(完整)高二文科数学——抛物线练习题

合集下载

抛物线的练习题

抛物线的练习题

抛物线的练习题抛物线的练习题在数学学科中,抛物线是一个经常出现的图形,它具有许多有趣的性质和应用。

通过解决抛物线的练习题,我们不仅可以加深对抛物线的理解,还可以提高我们的数学思维能力和解决问题的能力。

下面,我们来看一些关于抛物线的练习题。

练习题一:求顶点坐标已知抛物线的标准方程为 y = ax^2 + bx + c,其中a ≠ 0。

求抛物线的顶点坐标。

解答:顶点是抛物线的最高点或最低点,它的 x 坐标可以通过公式 x = -b/2a求得。

将 x = -b/2a 代入抛物线的方程,即可求得顶点的 y 坐标。

练习题二:求焦点坐标已知抛物线的焦点坐标为 F(x1, y1),顶点坐标为 V(xv, yv),且焦距为 p。

求抛物线的方程。

解答:根据抛物线的定义可知,焦点到抛物线上任意一点的距离等于该点到直线的距离。

利用这个性质,我们可以得到焦点坐标与顶点坐标之间的关系。

根据焦点到顶点的距离等于焦距 p,可以得到以下关系式:√((x1 - xv)^2 + (y1 - yv)^2) = p将抛物线的标准方程 y = ax^2 + bx + c 代入上述关系式,再利用顶点坐标的求解方法,可以得到抛物线的方程。

练习题三:求抛物线与直线的交点已知抛物线的方程为 y = ax^2 + bx + c,直线的方程为 y = mx + n。

求抛物线与直线的交点坐标。

解答:将直线的方程代入抛物线的方程,可以得到一个关于 x 的二次方程。

解这个二次方程,即可求得交点的 x 坐标。

将求得的 x 坐标代入直线的方程,即可求得交点的 y 坐标。

练习题四:求两条抛物线的交点已知两条抛物线的方程分别为 y1 = a1x^2 + b1x + c1 和 y2 = a2x^2 + b2x + c2,其中a1 ≠ 0,a2 ≠ 0。

求两条抛物线的交点坐标。

解答:将两条抛物线的方程相减,可以得到一个关于 x 的二次方程。

解这个二次方程,即可求得交点的x 坐标。

高中数学抛物线习题精选(带答案)

高中数学抛物线习题精选(带答案)

抛物线习题精选一、选择题1.过抛物线焦点的直线与抛物线相交于,两点,若,在抛物线准线上的射影分别是,,则为().A.45°B.60°C.90°D.120°2.过已知点且与抛物线只有一个公共点的直线有().A.1条B.2条C.3条D.4条3.已知,是抛物线上两点,为坐标原点,若,且的垂心恰好是此抛物线的焦点,则直线的方程是().A.B.C.D.4.若抛物线()的弦PQ中点为(),则弦的斜率为()A.B.C.D.5.已知是抛物线的焦点弦,其坐标,满足,则直线的斜率是()A.B.C.D.6.已知抛物线()的焦点弦的两端点坐标分别为,,则的值一定等于()A.4 B.-4 C.D.7.已知⊙的圆心在抛物线上,且⊙与轴及的准线相切,则⊙的方程是()A.B.C.D.8.当时,关于的方程的实根的个数是()A.0个B.1个C.2个D.3个9.将直线左移1个单位,再下移2个单位后,它与抛物线仅有一个公共点,则实数的值等于()A.-1 B.1 C.7 D.910.以抛物线()的焦半径为直径的圆与轴位置关系为()A.相交 B.相离 C.相切 D.不确定11.过抛物线的焦点作直线交抛物线于,两点,如果,那么长是()A.10 B.8 C.6 D.412.过抛物线()的焦点且垂直于轴的弦为,为抛物线顶点,则大小()A.小于B.等于C.大于D.不能确定13.抛物线关于直线对称的曲线的顶点坐标是()A.(0,0)B.(-2,-2)C.(2,2)D.(2,0)14.已知抛物线()上有一点,它到焦点的距离为5,则的面积(为原点)为()A.1 B.C.2 D.15.记定点与抛物线上的点之间的距离为,到此抛物线准线的距离为,则当取最小值时点的坐标为()A.(0,0)B.C.(2,2)D.16.方程表示()A.椭圆 B.双曲线 C.抛物线 D.圆17.在上有一点,它到的距离与它到焦点的距离之和最小,则的坐标为()A.(-2,8)B.(2,8)C.(-2,-8)D.(-2,8)18.设为过焦点的弦,则以为直径的圆与准线交点的个数为()A.0 B.1 C.2 D.0或1或219.设,为抛物线上两点,则是过焦点的()A.充分不必要B.必要不充分C.充要D.不充分不必要20.抛物线垂点为(1,1),准线为,则顶点为()A.B.C.D.21.与关于对称的抛物线是()A.B.C.D.二、填空题1.顶点在原点,焦点在轴上且通径(过焦点和对称轴垂直的弦)长为6的抛物线方程是_________.2.抛物线顶点在原点,焦点在轴上,其通径的两端点与顶点连成的三角形面积为4,则此抛物线方程为_________.3.过点(0,-4)且与直线相切的圆的圆心的轨迹方程是_________.4.抛物线被点所平分的弦的直线方程为_________.5.已知抛物线的弦过定点(-2,0),则弦中点的轨迹方程是________.6.顶点在原点、焦点在轴上、截直线所得弦长为的抛物线方程为____________.7.已知直线与抛物线交于、两点,那么线段的中点坐标是__ _.8.一条直线经过抛物线()的焦点与抛物线交于、两点,过、点分别向准线引垂线、,垂足为、,如果,,为的中点,则 =__________.9.是抛物线的一条焦点弦,若抛物线,,则的中点到直线的距离为_________.10.抛物线上到直线的距离最近的点的坐标是____________.11.抛物线上到直线距离最短的点的坐标为__________.12.已知圆与抛物线()的准线相切,则 =________.13.过()的焦点的弦为,为坐标原点,则=________.14.抛物线上一点到焦点的距离为3,则点的纵坐标为__________.15.已知抛物线(),它的顶点在直线上,则的值为__________.16.过抛物线的焦点作一条倾斜角为的弦,若弦长不超过8,则的范围是________.17.已知抛物线与椭圆有四个交点,这四个交点共圆,则该圆的方程为__________.18.抛物线的焦点为,准线交轴于,过抛物线上一点作于,则梯形的面积为_______________.19.探照灯的反射镜的纵断面是抛物线的一部分,安装灯源的位置在抛物线的焦点处,如果到灯口平面的距离恰好等于灯口的半径,已知灯口的半径为30cm,那么灯深为_________.三、解答题1.知抛物线截直线所得的弦长,试在轴上求一点,使的面积为392.若的焦点弦长为5,求焦点弦所在直线方程3.已知是以原点为直角顶点的抛物线()的内接直角三角形,求面积的最小值.4.若,为抛物线的焦点,为抛物线上任意一点,求的最小值及取得最小值时的的坐标.5.一抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上一宽4米,高6米的大木箱,问能否安全通过.6.抛物线以轴为准线,且过点,()求证不论点的位置如何变化,抛物线顶点的轨迹是椭圆,且离心率为定值.7.已知抛物线()的焦点为,以为圆心,为半径,在轴上方画半圆,设抛物线与半圆交于不同的两点、,为线段的中点.①求的值;②是否存在这样的,使、、成等差数列,若存在,求出的值;若不存在,说明理由.8.求抛物线和圆上最近两点之间的距离.9.正方形中,一条边在直线上,另外两顶点、在抛物线上,求正方形的面积.10.已知抛物线的一条过焦点的弦被焦点分为,两个部分,求证.11.一抛物线型拱桥的跨度为,顶点距水面.江中一竹排装有宽、高的货箱,问能否安全通过.12.已知抛物线上两点,(在第二象限),为原点,且,求当点距轴最近时,的面积.13.是抛物线上的动点,连接原点与,以为边作正方形,求动点的轨迹方程.参考答案:一、1.C;2.C;3.D;4.B;5.C;6.B;7.B;8.D;9.C10.C;11.B;12.C;13.C;14.C;15.C;16.C;17.B;18.B;19.C;20.A;21.D二、1.;2.;3.;4.5.;6.(在已知抛物线内的部分)7.或;8.(4,2);9.10.;11.;12.2;13.-414.2;15.0,,,;16.17.;18.3.14;19.36.2cm三、1.先求得,再求得或2.3.设,,则由得,,,于是当,即,时,4.抛物线的准线方程为,过作垂直准线于点,由抛物线定义得,,要使最小,、、三点必共线,即垂直于准线,与抛物线交点为点,从而的最小值为,此时点坐标为(2,2).5.建立坐标系,设抛物线方程为,则点(26,-6.5)在抛物线上,抛物线方程为,当时,,则有,所以木箱能安全通过.6.设抛物线的焦点为,由抛物线定义得,设顶点为,则,所以,即为椭圆,离心率为定值.7.①设、、在抛物线的准线上射影分别为、、,则由抛物线定义得,又圆的方程为,将代入得②假设存在这样的,使得,由定义知点必在抛物线上,这与点是弦的中点矛盾,所以这样的不存在8.设、分别是抛物线和圆上的点,圆心,半径为1,若最小,则也最小,因此、、共线,问题转化为在抛物线上求一点,使它到点的距离最小.为此设,则,的最小值是9.设所在直线方程为,消去得又直线与间距离为或从而边长为或,面积,10.焦点为,设焦点弦端点,,当垂直于轴,则,结论显然成立;当与轴不垂直时,设所在直线方程为,代入抛物线方程整理得,这时,于是,命题也成立.11.取抛物线型拱桥的顶点为原点、对称轴为轴建立直角坐标系,则桥墩的两端坐标分别为(-26,-6.5),(26,-6.5),设抛物线型拱桥的方程为,则,所以,抛物线方程为.当时,,而,故可安全通过.12.设,则,因为,所以,直线的方程为,将代入,得点的横坐标为(当且仅当时取等号),此时,,,,所以.13.设,,过,分别作为轴的垂线,垂足分别为,,而证得≌,则有,,即、,而,因此,即为所求轨迹方程.。

【高二数学】抛物线经典例题(共14页)

【高二数学】抛物线经典例题(共14页)
2
� 1�
0 2
y � 0x p � x p � y 0 y � � 0x � x �
0 y
p
� 0 y � y �程方式斜点由.
0 y
p

0x � x
�y � k
率 斜 的 线 切.
p
y
� �y � �p 2 � � y � y 2 �数导取边两 x p 2 � 2 y 程方对】明证【
2
�0x+x�p=y0y�是程方线切的�0y�0x�M 点一上 x p 2 � y 线物抛过�明证】3 例【 .功本 基的缺或可不者题解是�程方线切的线物抛握掌并解理.关有线切的它与又�题试多许的线物抛关有 缘有数函与线物抛——线切�3�
� 2 ,0 � . C
2
� 0 ,2 � .B
� 0 ,4 � .A
� 点 定 过 必 圆 动 此 则 � 切 相 0 � 2 � x 线 直 与 恒 圆 动 且 � 上 x 8 � y 线 物 抛 在 心 圆 的 圆 动 一 .1 � 如 例

.获收的 到不想意有会常中题解在�们它握掌.值定和点定的忽疏人为易容却�现发易不不多许在存中线物抛 藏宝的处深在埋线物抛——值定与点定�4� �0x+x�p=y0y� 得 即 �1� 入 代 �0xp 2 � 0 y

p
� 2x 1

p

1
BB 1

1
AA 1

FB 1

FA 1
.
4
2
k
� 2 x � 1x ∴�2x�1x 为根二之�1�程方∵
� 1�
0� k
2
2
�2 � 4 � x � 2 � k � p � x k �得简化. x p 2 � � � x � k �p �2

高中数学抛物线练习(有答案)

高中数学抛物线练习(有答案)

1抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 2抛物线的图形和性质:①顶点是焦点向准线所作垂线段中点。

②焦准距:FK p =③通径:过焦点垂直于轴的弦长为2p 。

④顶点平分焦点到准线的垂线段:2p OF OK ==。

⑤焦半径为半径的圆:以P 为圆心、FP 为半径的圆必与准线相切。

所有这样的圆过定点F 、准线是公切线。

⑥焦半径为直径的圆:以焦半径 FP 为直径的圆必与过顶点垂直于轴的直线相切。

所有这样的圆过定点F 、过顶点垂直于轴的直线是公切线。

⑦焦点弦为直径的圆:以焦点弦PQ 为直径的圆必与准线相切。

所有这样的圆的公切线是准线。

3抛物线标准方程的四种形式:,,px y px y 2222-==。

,py x py x 2222-== 4抛物线px y 22=的图像和性质:①焦点坐标是:⎪⎭⎫⎝⎛02,p ,②准线方程是:2p x -=。

③焦半径公式:若点),(00y x P 是抛物线px y 22=上一点,则该点到抛物线的焦点的距离(称为焦半径)是:02p PF x =+, ④焦点弦长公式:过焦点弦长121222p pPQ x x x x p =+++=++ ⑤抛物线px y 22=上的动点可设为P ),2(2y py 或2(2,2)P pt pt 或P px y y x 2),(2=其中一般情况归纳:抛物线的定义:例1:点M 与点F (-4,0)的距离比它到直线l :x -6=0的距离4.2,求点M 的轨迹方程. 分析:点M 到点F 的距离与到直线x =4的距离恰好相等,符合抛物线定义.例2:斜率为1的直线l 经过抛物线y 2=4x 的焦点,与抛物线相交于点A 、B ,求线段A 、B 的长.分析:这是灵活运用抛物线定义的题目.基本思路是:把求弦长AB 转化为求A 、B 两点到准线距离的和.解:如图8-3-1,y 2=4x 的焦点为F (1,0),则l 的方程为y =x -1.由⎩⎨⎧+==142x y x y 消去y 得x 2-6x +1=0. 设A (x 1,y 1),B (x 2,y 2) 则x 1+x 2=6. 又A 、B 两点到准线的距离为A ',B ',则()()()8262112121=+=++=+++='+'x x x x B B A A点评:抛物线的定义本身也是抛物线最本质的性质,在解题中起到至关重要的作用。

高二数学抛物线试题

高二数学抛物线试题

高二数学抛物线试题1.已知直线与抛物线交于两点,为抛物线的焦点,若,则的值是()A.B.C.D.【答案】D【解析】∵直线y=k(x-2)(k>0)恒过定点(2,0)即为抛物线y2=8x的焦点F过A,B两点分别作准线的垂线,垂足分别为C,D,再过B作AC的垂线,垂足为E,设|BF|=m,∵|FA|=2|FB|,∴|AF|=2m∴AC=AF=2m,|BD|=|BF|=m如图,在直角三角形ABE中,AE=AC-BD=2m-m=m,AB=3m,∴cos∠BAE=∴直线AB的斜率为:k=tan∠BAE=2,故选 D.【考点】直线与圆锥曲线的关系.2.若点A的坐标为(3,2),F为抛物线的焦点,点P是抛物线上的一动点,则取得最小值时,点P的坐标是。

【答案】(2,2)【解析】由抛物线的定义可知,|PF|等于P点到准线的距离,因此当|PA|+|PF|取得最小值时,直线AP与抛物线的准线垂直,求得P点的坐标为(2,2).【考点】抛物线的定义与性质3.准线为的抛物线的标准方程是()A.y2=﹣4x B.y2=﹣8x C.y2=4x D.y2=8x【答案】B【解析】设抛物线方程为,准线方程,解得,抛物线方程【考点】抛物线方程的应用.4.如图,已知某探照灯反光镜的纵切面是抛物线的一部分,光源安装在焦点上,且灯的深度等于灯口直径,且为64 ,则光源安装的位置到灯的顶端的距离为____________.【答案】.【解析】先以反射镜定点为原点,以顶点和焦点所在直线为轴,建立直角坐标系.设抛物线方程为,依题意可点在抛物线上,代入抛物线方程得,求得,进而可求得焦距为,即为所求.【考点】抛物线的应用.5.已知抛物线.命题p: 直线l1:与抛物线C有公共点.命题q: 直线l2:被抛物线C所截得的线段长大于2.若为假, 为真,求k的取值范围.【答案】或或.【解析】先求出p为真, ;q为真,得且.由为假, 为真可得:p,q一真一假.若p真q假, 则或;若q真p假, 则.综上可得结论.若p为真,联立C和l1的方程化简得.时,方程显然有解;时,由得且.综上 (4分)若q为真, 联立C和l2的方程化简得,时显然不成立;∴,由于l2是抛物线的焦点弦, 故,解得且.(8分)∵为真, 为假,∴p,q一真一假.若p真q假, 则或; 若q真p假, 则.综上或或. (12分)【考点】复合命题真假的判断;根与系数的关系;焦点弦问题.6.已知过抛物线的焦点的直线交抛物线于,两点.求证:(1)为定值;(2) 为定值.【答案】(1);(2).【解析】(1)设过焦点的直线方程与联立,利用韦达定理,即可得出结论;(2)利用,及根与系数的关系即可得出.(1)抛物线的焦点为,设直线的方程为.由消去,得.由根与系数的关系,得(定值).当轴时,,,也成立.(2)由抛物线的定义,知,.(定值).当轴时,,上式仍成立.【考点】抛物线的简单性质.7.抛物线y=x2到直线 2x-y=4距离最近的点的坐标是 .【答案】【解析】设与直线平行的直线方程为,将和联立消去并整理可得,即时直线与相切。

(完整word版)文科数学抛物线练习

(完整word版)文科数学抛物线练习

高二文科数学-—抛物线练习题【知识回顾】平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线. 定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线。

(1)设00(,)P x y 是抛物线上的一点,则当焦点F 在x 轴上时,02pPFx =+;当焦点F 在y 轴上时,02p PF y =+.此公式叫做焦半径公式。

(2)设AB 是过抛物线22y px =的焦点F 的一条弦,则12||AB x x p =++。

一、选择题1.经过(1,2)点的抛物线的标准方程是( ) A .y 2=4x B .x 2=21y C 。

y 2=4x 或x 2=21y D. y 2=4x 或x 2=4y 2.抛物线y = —2x 2的准线方程是( )A 。

x = —21 B .x =21 C 。

y =81 D 。

y = —81 3.动圆M 经过点A (3,0)且与直线l :x = —3相切,则动圆圆心M 的轨迹方程是 A. x y 122= B 。

x y 62=C. xy 32= D.x y 242=4.动点M 到定点(4,0)F 的距离比它到定直线x +5=0的距离小1,则点M 的轨迹是( ) A .y 2=4x B .y 2=16x C .x 2=4y D .x 2=16y 5.已知抛物线的焦点在直线240x y --=上,则此抛物线的标准方程是 A.x y 162= B 。

yx 82-=C. x y 162=或y x 82-= D 。

x y 162=或y x 82=6.抛物线y 2+4x =0关于直线x +y =0对称的曲线的方程为( )A .x 2= —4yB .x 2=4yC .y 2=4xD .y 2= -4x7.已知抛物线的顶点为原点,焦点在y 轴上,抛物线上的点(,2)M m -到焦点P 的距离为4,则m 的值为 ( ) A 。

4± B.2- C 。

2-或4- D 。

2±8.设AB 是抛物线py x 22=的焦点弦,B A 、在准线上的射影分别为11B A 、,则11FB A ∠等于( )A. ︒45 B 。

高二数学抛物线试题

高二数学抛物线试题

高二数学抛物线试题1.抛物线上的点到直线的距离最小值为A.B.C.D.3【答案】A【解析】在抛物线上任设一点,则该点到直线的距离为,所以最小值为.【考点】点到直线的距离.2.斜率为2的直线L经过抛物线的焦点F,且交抛物线与A、B两点,若AB的中点到抛物线准线的距离1,则P的值为().A.1B.C.D.【答案】B【解析】设斜率为2且经过抛物线的焦点F的直线L的方程为,联立,得,即;设,中点;则;因为AB的中点到抛物线准线的距离为1,所以,.【考点】直线与抛物线的位置关系.3.已知圆C:的圆心为抛物线的焦点,直线3x+4y+2=0与圆C相切,则该圆的方程为().A.B.C.D.【答案】C.【解析】因为抛物线的焦点为,即为圆C的圆心,又直线3x+4y+2=0与圆C相切,所以圆心到直线的距离即为半径,则有,故选C.【考点】点到直线的距离公式,圆的切线的性质,抛物线的焦点坐标公式,圆的标准方程.4.已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点,若点到该抛物线焦点的距离为3,则=()A.B.C.4D.【答案】B.【解析】由题意可设抛物线方程为,因为点到该抛物线焦点的距离为3,所以,即,即抛物线方程为,又因为点在抛物线上,所以,所以,故选B.【考点】抛物线的简单性质.5.已知点M是抛物线上的一点,F为抛物线的焦点,A在圆C:上,则的最小值为__________.【答案】4【解析】抛物线的准线方程为:x=-1过点M作MN⊥准线,垂足为N∵点M是抛物线y2=4x的一点,F为抛物线的焦点∵A在圆C:,圆心C(4,1),半径r=1∴当N,M,C三点共线时,|MA|+|MF|最小∴=4.【考点】圆与圆锥曲线的综合;考查抛物线的简单性质;考查距离和的最小.6.抛物线的焦点坐标是( )A.B.C.D.【答案】B【解析】根据题意可知条件中表示的是焦点在y轴上抛物线,2p=4,p=2,而焦点坐标为,故选B.【考点】抛物线的焦点坐标.7.已知过曲线上任意一点作直线的垂线,垂足为,且.⑴求曲线的方程;⑵设、是曲线上两个不同点,直线和的倾斜角分别为和,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.【答案】⑴⑵当时,直线恒过定点,当时直线恒过定点.【解析】⑴要求曲线方程,但是不知道是哪种曲线,所以只能设点.根据,转化为求曲线方程即可;⑵要证明直线恒过定点,必须得有直线方程,所以首先设出直线方程.又因为两个角是直线和的倾斜角,所以点也得设出来.利用韦达定理,然后讨论的范围变化,证明并得出定点坐标. 试题解析:⑴设,则,由得,;即;所以轨迹方程为;⑵设,由题意得(否则)且,所以直线的斜率存在,设其方程为,因为在抛物线上,所以,将与联立消去,得;由韦达定理知①;(1)当时,即时,,所以,,所以.由①知:,所以因此直线的方程可表示为,即.所以直线恒过定点(2)当时,由,得==将①式代入上式整理化简可得:,所以,此时,直线的方程可表示为,即,所以直线恒过定点;所以由(1)(2)知,当时,直线恒过定点,当时直线恒过定点. 12分【考点】相关点法求曲线方程;分类讨论.8.已知为抛物线上的两点,且的横坐标分别为,过分别作抛物线的切线,两切线交于点,则的纵坐标为( )A.B.C.D.【答案】C【解析】因为为由抛物线上的两点,且的横坐标分别为,所以两点的坐标分别为.由抛物线得,求导可得.所以过点的切线的斜率为4,故过点的切线方程为.同理写出过点的切线方程.所以它们交点的纵坐标是-4.故选C.【考点】1.曲线上的点.2.曲线的切线.3.直线的交点.9.设斜率为2的直线过抛物线的焦点F,且和轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为A.B.C.D.【答案】B【解析】抛物线的焦点F坐标为(,0),则直线l的方程为y=2(x-),它与y轴的交点为A(0,-),所以△OAF的面积为,解得a=±8.所以抛物线方程为y2=±8x,故选B.【考点】本题主要考查抛物线的标准方程及其几何性质,直线方程的点斜式。

高中数学《抛物线》练习题

高中数学《抛物线》练习题

抛 物 线一、选择题1.抛物线y =14x 2的焦点关于直线x -y -1=0的对称点的坐标是( ) A .(2,-1) B .(1,-1) C .(14,-14) D .(116,-116) 2.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于( ) A.3 B .2 C.5 D. 63.抛物线x 2=4y 上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )A .2B .3C .4D .54.已知P (8,a )在抛物线y 2=4px 上,且P 到焦点的距离为10,则焦点到准线的距离为( )A .2B .4C .8D .165.已知抛物线y 2=2px (p >0)上有一点M (4,y ),它到焦点F 的距离为5,则△OFM 的面积(O 为原点)为( )A .1 B.2 C .2 D .2 26.设定点M ⎝⎛⎭⎫3,103与抛物线y 2=2x 上的点P 之间的距离为d 1,P 到抛物线准线l 的距离为d 2,则d 1+d 2取最小值时,P 点坐标为( )A .(0,0)B .(12)C .(2,2) D.⎝⎛⎭⎫18,-12 7.对于抛物线y 2=4x 上任意一点Q ,点P (a,0)都是满足|PQ |≥|a |,则a 的取值范围是( )A .(-∞,0)B .(-∞,2]C .[0,2]D .(0,2)8.抛物线y =14ax 2(a ≠0)的焦点坐标为( ) A .a >0时为(0,a ),a <0时(0,-a ) B .a >0时为(0,a 2),a <0时为(0,-a 2) C .(0,a ) D .(1a,0) 9.若抛物线y 2=2px (p >0)上横坐标为6的点到焦点的距离为8,则焦点到准线的距离是( )A .6B .4C .2D .1 10.如图,在正方体ABCD -A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点, 若P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C .双曲线D .抛物线11.过抛物线y 2=2px (p >0)的焦点作直线交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,若x 1+x 2=3p ,则|PQ |等于( )A .4pB .5pC .6pD .8p12.抛物线的顶点在原点,对称轴是x 轴,抛物线上的点(-5,25)到焦点的距离是6,则抛物线的方程为( )A .y 2=-2xB .y 2=-4xC .y 2=2xD .y 2=-4x 或y 2=-36x13.与y 轴相切并和圆x 2+y 2-10x =0外切的动圆圆心的轨迹为( )A .圆B .抛物线和一条射线C .椭圆D .抛物线14.设抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线上的点(k ,-2)与F 点的距离为4,则k 的值是( )A .4B .4或-4C .-2D .2或-215.边长为1的等边三角形AOB ,O 为原点,AB ⊥x 轴,以O 为顶点,且过A 、B 的抛物线方程是( )A .y 2=36xB .y 2=-36xC .y 2=±36xD .y 2=±33x 16.抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A.1716 B.1516 C.78 D .017.若双曲线x 23-16y 2p2=1的左焦点在抛物线y 2=2px 的准线上,则p 的值为( ) A .2 B .3 C .4 D .4 218.已知P 为抛物线y 2=4x 上一动点,记点P 到y 轴的距离为d ,对于定点A (4,5),则|P A |+d 的最小值为( )A .4 B.74 C.17-1 D.34-119.已知直线l :y =k (x +1),抛物线C :y 2=4x ,l 与C 有一个公共点的直线有( )A .1条B .2条C .3条D .1条、2条或3条20.过抛物线y 2=4x 的焦点的直线交抛物线于A 、B 两点,O 为坐标原点,则OA →·OB →的值是A .12B .-12C .3D .-3二、填空题21.已知圆x2+y2-6x-7=0与抛物线y2=2px(p>0)的准线相切,则p=________.22.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,如果x1+x2=6,那么|AB|=________.23.在平面直角坐标系xOy中,已知抛物线关于x轴对称,顶点在原点O,且过点P(2,4),则该抛物线的方程是________.24.若点A的坐标为(3,2),F为抛物线y2=2x的焦点,点M在抛物线上移动,为使|MA|+|MF|最小,点M的坐标应为______________.25抛物线的顶点在原点,焦点在x轴上,其上有一点A(4,m),其到准线的距离为6,则m =________.26.抛物线y2=2px(p>0)上一点到准线和抛物线的对称轴距离分别为10和6,则该点的横坐标是________.27已知过抛物线y2=4x的焦点F的直线交该抛物线于A、B两点,|AF|=2,则|BF|=____. 28.抛物线y2=4x的弦AB垂直于x轴,若AB的长为43,则焦点到AB的距离为________.三、解答题29.如图所示,P为圆M:(x-3)2+y2=1上的动点,Q为抛物线y2=x上的动点,试求|PQ|的最小值.30.抛物线形拱桥的跨度是20米,拱高是4米,在建桥时,每4米需用一根支柱支撑,求其中最长支柱的长.31如下图所示,线段AB为抛物线y=x2上的动弦,且|AB|=a(a为常数,且a≥1),求弦的中点M到x轴的最近距离.32点P在抛物线2y2=x上,点Q在圆(x-2)2+y2=1上,求|PQ|的最小值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二文科数学——抛物线练习题【知识回顾】平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线。

定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线。

(1)设00(,)P x y 是抛物线上的一点,则当焦点F 在x 轴上时,02pPF x =+;当焦点F 在y 轴上时,02pPF y =+。

此公式叫做焦半径公式。

(2)设AB 是过抛物线22y px =的焦点F 的一条弦,则12||AB x x p =++。

一、选择题(每小题4分,共40分。

答案填在答题表里) 1.经过(1,2)点的抛物线的标准方程是( ) A .y 2=4x B .x 2=21y C . y 2=4x 或x 2=21y D . y 2=4x 或x 2=4y 2.抛物线y = -2x 2的准线方程是( ) A .x = -21 B .x =21 C . y =81 D . y = -81 3.动圆M 经过点A (3,0)且与直线l :x = -3相切,则动圆圆心M 的轨迹方程是A . x y 122=B . x y 62=C . x y 32=D .x y 242= 4.动点M 到定点(4,0)F 的距离比它到定直线x +5=0的距离小1,则点M 的轨迹是( ) A .y 2=4x B .y 2=16x C .x 2=4y D .x 2=16y5.已知抛物线的焦点在直线240x y --=上,则此抛物线的标准方程是A .x y 162=B .y x 82-=C . x y 162=或y x 82-=D . x y 162=或y x 82= 6.抛物线y 2+4x =0关于直线x +y =0对称的曲线的方程为( ) A .x 2= -4y B .x 2=4y C .y 2=4x D .y 2= -4x7.已知抛物线的顶点为原点,焦点在y 轴上,抛物线上的点(,2)M m -到焦点P 的距离为4,则m 的值为 ( )A .4±B .2-C . 2-或4-D .2± 8.设AB 是抛物线py x 22=的焦点弦,B A 、在准线上的射影分别为11B A 、,则11FB A ∠等于( )A . ︒45B . ︒60C . ︒90D .︒1209.抛物线y =x 2上的点到直线2x -y =4的距离最短的点的坐标是( )A .(41,21) B .(1,1) C .(49,23) D .(2,4) 10.设F 为抛物线y x 42=的焦点,点P 在抛物线上运动,点)3,2(A 为定点,使||||PA PF +为最小值时点P 的坐标是 ( ) A .⎪⎭⎫⎝⎛41,1 B .)1,2(- C .)1,2( D .)0,0( 二、填空题(每小题4分,共16分。

答案填在试卷指定的横线上)11.抛物线y 2= -8x 的焦点到准线的距离是12.抛物线)0(12<=m x m y 的焦点坐标是 13.过抛物线x y 42=的焦点作直线交抛物线于),(),,(2211y x B y x A 两点,若621=+x x ,则||AB 的值是14.设AB 是抛物线x y 22-=的过焦点的弦,4=AB ,则线段AB 中点C 到直线1x =的距离为【附加题】(12广东文)(12分)在平面直角坐标系xoy 中,已知椭圆22122:1(0)x y C a b a b+=>>的左焦点1(10)F -,,且在(01)P ,在1C 上。

(1)求1C 的方程;(2)设直线l 同时与椭圆1C 和抛物线22:4C y x =相切,求直线l 的方程高二文科数学第15周周练答卷 班别 座号 姓名11. 12. 13. 14.三、解答题(10+10+12+12=44分)15.(编者自拟题)(10分)已知动圆P 过定点(1,0)A -,且与直线:1l x =相切。

(1)求动圆圆心P 的轨迹方程;(2)若点P 的横坐标为2-,求||PA 。

16.(编者自拟题)(10分)已知直线1y kx =-与抛物线2y x =有两个不同的交点,A B 。

(1)求k 的取值范围; (2)若AOB ∆O 为原点,求k 的值。

17.(编者自拟题)(12分)已知过点(1,2)P 的一条动直线l 与抛物线22x y =交于,A B 两点。

(1)若点P 恰是线段AB 的中点,求直线l 的方程;(2)若点M 是线段AB 的中点,求动点M 的轨迹方程。

18.(编者自拟题)(12分)已知过抛物线x y 42=的焦点的直线l 与抛物线交于,A B 两点。

(1)若||5AB =,求直线l 的方程;(2)若2AF FB =,求直线l 的方程。

高二文科数学答案【部分习题思路提示】第8题:11||||,||||AF AA BF BB ==。

第9题:抛物线y =x 2上的点可表示为(x ,x 2)。

第10题:设点P 到准线的距离为d ,则||||PA PF +||PA d =+≥。

第14题:先求线段AB 中点C 到抛物线x y 22-=的准线的距离。

(11) 4 (12) (0,)4m (13) 8 (14) 25 三、解答题(10+10+12+12=44分)15.解:(1)根据动圆P 过定点(1,0)A -,且与直线:1l x =相切,可知动圆圆心P 到定点A 的距离与到定直线l 的距离相等,可见圆心P 的轨迹是以A 为焦点,l 为准线的抛物线,其中焦点到准线的距离为2,故所求的动圆圆心P 的轨迹方程为24y x =-。

(2)根据点P 到焦点A 的距离等于到准线l 的距离,可知||1(2)3PA =--=。

16.解:(1)将1y kx =-代入2y x =,得210x kx -+=。

要使直线与抛物线有两个不同的交点,就要使240k ∆=-≥,即2k ≤-或2k ≥,故所求的k 的取值范围是{|2k k ≤-或2}k ≥。

(2)设,A B两点的坐标分别为1122(,),(,)x y x y ,则由(1),知1212,1x x k x x +==,其中11221,1y kx y kx =-=-,于是||AB∴=====。

又设原点O 到直线1y kx =-,即10kx y --=的距离为d ,则1||2AOBd S AB d ∆=⇒=⋅⋅= 2=,得3k =±。

∵3k =±满足(1)的结论,∴所求的k 的值为3k =±17.解:(1)若直线l x ⊥轴,则条件显然不成立。

若直线l 不垂直于x 轴,则直线可设为2(1)y k x -=-,即(1)2y k x =-+,代入22x y =,得2122240,2x kx k x x k -+-=∴+=,故线段AB 的中点的横坐标为k ,依题意知1k =,此时直线方程可化为1y x =+,易知与抛物线22x y =有两个不同的交点。

∴所求的直线方程为10x y -+=。

(2)若直线l x ⊥轴,则条件显然不成立。

设动点M 的坐标为(,)x y ,则122x x x k +==,其中(1)2y k x =-+,消去k ,得 (1)2y x x =-+,即22y x x =-+,这就是所求的动点M 的轨迹方程。

18.解:(1)易知抛物线x y 42=的焦点的坐标为(1,0),准线方程为1x =-。

当直线l x ⊥轴时,条件显然不成立,设所求的直线方程为(1)y k x =-,它与抛物线的交点,A B 的坐标分别为1122(,),(,)x y x y ,则根据抛物线上的点到焦点的距离等于到准线的距离,得1212||||||(1)(1)2AB AF BF x x x x =+=+++=++。

将(1)y k x =-代入x y 42=,得2222212224(24)0,k k x k x k x x k+-++=∴+=。

再由||5AB =,得222242542k k k k++=⇒=⇒=± 故所求的直线方程为2(1)y x =±-,即220x y --=与220x y +-=。

(2)当直线l x⊥轴时,条件显然不成立,则由2AF FB=,得1122(1,)2(1,)x y x y--=-,即1212122,23x x x x -=-∴=-+。

再由21212224,1k x x x x k ++==,得1221x x k ⎧=⎪=⎨⎪=±⎩,其中121x x ==与条件不符,舍去。

故所求的直线方程为1)y x =±-,即0y --=与0y +-=。

【附加题】解:(1)由题意得:1,11b c a b c ===⇔===故椭圆1C 的方程为:2212x y += (2)①设直线:l x m =,直线l 与椭圆1C 相切m ⇔= 直线与抛物线22:4C y x =相切0m ⇔=,得:m 不存在②设直线:l y kx m =+直线l 与椭圆1C 相切222(12)4220k x kmx m ⇔+++-=两根相等221021m k ⇔∆=⇔=+直线与抛物线22:4C y x =相切2222(2)0k x km x m ⇔+-+=两根相等201km ⇔∆=⇔= 解得:2k m ==或:(2)22k m l y x =-==±+。

相关文档
最新文档