半导体激光器原理

合集下载

半导体激光器工作原理及基本结构

半导体激光器工作原理及基本结构

工作三要素:
01
受激光辐射、谐振腔、增益大于等于损耗。
02
半导体激光器工作原理
02
在材料设计时,考虑将p区和n区重掺杂等工艺,使得辐射光严格在pn结平面内传播,单色性较好,强度也较大,这种光辐射叫做受激光辐射。
条形结构类型
从对平行于结平面方向的载流子和光波限制情况可分为增益波导条形激光器(普通条形)和折射率波导条形激光器(掩埋条形、脊形波导)。

增益波导条形激光器 (普通条形)
特点:只对注入电流的侧向扩展和注入载流子的侧向扩散有限制作用,对光波侧向渗透没有限制作用。 我们的808大功率激光器属于这种结构:把p+重掺杂层光刻成条形,限制电流从条形部分流入。但是在有源区的侧向仍是相同的材料,折射率是一样的,对光场的侧向渗透没有限制作用,造成远场双峰或多峰、光斑不均匀,同时阈值高、光谱宽、多纵摸工作,有时会出现扭折问题。
半导体激光器材料和器件结构
808大功率激光器结构
采用MOCVD方法制备外延层,外延层包括缓冲层、限制层、有源层、顶层、帽层。有源层包括上下波导层和量子阱。
有源层的带隙比P型和N型限制层的小,折射率比它们大,因此由P面和N面注入的空穴和电子会限制在有源区中,它们复合产生的光波又能有效地限制在波导层中。大大提高了辐射效率。
最上面的一层材料(帽层)采用高掺杂,载流子浓度高,目的是为了与P面金属电极形成更好的欧姆接触,降低欧姆体激光器器件制备
大片工艺包括:材料顶层光刻腐蚀出条形、氧化层制备光刻、P面和N面电极制备、衬底减薄。 条形结构:在平行于结平面方向上也希望同垂直方向一样对载流子和光波进行限制,因此引进了条形结构。 条形结构的优点: 1. 使注入电流限制在条形有源区内,限制载流子的侧向扩散, 使 阈值电流降低; 2. 有源区工作时产生的热量能通过周围四个方向的无源区传递而逸散,提高器件的散热性能; 3. 有源区尺寸减小了,提高材料均匀的可能性; 4. 器件的可靠性提高、效率提高、远场特性改善。

半导体激光器工作原理

半导体激光器工作原理

半导体激光器工作原理首先,半导体激光器中的激活载流子通过注入电流的方式得以激活。

半导体材料通常是由n型和p型半导体组成的p-n结。

当外加正向偏压时,n型半导体中的自由电子将从导带跃迁到p型半导体中的空穴,形成激活载流子。

激活载流子存在于活性层或量子阱中,这是激光器的主要部件。

接下来,需要形成反射反馈来实现光放大。

在半导体激光器中,常常使用镜面和光栅等光学元件来实现反射反馈。

其中,光栅通常被用于频率稳定的激光器,镜面则常用于多模激光器和低成本的边界模激光器。

这些反射反馈会引导光信号在激活载流子的周围多次传输,并逐渐增加光子的数目。

然后,激活载流子引起的光信号在增加光子数目的过程中被光增益介质放大。

半导体激光器中的活性层或量子阱具有较高的光增益,因此能够对穿过的光信号进行放大。

在这个过程中,激活载流子释放出能量,使周围的光子激发更多的激活载流子,这样就形成了光放大的正反馈过程。

最后,在反射反馈和光增益的作用下,激光器中产生了激光输出。

当光信号在活性层或量子阱中传播时,由于反射反馈和光增益的影响,其能量逐渐增加。

当达到激光输出阈值时,产生了相干的激光,从激光器的输出端口射出。

需要注意的是,半导体激光器的一些特殊结构可以实现单模或多模激光输出。

例如,具有窄量子井和窄带隙的阱层等结构可以实现单模输出;而具有宽阱层和厚量子井的结构则有助于实现多模输出。

总的来说,半导体激光器的工作原理涉及激活载流子、形成反射反馈、实现光放大和产生激光输出等过程。

通过这些步骤,半导体激光器能够高效地将电能转化为激光能,并广泛应用于各个领域。

半导体激光工作原理

半导体激光工作原理

半导体激光工作原理
半导体激光器是利用电子从低能级跃迁到高能级时所产生的光,由于高能级的电子数比低能级的多得多,因此光在自由电子激光中辐射的能量是很大的。

半导体激光器主要由激光器、增益介质和泵浦光源组成。

半导体激光器的增益介质主要有三种:有源区、波导、吸收腔。

其中以有源区为主要部分,其形状和材料各不相同。

激光器有源区是由金属原子构成的半导体,它是激光系统中唯一能把光能转变成机械能和化学能的部分,也是影响激光特性的重要因素之一。

有源区还起着将泵浦光源发射出来的光(指激光器内部发射出来的光)与增益介质中传输过来的光(指增益介质发射出来的光)相互耦合、吸收和转换,再由有源区发射出来的光辐射出激光器内部。

由于有源区在整个半导体激光器中起着非常重要作用,因此在选择激光器有源区时必须考虑有源区和有源区内材料的成分、尺寸和形状,使它们相互匹配,这样才能达到最佳性能。

增益介质又叫受激辐射层或吸收层。

—— 1 —1 —。

半导体激光器的工作原理

半导体激光器的工作原理

半导体激光器的工作原理激光技术在现代科学和工业中起着至关重要的作用,而半导体激光器是其中一种常用的激光器类型。

它通过半导体材料的特殊性质来产生激光光束。

本文将详细介绍半导体激光器的工作原理。

一、激光的基本原理要了解半导体激光器的工作原理,首先需要了解激光的基本原理。

激光是一种特殊的光,与普通的自然光有很大区别。

激光光束具有相干性、单色性和聚焦性等特点,这些特征使得激光在各个领域有广泛的应用。

激光的产生是通过光子的受激辐射过程实现的。

在光学腔中,光子通过与激发状态的原子或分子发生相互作用,被吸收并获得能量。

然后,这些激发的原子或分子会受到外界刺激,由高能级跃迁到低能级,释放出原子或分子的“多余”能量。

这些能量会以光子的形式,经过光放大器的反射和反射,最后通过激光器的输出窗口发出。

这样就形成了一束特殊的激光光束。

二、半导体激光器的结构半导体激光器是利用半导体材料的特性来产生激光的器件。

它的主要结构由正、负型半导体材料组成,通常是p型和n型半导体,中间夹层为n型材料。

具体来说,半导体激光器一般由以下几个关键部分构成:1. 激活层(active layer):激活层是半导体激光器的核心部分,也是激光的产生和放大的地方。

它由两种半导体材料之间的异质结构构成,通常是由n型和p型材料组成。

当外加电流通过激活层时,会在激活层中产生载流子(电子和空穴)。

2. 波导层(waveguide layer):波导层是指导激光光束传播的部分,其材料的折射率通常比周围材料低。

通过选择合适的波导层结构,可以实现激光束的单模(TEM00)输出。

3. 管腔(cavity):管腔是激光器中的一个重要元件,它由两个高反射率镜片构成,将光线限制在波导层中,形成光学腔。

其中一个是部分透射的输出镜,另一个是全反射的输出镜。

管腔的长度决定了激光的波长。

4. 电极(electrodes):电极主要用于施加电场,控制激光器的开启和关闭。

它们通常位于激光器的两端,通过外接电源提供正向或反向偏置电压。

半导体激光器 原理

半导体激光器 原理

半导体激光器原理
半导体激光器是一种基于半导体材料的激光发射装置。

它通过电流注入半导体材料中的活性层,使其产生载流子(电子和空穴)重组的过程中释放出光子。

以下是半导体激光器的基本原理:
1. P-N结构:半导体激光器通常采用P-N结构,其中P区域富含正电荷,N区域富含负电荷。

2. 电流注入:当电流从P区域注入到N区域时,电子和空穴
会在活性层中重组,形成激子(激发态)。

3. 激子衰减:激子会因为与晶格的相互作用而损失能量,进而衰减为基态激子。

4. 辐射复合:基态激子最终与活性层中的空穴重新结合,释放出光子。

这个过程称为辐射复合。

5. 光放大:光子通过多次反射在激光腔中来回传播,与活性层中的激子相互作用,不断放大。

6. 反射镜:激光腔两端分别放置高反射镜和透明窗口,高反射镜可以增加内部光子的反射使其在腔内传播,透明窗口允许激光通过。

7. 激光输出:当达到一定放大程度时,激光在透明窗口处逃逸,形成激光输出。

通过控制电流注入和激光腔的结构设计,可以调节半导体激光器的发射波长、功率等参数,以满足不同应用领域的要求。

半导体激光器的工作原理

半导体激光器的工作原理

半导体激光器的工作原理什么是半导体激光器?半导体激光器是一种基于半导体材料制造的光电器件,主要用于产生具有高度单色性和高功率的光源。

与传统光源不同,激光器可以将光线紧密地聚焦在一个小点上,并且光线的功率可以调节,是广泛应用于激光打印、医疗、通讯、显示和材料加工等领域的关键元件。

半导体激光器的结构半导体激光器通常是由多个不同材料层构成的复杂结构。

最简单的激光器结构是单个p-n结,它由p型半导体和n型半导体构成,并夹带一个锗或硅的半导体。

由于半导体的局部结构对于电子和空穴的行为非常重要,因此需要精确的设计和制造技术。

实际上,当然有更多更复杂的激光器结构,例如含量量子阱(SQW)和多量子阱(MQW)。

半导体激光器的工作原理半导体激光器的工作原理是利用电流注入击穿p-n结来实现放电并产生激光。

当n型材料中的电子和p型材料中的空穴进一步注入p-n接口时,它们将受到电子空穴复合的影响,将能量释放出来并辐射出光。

如果这个过程能够得到持续的电流注入,将产生一种光放大现象,并最终形成一个相干的激光束。

在创建激光束之前,必须确保电流仅穿过p-n结。

这种方法可以通过对p-n结进行定向(并保留损失的最小值)来实现。

因此,在激光器中,材料需要以完全纯洁的形式生长,并且都要定向,以确保无法通过的电流在整个器件中流动。

激光器器件中的外部结构也非常重要,铝或其他金属金属层可以被添加到引出电流的区域中,以确保电荷可以从外部注入。

半导体激光器的运作模式半导体激光器的运作模式通常由三种不同的模式组成:连续波(cw)模式,脉冲(pulse)模式和调制(modulated)模式。

在连续波模式中,激光器连续的产生激光,在这种模式中,我们将需要确保激光器的温度保持恒定,并且激光器所需的电流也要保持不变。

脉冲模式意味着激光器会以一种断断续续的方式工作,以打出一个高峰值功率,这种模式常用于激光打印,或者需要进行快速激光加工的应用。

最后,调制模式允许更快的切换速率,常用于在光纤通信中实现高速数据传输。

半导体激光器发光原理及工作原理

半导体激光器发光原理及工作原理

半导体激光器发光原理及工作原理引言概述:半导体激光器是一种常见的光电器件,其发光原理和工作原理对于理解和应用半导体激光器具有重要意义。

本文将从发光原理和工作原理两个方面进行介绍和阐述,以帮助读者更好地理解半导体激光器的工作机制。

一、发光原理1.1 能带结构:半导体激光器的发光原理与半导体材料的能带结构密切相关。

半导体材料的能带结构由价带和导带组成,其中价带中填满了电子,导带中则存在自由电子。

当电子从价带跃迁到导带时,会释放出能量并产生光子。

1.2 电子与空穴复合:在半导体中,当电子从价带跃迁到导带时,会在价带中留下一个空位,形成一个空穴。

电子与空穴之间的复合过程是半导体激光器发光的关键。

当电子与空穴复合时,会释放出能量并产生光子,即激光。

1.3 电子注入:为了实现半导体激光器的工作,需要通过电流注入的方式将电子注入到半导体材料中。

通过施加电压,电子从一个材料(N型材料)注入到另一个材料(P型材料)中,形成电子空穴复合区域,从而产生激光。

二、工作原理2.1 泵浦机制:半导体激光器的工作原理基于泵浦机制。

在泵浦过程中,通过电流注入,将电子注入到P型材料中,形成电子空穴复合区域。

这个区域被称为激活层,是激光器发光的关键部分。

2.2 光放大机制:在激活层中,电子与空穴发生复合过程,释放出能量并产生光子。

这些光子在激活层中来回反射,与其他电子和空穴发生碰撞,从而引发更多的电子空穴复合。

这种光放大机制导致光子数目的指数增长,形成激光。

2.3 反射和放大:半导体激光器中的激光通过激活层两侧的反射镜进行反射,形成光的共振腔。

这种反射使得光在激活层中来回传播,并与其他光子发生干涉,增强激光的放大效果。

同时,激光也通过半导体材料的放大效应,使得光的强度进一步增大。

三、应用领域3.1 光通信:半导体激光器在光通信领域中具有广泛的应用。

其高速调制性能和窄线宽特性使其成为光纤通信系统中的重要光源。

3.2 激光打印:半导体激光器在激光打印领域中被广泛应用。

半导体激光器的工作原理

半导体激光器的工作原理

半导体激光器的工作原理半导体激光器是一种利用半导体材料电子和空穴的复合辐射出光的设备。

其工作原理涉及多个方面,下面将逐一进行详细阐述并分点列出。

1. PN结和电子空穴复合- 半导体激光器由n型和p型半导体材料组成,它们通过PN结相接。

这种结构形成了电子和空穴之间的吸引力,使它们在结区域中聚集。

- 当外加电源施加在PN结上时,形成电势梯度,导致电子从n型区域向p型区域移动,同时空穴从p型区域向n型区域移动。

这个过程叫做电子空穴复合。

2. 跃迁过程和能带结构- 半导体材料中的能带结构对激光器的工作有重要影响。

能带分为价带和导带,中间是禁带。

- 当电子从价带跃迁到导带时,会释放出一定的能量。

该能量可以以光的形式释放出来,形成激光。

3. 反射镜和激光腔- 半导体激光器使用反射镜在两侧形成一个封闭的光学腔。

这两个反射镜使得光线在腔内反复来回传播。

- 一端的反射镜透过一部分光线,形成激光的输出口;另一端的反射镜完全反射光线,起到增强光线的作用。

这种结构使得激光得以产生和放大。

4. 注入电流和激发载流子- 通过施加电流,能够激发载流子,促进电子和空穴的复合发光。

通常情况下,半导体激光器通过注入电流来实现激发。

- 注入电流可以通过直接通电或者通过外部器件(如激光二极管)提供。

5. 能量密度和共振条件- 半导体激光器需要满足一定的能量密度和共振条件才能产生激射。

能量密度必须高于阈值,使得大量的载流子能够起到放大光的作用。

- 共振条件要求光线在腔内来回传播时,相位与波长保持一致,以增强激光输出。

6. 温度控制和光谱特性- 半导体激光器对温度非常敏感,需要进行精确的温度控制,以维持其稳定性和可靠性。

- 在不同的工作温度下,激光器的发光波长和频率会发生变化,对光谱特性有一定影响。

7. 应用领域和发展趋势- 半导体激光器在通信、医疗、材料加工、光电子学等领域有广泛应用。

- 其发展趋势包括提高功率和效率、扩展工作波长范围、实现更小尺寸化等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体激光器原理一、半导体激光器的特征半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。

常用材料有砷化镓:GaAs:、硫化镉:CdS:、磷化铟(InP)、硫化锌(ZnS)等。

激励方式有电注入、电子束激励和光泵浦三种形式。

半导体激光器件,可分为同质结、单异质结、双异质结等几种。

同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。

半导体激光器具有体积小、效率高等优点,广泛应用于激光通信、印刷制版、光信息处理等方面。

二、半导体激光器的结构与工作原理现以砷化镓:GaAs:激光器为例,介绍注入式同质结激光器的工作原理。

1〃注入式同质结激光器的振荡原理。

由于半导体材料本身具有特殊晶体结构和电子结构,故形成激光的机理有其特殊性。

:1:半导体的能带结构。

半导体材料多是晶体结构。

当大量原子规则而紧密地结合成晶体时,晶体中那些价电子都处在晶体能带上。

价电子所处的能带称价带:对应较低能量:。

与价带最近的高能带称导带,能带之间的空域称为禁带。

当加外电场时,价带中电子跃迁到导带中去,在导带中可以自由运动而起导电作用。

同时,价带中失掉一个电子,则相当于出现一个带正电的空穴,这种空穴在外电场的作用下,也能起导电作用。

因此,价带中空穴和导带中的电子都有导电作用,统称为载流子。

:2:掺杂半导体与p-n结。

没有杂质的纯净半导体,称为本征半导体。

如果在本征半导体中掺入杂质原子,则在导带之下和价带之上形成了杂质能级,分别称为施主能级和受主能级:见图19,24:。

图19,24有施主能级的半导体称为n型半导体;有受主能级的半导体称这p型半导体。

在常温下,热能使n型半导体的大部分施主原子被离化,其中电子被激发到导带上,成为自由电子。

而p型半导体的大部分受主原子则俘获了价带中的电子,在价带中形成空穴。

因此,n型半导体主要由导带中的电子导电;p型半导体主要由价带中的空穴导电。

半导体激光器中所用半导体材料,掺杂浓度较大,n型杂质原子数一般为:2,5:×1018cm-1;p型为:1,3:×1019cm-1。

在一块半导体材料中,从p型区到n型区突然变化的区域称为p-n结。

其交界面处将形成一空间电荷区。

n型半导体带中电子要向p区扩散,而p型半导体价带中的空穴要向n区扩散。

这样一来,结构附近的n型区由于是施主而带正电,结区附近的p型区由于是受主而带负电。

在交界面处形成一个由n区指向p区的电场,称为自建电场。

此电场会阻止电子和空穴的继续扩散:见图19,25:。

图19,25:3:p-n结电注入激发机理。

若在形成了p-n结的半导体材料上加上正向偏压,p 区接正极,n区接负极。

显然,正向电压的电场与p-n结的自建电场方向相反,它削弱了自建电场对晶体中电子扩散运动的阻碍作用,使n区中的自由电子在正向电压的作用下,又源源不断地通过p-n结向p区扩散,在结区内同时存在着大量导带中的电子和价带中的空穴时,它们将在注入区产生复合,当导带中的电子跃迁到价带时,多余的能量就以光的形式发射出来。

这就是半导体场致发光的机理,这种自发复合的发光称为自发辐射。

要使p-n结产生激光,必须在结构内形成粒子反转分布状态,需使用重掺杂的半导体材料,要求注入p-n结的电流足够大:如30000A/cm2:。

这样在p-n结的局部区域内,就能形成导带中的电子多于价带中空穴数的反转分布状态,从而产生受激复合辐射而发出激光。

2〃半导体激光器结构。

如衅19,26为结构图,其外形及大小与小功率半导体三极管差不多,仅在外壳上多一个激光输出窗口。

夹着结区的p区与n区做成层状,结区厚为几十微米,面积约小于1mm2。

图19,26半导体激光器的光学谐振腔是利用与p-n结平面相垂直的自然解理面:110面:构成,它有35的反射率,已足以引起激光振荡。

若需增加反射率可在晶面上镀一层二氧化硅,再镀一层金属银膜,可获得95,以上的反射率。

一旦半导体激光器上加上正向偏压时,在结区就发生粒子数反转而进行复合。

三、半导体激光器的工作特性1〃阈值电流。

当注入p-n结的电流较低时,只有自发辐射产生,随电流值的增大增益也增大,达阈值电流时,p-n结产生激光。

影响阈值的几个因素: :1:晶体的掺杂浓度越大,阈值越小。

:2:谐振腔的损耗小,如增大反射率,阈值就低。

:3:与半导体材料结型有关,异质结阈值电流比同质结低得多。

目前,室温下同质结的阈值电流大于30000A/cm2;单异质结约为8000A/cm2;双异质结约为1600A/cm2。

现在已用双异质结制成在室温下能连续输出几十毫瓦的半导体激光器。

:4:温度愈高,阈值越高。

100K以上,阈值随T的三次方增加。

因此,半导体激光器最好在低温和室温下工作。

2〃方向性。

由于半导体激光器的谐振腔短小,激光方向性较差,在结的垂直平面内,发散角最大,可达20?-30?;在结的水平面内约为10?左右:见图19,27:。

图19,273〃效率。

量子效率η,每秒发射的光子数,每秒到达结区的电子空穴对数77K时,GaAs激光器量子效率达70,,80,;300K时,降到30,左右。

功率效率η1,辐射的光功率,加在激光器上的电功率由于各种损耗,目前的双异质结器件,室温时的η1最高10,,只有在低温下才能达到30,,40,。

4〃光谱特性。

由于半导体材料的特殊电子结构,受激复合辐射发生在能带:导带与价带:之间,所以激光线宽较宽,GaAs激光器,室温下谱线宽度约为几纳米,可见其单色性较差。

输出激光的峰值波长:77K时为840nm;300K时为902nm。

四、连续室温半导体激光器现在已用双异质结制成在室温下能连续输出几十毫瓦的半导体激光器。

其输出波长为900nm:近红外光:;器件工作寿命已达数万小时,甚至数十万小时;功率转换效率超过20,;成为目前激光光纤传输的重要光源。

为了降低阈值电流和实现室温下连续运转,通常由异种材料来构成“结”,称为“异质结”的新结构。

若在GaAs衬底的两侧各“生长”出P-GaAlAs层和n-GaAlAs层,则称为双异质结,其激活区厚度d?0.5um。

,28为多层结构双异质结构示意图。

图19图19,28半导体双异质结构激光器其发光机理,仍可为电注入结区,由电子和空穴复合而产生。

由于结区是由不同的半导体材料结合而成,使得电子和空穴不再往深处扩散,而在结的交界面反射:因折射率的差异:。

于是电子积蓄在狭窄区域内,使电子浓度增高。

减小扩散吸收损耗,从而提高了光的增益,降低了阈值电流,有利于实现室温下连续运转。

半导体激光器是以直接带隙半导体材料构成的Pn结或Pin结为工作物质的一种小型化激光器.半导体激光工作物质有几十种,目前已制成激光器的半导体材料有砷化稼(GaAs)、砷化锢(InAs)、锑化锢(InSb)、硫化锅(cds)、蹄化福(CdTe)、硒化铅(PbSe)、啼化铅(PhTe)、铝稼砷(A1xGa-As)、锢磷砷(In-PxAS)等. 半导体激光器的激励方式主要有三种,即电注人式、光泵式和高能电子束激励式.绝大多数半导体激光器的激励方式是电注入,即给Pn结加正向电压,以使在结平面区域产生受激发射,也就是说是个正向偏置的二极管,因此半导体激光器又称为半导体激光二极管.对半导体来说,由于电子是在各能带之间进行跃迁,而不是在分立的能级之间跃迁,所以跃迁能量不是个确定值,这使得半导体激光器的输出波长展布在一个很宽的范围上.它们所发出的波长在3-34pm之间.其波长范围决定于所用材料的能带间隙,最常见的是AlGaA:双异质结激光器,其输出波长为750-890nm.世界上第一只半导体激光器是1962年问世的,经过几十年来的研究,半导体激光器得到了惊人的发展,它的波长从红外、红光到蓝绿光,被盖范围逐渐扩大,各项性能参数也有了很大的提高,其制作技术经历了由扩散法到液相外延法(LPE),气相外延法(VPE),分子束外延法(MBE),MOCVD方法(金属有机化合物汽相淀积),化学束外延(CBE)以及它们的各种结合型等多种工艺.其激射闭值电流由几百mA降到几十mA,直到亚mA,其寿命由几百到几万小时,乃至百万小时从最初的低温(77K)下运转发展到宰la下连续工作,输出功率由几毫瓦提高到千瓦级(阵列器件)它具有效率高、体积小、重量轻、结构简单、能将电能直接转换为激光能、功率转换效率高(已达10%以上、最大可达50%).便于直接调制、省电等优点,因此应用领域日益扩大.目前,固定波长半导体激光器的使用数量居所有激光器之首,某些重要的应用领域过去常用的其他激光器,已逐渐为半导体激光器所取代.半导体激光器最大的缺点是:激光性能受温度影响大,光束的发散角较大(一般在几度到20度之间),所以在方向性、单色性和相干性等方面较差.但随着科学技术的迅速发展,半导体激光器的研究正向纵深方向推进,半导体激光器的性能在不断地提高.目前半导体激光器的功率可以达到很高的水平,而且光束质量也有了很大的提高.以半导体激光器为核心的半导体光电子技术在21世纪的信息社会中将取得更大的进展,发挥更大的作用.本文对半导体激光器的工作原理、发展历史和应用前景作一简略的介绍.2 半导体激光器的工作原理半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件: (1)增益条件:建立起激射媒质(有源区)内载流子的反转分布。

在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注人必要的载流子来实现,将电子从能量较低的价带激发到能量较高的导带中去.当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用. (2)要实际获得相干受激辐射,必须使受激辐射在光学谐振腔内得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜.对F-p腔(法布里一拍罗腔)半导体激光器可以很方便地利用晶体的与P一n结平面相垂直的自然解理面构成F一P腔.(3)为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔面的激光输出等引起的损耗,不断增加腔内的光场.这就必须要有足够强的电流注入,即有足够的粒子数反转,粒子数反转程度越高,得到的增益就越大,即要求必须满足一定的电流阀值条件.当激光器达到阀值,具有特定波长的光就能在腔内谐振并被放大,最后形成激光而连续地输出.可见在半导体激光器中,电子和空穴的偶极子跃迁是基本的光发射和光放大过程对于新型半导体激光器而言,人们目前公认量子阱是半导体激光器发展的根本动力.量子线和量子点能否充分利用量子效应的课题已延至本世纪,科学家们已尝试用自组织结构在各种材料中制作量子点,而GaInN量子点已用于半导体激光器.另外,科学家也已经做出了另一类受激辐射过程的量子级联激光器,这种受激辐射基于从半导体导带的一个次能级到同一能带更低一级状态的跃迁,由于只有导带中的电子参与这种过程,因此它是单极性器件.半导体激光器原理(2)光电子学的飞速发展主要是建立在量子力学和材料科学的发展上的,其中尤其瞩目的就是光电子半导体的发展。

相关文档
最新文档