,并对观察结果进行解析和讨论。
二、实验目的1. 熟悉金相显微镜的基本原理和操作方法。
2. 观察不同材料的金相组织,了解其组织结构特点。
3. 掌握金相组织的观察和分析方法。
三、实验仪器和材料1. 金相显微镜2. 研磨纸和砂纸3. 金相试样(不同材质和处理状态)四、实验步骤1. 样品制备:1. 将金属试样切割成适当大小(通常为10mm * 10mm * 3mm)。
2. 用砂纸将试样的表面磨平,再用研磨纸逐渐细磨,直到试样表面平整光滑。
3. 使用切割机将试样切割成适当大小的楔形样品。
4. 对楔形样品进行粗磨和精磨,用砂纸和研磨纸逐渐细磨,直到样品表面光滑。
2. 试样腐蚀:1. 将处理后的试样放入盛有酸性腐蚀液(如Nital)的容器中。
2. 在腐蚀液中浸泡一段时间,直到试样表面出现明显的腐蚀反应。
3. 从腐蚀液中取出试样,用水清洗干净,并用纸巾轻轻抹干。
3. 金相组织观察:1. 将腐蚀后的试样放置在显微镜载物台上,并固定好。
2. 通过显微镜的目镜和物镜进行对焦调整,使试样图像清晰可见。
3. 使用不同倍数的物镜进行观察,记录观察到的金相组织特征。
五、实验结果与分析通过金相显微镜观察,我们成功得到了不同材料的金相图像并进行了分析。
以下是我们观察到的一些主要结果:1. 结晶体:在显微镜下观察,结晶体呈现出明显的晶粒形状。
不同材料的晶粒大小和形态各异,反映出其不同的冶金处理历史和组织特征。
2. 晶界:晶界是相邻晶粒之间的界面,观察到的晶界可以显示出晶粒大小和形状的变化。
晶界的特征对材料的性能和强度有重要影响。
3. 金相组织:金相组织是材料内部的组织结构,包括晶粒大小、晶粒形态、晶粒分布和相含量等。
在显微镜下观察,不同材料呈现出不同的金相组织,反映了其冶金处理和热处理工艺的影响。
实验二铸铁、有色金属及合金显微组织分析(含实验报告格式)

350
5-
147~ 241
机油泵齿轮
420
2
-
2297~ 302
柴油机、汽油机曲轴;
490
2
-
2297~ 磨床、铣床、车床的主轴 302 ;空压机、冷冻机缸体、
560
2
-
2417~ 缸套 实验32二1铸铁、有色金属及合金显微组织分析(含实验报告格
式)
第一部分:常用铸铁组织观察
实验二铸铁、有色金属及合金显微组织分析
性能:脆性大,很少使用(含。实验报告格式)
第一部分:常用铸铁组织观察
3、灰口铸铁的种类
根据石墨(G)在铸铁中存在形态,可分为:
普通灰铸铁:石墨呈片状 其基体组织有3种(F基、P基、 F基+P基)
可锻铸铁:石墨呈团絮状 其基体组织有3种(F基、P基、 F基+P基)
一、生产方法:
先将铸铁浇注成白口铸铁,然后进行高温石墨化退 火,使渗碳体分解得到团絮状石墨。
二、可锻铸铁的组织
可锻铸铁有铁素体和珠光体两种基体。
实验二铸铁、有色金属及合金显微组织分析 (含实验报告格式)
第一部分:常用铸铁组织观察 三、可锻铸铁的牌号
铁素体可锻铸铁以“KT”表示,珠光体可锻铸铁以“KTZ” 表示。其后的两组数字表示最低抗拉强度和延伸率。
球墨铸铁:石墨呈球状 其基体组织与处理状态有关(铸态、退火态、 正火态、等温淬火态)
蠕墨铸铁:石墨呈蠕虫状
实验二铸铁、有色金属及合金显微组织分析 (含实验报告格式)
第一部分:常用铸铁组织观察
一、灰铸铁的组织
第1节 普通灰铸铁
灰铸铁有铁素体、珠光体、(铁素体+珠光体)+石墨三种基
金属材料的微观组织分析与改进

金属材料的微观组织分析与改进在工程材料领域,金属材料是广泛应用于各种领域的重要材料之一。
而金属材料的性能往往与其微观组织密切相关。
因此,对金属材料的微观组织进行分析与改进,对于提升金属材料的性能具有重要意义。
一、微观组织分析的方法1. 金相分析金相分析是一种通过观察金属材料的显微组织来研究其性能与组织关系的方法。
常用的金相分析手段包括金相显微镜观察、腐蚀剂腐蚀与显色、显微硬度测试等。
金相显微镜具有高分辨率、低成本等特点,可以用来观察金属材料的晶体结构、晶界、析出物和孔隙等微观组织特征。
通过金相显微镜观察和硬度测试,可以对金属材料的组织进行定性和定量分析,对其力学性能进行评估。
2. 电子显微镜分析电子显微镜是一种高分辨率的显微镜,可以实现对金属材料微观结构的直接观察和分析。
透射电子显微镜(TEM)和扫描电子显微镜(SEM)是两种常用的电子显微镜手段。
TEM可以通过透射电子衍射、能谱分析等技术,对金属材料的晶体结构、晶格缺陷等进行详细的分析。
SEM可以观察金属材料的表面形貌,通过能谱分析等手段获得元素分布信息。
电子显微镜分析是研究金属材料微观组织的重要手段之一,可以提供更为详细的信息与数据。
二、微观组织改进的方法1. 热处理热处理是一种通过对金属材料进行固态热变形和热处理,改变其组织结构及其性能的方法。
常见的热处理方式包括退火、正火、淬火和回火等。
通过热处理可以改变金属材料的晶粒尺寸、晶体结构和相分布,进而改变其冷加工硬化程度和织构,提高其强度、塑性和韧性等性能。
2. 添加合金元素通过向金属材料中添加少量的合金元素,可以改变其晶体结构和相变行为,从而改善其综合性能。
例如,向钢中添加铬和镍等合金元素,可以提高其耐蚀性和耐热性。
添加纳米晶和稀土元素等,可以提高金属材料的强度、韧性和抗疲劳性能。
添加合金元素是一种常用的微观组织改进方法。
3. 冷加工与塑性变形通过冷加工和塑性变形,可以使金属材料的晶粒细化、减少晶体缺陷、消除内应力,从而改善其综合性能。
工程材料与成型技术基础实验报告
《工程材料与成型技术基础》实验报告评语:姓名:学号:班级:指导教师:成绩:日期:实验一碳钢金相样品制备与铁碳合金在平衡状态下的组织观察实验时间:一、实验目的1.通过实验能识别铁碳合金在平衡状态下的显微组织。
2.掌握碳含量对铁碳合金平衡组织形貌及相组成比例的影响。
二、实验原理利用金相显微镜观察金属的内部组织和缺陷的方法称为显微分析(或金相分析)。
合金在极其缓慢的冷却条件(如退火状态)下所得到的组织称为平衡组织。
铁碳合金平衡组织的观察与分析,要依据Fe-Fe3C相图来进行。
(1)工业纯铁工业纯铁的碳质量分数小于0.0218%,组织为单相铁素体。
铁素体呈白亮多边形晶粒,晶界呈暗色的网络,并在晶界的局部区域分布有微量亮白窄条状三次渗碳体(Fe3CⅢ)。
(2)亚共析钢亚共析钢的碳质量分数为0.0218%~0.77%,组织为铁素体(白亮多边形块状)加珠光体(暗色层状)。
(3)共析钢共析钢的碳质量分数为0.77%,其室温组织为单一的珠光体。
其中白亮铁素体和暗色渗碳体以层状相间。
(4)过共析钢过共析钢的碳质量分数为0.77%~2.11%,在室温下的平衡组织为珠光体加二次渗碳体。
其中,二次渗碳体呈白亮网状分布在暗色珠光体的晶界上。
(5)亚共晶白口铸铁亚共晶白口铸铁的碳质量分数为2.11%~4.3%,室温下的平衡组织为珠光体、二次渗碳体加变态莱氏体。
其中变态莱氏体为基体,在变态莱氏体基体上分布着暗色块状或椭圆状的珠光体,在珠光体晶体边缘有一薄层白亮二次渗碳体。
(6)共晶白口铸铁共晶白口铸铁的碳质量分数为4.3%,其室温下的显微组织为变态莱氏体,其中渗碳体为白亮基体,珠光体以暗色细条状和点状嵌镶分布在白亮渗碳体基体上。
(7)过共晶白口铸铁过共晶白口铸铁的碳质量分数为4.3%~6.69%,其室温下的显微组织为变态莱氏体加一次渗碳体。
一次渗碳体呈白亮板条状嵌镶分布在变态莱氏体的基体上。
三、实验仪器、材料1.金相显微镜2.金相试样四、实验内容及步骤内容:1.通过观察分析,画出表中所列每种铁碳合金显微组织示意图,并用引线和符号标出各种组织的名称,在组织示意图下方填写合金名称、合金碳含量、显微组织名称、观察倍数、浸蚀剂等各个项目内容。
金相显微镜和普通显微镜
金相显微镜和普通显微镜金相显微镜和普通显微镜是两种常见的显微镜,不仅在科学实验室中广泛应用,也在医学、地质学、材料科学等领域发挥着重要作用。
本文将介绍金相显微镜和普通显微镜的原理、应用以及优缺点。
一、金相显微镜1. 原理金相显微镜是一种专门用于金相分析的显微镜,主要用于观察材料的金相结构、组织和相变等信息。
其原理与普通光学显微镜相似,都是利用光线的折射和反射原理来观察样品的特征。
2. 应用金相显微镜广泛应用于材料科学和工程领域,用于观察和分析金属和合金的显微组织、相变、晶粒尺寸和形态等特征。
它可以帮助科学家和工程师研究材料的性能、熔点、疲劳性能等,并为材料设计和工艺改进提供有效的支持。
3. 优点金相显微镜具有高分辨率和清晰度,可以观察到材料内部的微观结构和组织。
它还能够进行定量的分析,如晶粒尺寸和相体积分数的测量,非常适用于研究材料的微观物理性质。
4. 缺点金相显微镜的成本较高,操作复杂,需要使用特殊的制样和显微量测技术。
另外,金相显微镜只能观察固态样品,对液态或气体样品的观察有一定的局限性。
二、普通显微镜1. 原理普通显微镜是一种常见的光学显微镜,主要由物镜、目镜、透光部分、聚光部分和支撑结构组成。
它利用透射光通过物镜和目镜的组合放大样品,然后通过目镜进行观察。
2. 应用普通显微镜广泛应用于生物学、药学、医学和教育等领域。
在生物学中,普通显微镜常用于观察细胞、组织和微生物的结构和特征。
在医学中,它用于病理学的诊断和研究。
在教育领域,普通显微镜常用于学生的实验和教学。
3. 优点普通显微镜具有价格低廉、操作简单的优点。
它能够提供适当的放大倍数,使观察者得以观察和研究微小物体的细节,并且与其他显微镜相比,普通显微镜更加便携和易于维护。
4. 缺点普通显微镜的分辨率相对较低,不能观察到样品的微观细节。
此外,由于其透射光的限制,普通显微镜只能观察透明样品,无法观察不透明或不透明度较高的样品。
结论金相显微镜和普通显微镜是科学研究和实验中常见的工具。
光学金相显微技术
光学金相显微技术光学金相显微技术是一种在材料科学和工程中广泛应用的分析方法,它利用光学显微镜观察和分析材料的显微结构和组织特征。
通过该技术,人们可以深入了解材料的晶体结构、晶界、晶体缺陷、相组成等信息,从而对材料的性能和性质进行评估和优化。
光学金相显微技术主要包括样品制备、显微观察和图像分析三个步骤。
首先,对于不同的材料,我们需要选择适当的方法来制备样品。
常见的制备方法包括金相法、腐蚀法、切片法等。
其中,金相法是一种常用的方法,它通过对材料进行精细的研磨和抛光,使其表面得到光洁度较高的状态,从而方便后续的显微观察。
在样品制备完成后,我们就可以利用光学显微镜对样品进行观察了。
光学显微镜是一种使用可见光进行观察的显微镜,它具有高分辨率和高放大倍数的特点。
通过调节光学显微镜的焦距、放大倍数和光源亮度等参数,我们可以得到清晰、细致的样品显微结构图像。
在显微观察的过程中,我们可以使用不同的光学技术来提取样品的信息。
例如,偏光显微镜可以通过观察样品在偏振光下的行为来研究样品的晶体结构和晶体缺陷;差示显微镜可以通过观察样品在不同焦平面上的反射光强度差异来研究样品的相组成和晶粒大小等。
这些技术都能够提供丰富的信息,帮助我们深入了解材料的微观结构和性质。
除了显微观察外,图像分析也是光学金相显微技术的重要环节。
通过对显微图像的数字化处理和分析,我们可以得到更加准确和定量的结果。
常见的图像分析方法包括图像增强、图像滤波、图像分割等。
这些方法可以帮助我们提取图像中的特征信息,并进行图像量化和统计分析,从而得到更加全面和准确的结果。
光学金相显微技术在材料科学和工程中具有广泛的应用。
例如,在金属材料方面,这一技术可以用来观察和分析材料的晶粒大小、晶界分布和晶体缺陷等信息,从而评估材料的力学性能和耐蚀性能。
在陶瓷材料方面,这一技术可以用来观察和分析材料的相组成、孔隙结构和晶体取向等信息,从而评估材料的热导率和电导率等性能。
总的来说,光学金相显微技术是一种非常重要和有效的材料分析方法。
常用金属材料显微组织观察实验报告
常用金属材料的显微组织观察一、实验目的1.观察各种常用合金钢,有色金属和铸铁的显微组织。
2.分析这些金属材料的组织和性能的关系及应用。
二、金属材料的显微组织观察及分析1.几种常用合金钢的显微组织合金钢依合金元素含量的不同,可分为三种:合金元素总量小于5%的称为低合金钢;合金元素为5~10%的称为中合金钢;合金元素大于10%的称为高合金钢。
1)一般合金结构钢、合金工具钢都是低合金钢。
由于加入合金元素,铁碳相图发生一些变动,但其平衡状态的显微组织与碳钢的显微组织并没有本质的区别。
低合金钢热处理后的显微组织与碳钢的显微组织也没有根本的不同,差别只是在于合金元素都使C曲线右移(除Co外),即以较低的冷却速度可获得马氏体组织。
40Cr钢经调质处理后的显微组织是回火索氏体。
GCrl5钢(轴承钢)840℃油淬低温回火试样的显微组织,与T12钢780℃水淬低温回火试样的显微组织也是一样的,都得到回火马氏体+碳化物十残余奥氏体组织。
图1、16Mn-淬火-x400马氏体16Mn钢属于碳锰钢,碳的含量在0.16%左右。
16Mn钢的合金含量较少,焊接性良好,焊前一般不必预热。
加入合金元素锰,使C曲线右移,在淬火处理后,组织为马氏体组织。
但由于16Mn钢的淬硬倾向比低碳钢稍大,所以在低温下(如冬季露天作业)或在大刚性、大厚度结构上焊接时,为防止出现冷裂纹,需采取预热措施。
图2、16Mn-正火-x400铁素体索氏体16Mn属于低碳钢,碳含量<0.16%,正火后组织为F+S。
在400倍显微镜下,索氏体基本上不可分辨。
16Mn钢是目前我国应用最广的低合金钢。
广泛应用于各种板材、钢管。
图3、65Mn-等温淬火-400下贝氏体65Mn,锰提高淬透性,但Mn含量过大会导致过热现象。
特性:经热处理后的综合力学性能优于碳钢,65Mn 钢板强度、硬度、弹性和淬透性均比65号钢高。
但有过热敏感性和回火脆性。
应用:用作小尺寸各种扁、圆弹簧、座垫弹簧、弹簧发条,也可制作弹簧环、气门簧、离合器簧片、刹车弹簧及冷拔钢丝冷卷螺旋弹簧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验5 常用工程材料的显微组织观察
1. 实验目的
2. (1) 观察几种常用合金钢、有色金属、铸铁和金属陶瓷(硬质合金)及纤维增强树脂的显微组织。
3. (2) 分析这些材料的组织和性能的关系及其应用。
4. 实验内容
(1) W18Cr4V 是一种高速钢。
室温平衡组织由珠光体、碳化物和莱氏体组成。
莱氏体沿晶界呈宽网状分布,莱氏体中的碳化物粗大,呈骨架状,不能靠热处理消除,必须进行锻造打碎。
锻造退火后的显微组织由索氏体和碳化物组成。
高速钢具有优良的耐热性和高的耐磨性。
淬火温度较高,使奥氏体充分合金化,保证最终有高的热硬性。
(2) 1Cr18Ni9是不锈钢。
在大气、海水及其他浸蚀性介质条件下能稳定工作,属于高合金钢。
室温平衡组织为奥氏体+铁素体+(Cr,Fe)23C 6。
(3) 灰铸铁中的石墨呈粗大片状,灰铸铁的基体有珠光体、铁素体和珠光体+铁素体三种。
铁素体基体的铸铁韧性最好,珠光体基体的铸铁抗拉强度最高。
(4) 球墨铸铁的组织主要有铁素体基体和珠光体基体两种。
浇铸后石墨呈球形析出,大大
削弱了对基体的割裂作用,使球墨铸铁的性能显着提高。
(5) 可锻铸铁由白口铸铁经石墨化退火处理得到。
其中的石墨呈团絮状,也显着的削弱了
对基体的割裂作用,使得可锻铸铁的机械性能比灰铸铁有明显的提高。
(6) 未经变质处理的铝硅合金铸造后得到的组织是粗大的硅晶体和α固溶体所组成的共晶
体。
粗大的硅晶体很脆,严重的降低了合金的塑性和韧性。
(7) 变质处理后的铝硅合金中添加的Na 能促进Si 的生核,并能吸附在Si 表面阻止Si 继续
长大,使合金组织大大细化。
变质处理后的组织为细小均匀的共晶体+初生α固溶体+二次析出的Si 。
共晶体中的Si 细小,使合金的强度和塑性显着改善。
(8) 单相黄铜中的组织为单相α固溶体,其晶粒呈多边形,并伴有大量退火孪晶。
单相黄
铜具有良好的塑性,可以进行各种冷变形。
(9) 双相黄铜由α相和β相组成。
α相呈亮白色,β相呈黑色,是以CuZn 电子化合物为基的
有序固溶体,在低温下较脆、硬,但在高温下有良好的塑性,所以双相黄铜可以进行热压力加工。
(10) 轴承合金是一种软基体硬质点类型的轴承合金。
显微组织为α+β+Cu 6Sn 5。
软基体硬质
点混合组织能保证轴承合金具有必要的强度、塑性和韧性,以及良好的耐磨性。
(11) YG3显微组织由WC+Co 相组成。
硬质合金熔点高,硬度高,具有良好的耐磨性和热
硬性,可用作道具、耐磨零件或磨具。
硬质合金属于颗粒复合材料。
(12) 纤维增强树脂是一种纤维复合材料。
韧性好的树脂作为基体,可阻碍材料中裂纹的扩
展。
纤维的抗拉强度高,主要承受外加载荷的作用。
玻璃纤维增强树脂的显微组织为玻璃纤维+树脂。
5. 思考题
(1) 合金钢与碳钢比较组织上有什么不同,性能上有什么差别,使用上有什么优越性?
(2)答:合金钢是在碳钢合金中特意加入一些合金元素所获得的钢。
按合金元素质量分数
不同可分为低合金钢(合金元素低于5%)、中合金钢(合金元素5%~1 O%)、高合金钢(合金元素大于10%),还有其他的分类方法。
对于低合金钢由于加入合金元素较少,铁碳相图虽发生了一些变动,但其平衡状态的显微组织与碳钢的显微组织并没有太大区别,低合金钢热处理后的显微组织与碳钢的显微组织也没有根本的不同。
但因加入了合金元素使C曲线右移(Co除外),所以在相同的冷却速度下,会出现不同的金相组织,合金钢更容易获得马氏体。
(3)合金钢与碳钢比较,在淬透性、力学性能、回火稳定性等方面得到改善,还可提高
钢的抗氧化性、耐蚀、耐热、耐低温、耐磨损等方面的性能。
由于合金钢的强度提高了,在使用时可降低材料的使用量,减轻重量,降低成本。
不同的合金钢可以应用于高温、腐蚀、磨损等场合使用。
(4)为什么大型发电机组中汽轮机转子和小板牙都必须采用合金钢制造?
(5)答:大型发电机组中的汽轮机转子工作环境恶劣,要承受扭转应力、弯曲应力、热应
力,还要承受振动产生的附加应力和冲击载荷等,而且在高温工作,还要考虑材料的抗蠕变性能、抗腐蚀性能,等等。
因此对转子材料要具有良好的综合机械性能、强度高,韧性好。
在钢中加入一些合金元素可以提高材料的性能,满足产品要求。
如加入Cr、Mo、V元素,可以提高钢的淬透性增加钢的强度,还可以提高钢的热强性,耐高温、抗腐蚀。
所以都要选用合金钢制造才能符合使用要求。
(6)小板牙是低速切削、形状复杂的刃具,要求高硬度、高耐磨性,还要求一定强韧性。
在钢中加入Cr、W、Mn等元素,使钢的淬透性和耐磨性大大提高,耐热性和韧性也有所改善。
而且加入了合金元素后,淬透性增加,油冷时就可得到马氏体,有利于减小变形,保证尺寸。
所以选用合金钢制造才能符合使用要求。
(7)高速钢(W18Cr4V)的热处理工艺是如何进行的?有何特点?
(8)答:W18Cr4V高速钢的优良的热硬性和高的耐磨性只有经淬火及回火后才能获得。
由
于高速钢中的碳化物类型多、结构复杂,淬火温度对碳化物的溶解有很多影响,较低
C型碳化物转变成稳定的时,有的碳化物不能溶解,影响硬度和红硬性。
较高时M
6
MC型碳化物,沿奥氏体晶界扩展成网状,造成对高速钢性能的破坏,而且还会影响晶粒度及残余奥氏体的含量,影响强度和韧性。
(9)为了获得良好的力学性能和高的红硬性,需选择合理的淬火温度,W18Cr4V高速
钢的淬火温度一般选择在1270~1280℃。
淬火后的组织为马氏体+碳化物+较大量的残余奥氏体,残留奥氏体约有30%。
所以还要进行回火处理,使残余奥氏体转变为回火马氏体。
在550~570℃回火时,钢的硬度、强度、塑性均有提高,析出特殊碳化物,产生二次硬化,达到硬度和强度的最大值。
回火温度一般为560℃,因残余奥氏体量很多,一次回火处理不能消除大量的残余奥氏体,回火不足,影响高速钢的硬度和耐磨性能,所以一般需经三次回火处理。
高速钢经三次回火处理后的组织为回火马氏体+碳化物+少量残余奥氏体(2%~3%)。
这样可以得到理想的热硬性、高的耐磨性和强韧性。
(10)铸造Al-Si合金的成分是如何考虑的?为何要进行变质处理,变质处理与未变质处理的
Al-Si合金组织与性能有何变化?
(11)答:从Al-Si合金的相图可知,Si的质量分数为11.7%为共晶点的成分,在共晶点附近
的合金成分,具有优良的铸造性能,流动性好,产生铸造裂纹的倾向性小,所以简单的铸造Al-Si合金的Si的质量分数一般应为接近共晶点成分,典型的铸造Al-Si合金牌号为ZLl02,Si的质量分数为11%~13%。
(12)Al-Si合金铸造后得到的组织是粗大的针状硅晶体和α固溶体的共晶组织,粗大的硅
晶体极脆,严重地降低了合金的塑性和韧性。
为改善合金的性能需采用变质处理,即在浇注前在合金液体中加入变质剂(常用钠盐混合物),以细化合金组织,提高合金的
强度和塑性,由于钠能促进Si的生核,并能吸附在Si的表面阻碍它长大,使合金组织细化,同时使共晶点右移,原合金成分变为亚共晶成分,所以变质后的组织为初生α固溶体+细密的共晶体(α+Si)组成。
共晶体中的Si细小,使合金的强度与塑性显着提高。