函数图象的分析与作图(一)(含答案)

合集下载

高中数学讲义:函数的图像

高中数学讲义:函数的图像

函数的图像一、基础知识1、做草图需要注意的信息点:做草图的原则是:速度快且能提供所需要的信息,通过草图能够显示出函数的性质。

在作图中草图框架的核心要素是函数的单调性,对于一个陌生的可导函数,可通过对导函数的符号分析得到单调区间,图像形状依赖于函数的凹凸性,可由二阶导数的符号决定(详见“知识点讲解与分析”的第3点),这两部分确定下来,则函数大致轮廓可定,但为了方便数形结合,让图像更好体现函数的性质,有一些信息点也要在图像中通过计算体现出来,下面以常见函数为例,来说明作图时常体现的几个信息点(1)一次函数:y kx b =+,若直线不与坐标轴平行,通常可利用直线与坐标轴的交点来确定直线特点:两点确定一条直线信息点:与坐标轴的交点(2)二次函数:()2y a x h k =-+,其特点在于存在对称轴,故作图时只需做出对称轴一侧的图像,另一侧由对称性可得。

函数先减再增,存在极值点——顶点,若与坐标轴相交,则标出交点坐标可使图像更为精确特点:对称性信息点:对称轴,极值点,坐标轴交点(3)反比例函数:1y x=,其定义域为()(),00,-¥+¥U ,是奇函数,只需做出正版轴图像即可(负半轴依靠对称做出),坐标轴为函数的渐近线特点:奇函数(图像关于原点中心对称),渐近线信息点:渐近线注:(1)所谓渐近线:是指若曲线无限接近一条直线但不相交,则称这条直线为渐近线。

渐近线在作图中的作用体现为对曲线变化给予了一些限制,例如在反比例函数中,x 轴是渐近线,那么当x ®+¥,曲线无限向x 轴接近,但不相交,则函数在x 正半轴就不会有x 轴下方的部分。

(2)水平渐近线的判定:需要对函数值进行估计:若x ®+¥(或-¥)时,()f x ®常数C ,则称直线y C =为函数()f x 的水平渐近线例如:2x y = 当x ®+¥时,y ®+¥,故在x 轴正方向不存在渐近线 当x ®-¥时,0y ®,故在x 轴负方向存在渐近线0y =(3)竖直渐近线的判定:首先()f x 在x a =处无定义,且当x a ®时,()f x ®+¥(或-¥),那么称x a =为()f x 的竖直渐近线例如:2log y x =在0x =处无定义,当0x ®时,()f x ®-¥,所以0x =为2log y x =的一条渐近线。

函数图象的变换作图与超越方程的解(精品有答案绝对好)

函数图象的变换作图与超越方程的解(精品有答案绝对好)

函数图象的变换、作图与超越方程的解前言:函数图像有几种变换:平移变换、对称变换、翻折变换.我们也常遇到根据函数)(x f y =的图像,作出函数a x f y a x f y x f y x f y x f y +=+===-=)(),(|,)(||),(|),(的图像.(注意:图像变换的本质在于变量对应关系的变换);要特别关注|)(||),(|x f y x f y ==的图像的区别.一.按向量平移后函数图像的解析式1。

点的平移我们知道,如果点()y x P ,按向量()k h a ,=平移后的对应点为()y x P ''',,那么⎩⎨⎧+='+='k y y hx x 例1.(1)点P(3,4)按向量()3,1--=a平移后的新点Q的坐标为 .(2)点P按向量()3,1--=a平移后得到新点Q的坐标为(3,4),那么点P的坐标为: .2.函数图像的平移定理:求函数)(x f y =的图象按向量()k h a ,=平移后新图像的函数解析式为:()h x f k y -=-,从而()k h x f y +-=;证明:在平移后新图象上任取一点()y x P ,,而点P是由Q(x 0,y 0)按()k h a ,=平移后得到.由点平移公式知⇒⎩⎨⎧+=+=k y y h x x 00⎩⎨⎧-=-=k y y hx x 00 由于点Q(x 0,y 0)=(x-h,y-k)在函数y=f(x)的图像上,故其坐标代入函数表达式成为恒等式. 从而的得平移后新图像的函数解析式:()h x f k y -=-,从而()k h x f y +-=;平移后的函数图象的解析式是用x -h 替换y =f (x )中x ,是用y-k 替换y =f (x )中y,使用起来很方便。

例2.抛物线y =-2x 2-4x -3向左平移3个单位,再向下平移4个单位,求所得抛物线的解析式.例3 将一抛抛物线向左平移2个单位,再向上平移3个单位所得的抛物线的解析式为y =x 2-2x +3,求此抛物线的解析式.例4 已知把直线y =-3x +2平移后经过点A (-4,2),求平移后得到的直线的解析式,并说明是向左还是向右平移几个单位得到的.例5、已知两条抛物线: C1:y =x 2-2x +5 C2:y =x 2-4x +7 问抛物线C1经过怎样的平移后与抛物线C2重合?3.按向量平移重要结论如下:结论1 原来的点()y x P ,按()k h a ,=平移后得到的新点为()k y h x P ++',; 结论2 函数()x f y =的图象按向量()k h a ,=平移后的新图像函数解析式为()h x f k y -=-,从而()k h x f y +-=;结论 3 曲线C '按向量()k h a ,=平移后得到图象C ,若C 的解析式为()x f y =,则C '的函数解析式为()h x f k y -=-,从而()k h x f y +-=;结论4 曲线C :()0,=y x f 按向量()k h a ,=平移后所得曲线C '的方程为()0,=--k y h x f ;结论 5 曲线C '按向量()k h a ,=平移后得到曲线C ,若C 的方程为()0,=y x f ,则C '的方程为()0,=++k y h x f 。

5.3一次函数图像(1)翟赛花

5.3一次函数图像(1)翟赛花

§5.3一次函数的图象(1)【指导思想与理论依据】本节课的主要内容是规律原理的探索和技能的形成,因此本节课归为探究型教学目标类型。

基于这一原则,我对本节课教学设计的指导思想如下:(1)以实现教学目标为前提:根据《数学课程标准》的要求,发展学生的思想素质和能力素质,培养学生创新意识和创造能力,力求体现以学生发展为本。

(2)以现代教育理论为依据:注重学生的心理活动过程,强调教学过程的有序性。

(3)以基本的教学原则作指导:坚持启发式教学,充分发挥学生学习的主观能动性,面向全体、因材施教,加强学法指导,使学生在学习中学会学习,学会认知,为他们的终身学习奠定基础。

(4)以现代信息技术为手段:适当地辅以电脑多媒体技术,演示运动变化规律、揭示事物本质特征;提供典型现象和过程,供学生作为分析、思考、探究、发现的对象,以帮助学生理解原理,并掌握分析和解决问题的步骤和方法;同时注意将现代信息技术和传统教学有机结合,以实现教学最优化,从而提高教与学的质量。

【教材分析】一、教材分析(一)教学内容:本课是苏科版八年级上册第五章第3节本节内容知识结构如下:该课时主要内容是:一次函数的图象主要包括的知识点:一次函数图象的画法(二)本节内容在教材中的所处的地位和作用从数学之深的发展角度看,变量和函数的引入,标志着数学从初等数学向变量数学的迈进,而一次函数是初中阶段研究的第一个函数关系,他的研究方法具有一般性和代表性。

本课时内容安排在一次函数的概念之后。

通过这一节课的学习使学生会用两点法画一次函数图象。

它既是正比例函数的图象和性质的拓展,也为后面反比例函数、二次函数的研究奠定基础,并在今后学习高中代数、解析几何及其他数学分支打好伏笔。

同时,在整个初中阶段:一次函数的图象和性质的学习还是一元一次方程、二元一次方程组、一元一次不等式及不等式组的解法提供新的途径。

本节内容起着承上启下的作用。

更是学生进一步学习“数形结合”这一数学思想方法的很好素材。

正弦函数、余弦函数的图像(附答案)

正弦函数、余弦函数的图像(附答案)

正弦函数、余弦函数的图象[学习目标]1•了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. -=知识梳理自主学习知识点一正弦曲线正弦函数y = sin x(x€ R)的图象叫正弦曲线.利用几何法作正弦函数y= sin x, x€ [0,2 n]图象的过程如下:①作直角坐标系,并在直角坐标系y轴的左侧画单位圆,如图所示.②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x轴的垂线,可以得到对应于0, £ n,扌,…,2n等角的正弦线.6 3 2③找横坐标:把x轴上从0到2 n (2 6.28一段分成12等份.④平移:把角x的正弦线向右平移,使它的起点与x轴上的点x重合.⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y= sin x, x€ [0,2 n]的图象.在精度要求不太高时,y= sin x, x € [0,2 诃以通过找出(0,0),(寸,1), ( n 0) , (# —1),(2 n 0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图.思考在所给的坐标系中如何画出y= sin x, x€ [0,2 7的图象?如何得到y= sin x, x€ R的图象?只要将函数y= sin x, x€ [0,2 n的图象向左、向右平行移动(每次2n个单位长度),就可以得到正弦函数y= sin x, x€ R的图象.知识点二余弦曲线余弦函数y= cos x(x€ R)的图象叫余弦曲线.n n 根据诱导公式sin x+ 2 = cos x, x€ R.只需把正弦函数y= sin x, x€ R的图象向左平移-个单位长度即可得到余弦函数图象(如图).n 3要画出y = cos x, x€ [0,2従的图象,可以通过描出(0,1),勺,0,(n - 1), 0 , (2 n 1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数y= cos x, x€ [0,2的图象.思考在下面所给的坐标系中如何画出y= cos x, x€ [0,2品的图象?答案题型探究重点突破题型一五点法”作图的应用例1利用五点法”作出函数y= 1-sin x(0 * 2曲)简图. 解(1)取值列表:⑵描点连线,如图所示:跟踪训练1作函数y = sin x , x € [0,2 n 与函数y =— 1 + sin x , x € [0,2冗的简图,并研究它 们之间的关系. 解按五个关键点列表:x 0 n2 n3 n ~22 n sin x1 0—1 0—1 + sin x—1 0—1 —2—1利用正弦函数的性质描点作图:x € [0,2 的图象.题型二利用正弦、余弦函数图象求定义域 例2 求函数f(x)= lg sin x +寸16 — x 2的定义域. sin x>0,解由题意得,x 满足不等式组216 — x 2 >0,—4 w x W 4,即作出y = sin x 的图象,如图所示.sin x>0,y =— 1 + sin x , 由图象可以发现,把结合图象可得定义域:x€ [ —4,—nU (0, n)跟踪训练2 求函数f(x)= lg cos x+ 25-x2的定义域.cos x>0解由题意得,x满足不等式组25—"0,cos x>0即—5W迄5,作出y= C0S x的图象,如图所示.结合图象可得定义域:x € —5,—3 nU题型三利用正弦、余弦函数图象判断零点个数例3在同一坐标系中,作函数y= sin x和y= lg x的图象,根据图象判断出方程sin x = lg x 的解的个数.解建立坐标系xOy,先用五点法画出函数y= sin x, x€ [0,2冗的图象,再依次向左、右连续平移2 n个单位,得到y= sin x的图象.描出点(1,0), (10,1)并用光滑曲线连接得到y= lg x的图象,如图所示.由图象可知方程sin x= lg x的解有3个.跟踪训练3方程x2—cos x = 0的实数解的个数是___________答案2解析作函数y= cos x与y= x2的图象,如图所示,由图象,可知原方程有两个实数解.思韻方法数形结合思想在三角函数中的应用例4函数f(x) = sin x+ 2|sin x|, x€ [0,2冗的图象与直线y= k有且仅有两个不同的交点,求k 的取值范围.3sin x, x € [0 , n,解f(x)= sin x+ 2|sin x|=—sin x, x€ n 2 n ].图象如图,F当堂检测自查自纠1.函数y= sin x (x€ R)图象的一条对称轴是()A. x轴B. y轴C.直线y= x D .直线x = 22.用五点法画y= sin x, x€ [0,2的图象时,下列哪个点不是关键点()1 A.(6,2)% 八B.(2, 1)C. ( , 0)D. (2 , 0)3.函数y= sin x, x€ [0,21 亠的图象与直线y= —2的交点为A(X1, y1), B(x2, y2),贝U X1 + x24. 利用五点法”画出函数y= 2-sin x, x€ [0,2的简图.5. 已知O w x< 2 n^试探索sin x与cos x的大小关系.若使f(x)的图象与直线y=k有且仅有两个不同的交点,根据图可得k的取值范围是(1,3).A'课时精练、选择题n 3 n1函数y= —sin x, x€ —2, y 的简图是()2. 在同一平面直角坐标系内,函数y= sin x, x€ [0,2 与y= sin x, x€ [2 n 4 n的图象()A .重合B .形状相同,位置不同C.关于y轴对称sin x= 10的根的个数是3.方程4.D .形状不同,位置不同B. 8C. 9D. 10函数A'3 n n5.如图所示,函数y= cos x阳n x|(0且x③的图象是()D6. 若函数y= 2cos x(0< x< 2 n的图象和直线y= 2围成一个封闭的平面图形,则这个封闭图形的面积是()A . 4B . 8C . 2 nD . 4 n二、填空题7. __________________________________________________ 函数y= ” . log^sin x的定义域是_________________________________________________________ .&函数y= _ 2cos x+ 1的定义域是 ___________ .___ 19. 函数f(x) = >,'sin 或为 ---------------- .10. _______________________________________________________________ 设0<x< 2 n,且|cos x—sin x|= sin x—cos x,贝U x 的取值范围为 ______________________ .三、解答题111. 用“五点法”画出函数y = 2 + sin x, x€ [0,2 n的简图.12. 根据y= cos x的图象解不等式:-于三cos x< 2, x€ [0,2 n]13. 分别作出下列函数的图象.(1) y= |sin x|, x€ R;(2) y= sin|x|, x€ R.当堂检测答案1答案 D 2. 答案 A 3. 答案 3n 解析如图所示, _ 3 nx i + X 2= 2 = 3 n. 4.解(1)取值列表如下:x 0 n2 n3n~22 n sin x 0 1 0 —i 0 y = 2— sin x21232⑵描点连线,图象如图所示:由图象可知 ①当x =m 或x = 5n时,sin x = cos x ;44③当 O W x <n或5n<x< 2 n时,sin x <cos x. 课时精炼答案一、选择题 1•答案 D 2.答案 B5 •解用“五点法”作出sin x>cos x ;解析根据正弦曲线的作法可知函数y= sin x, x€ [0,2 n与y= sin x, x€ [2 n 4n的图象只是位置不同,形状相同.3. 答案Ax解析在同一坐标系内画出y= 10和y= sin x的图象如图所示:¥=血JT根据图象可知方程有7个根.4. 答案D解析由题意得n 32cos x, 0或2 n 炸2,c 冗30, 2<x<2 n.显然只有D合适.5. 答案C解析当冗当2<x< n时,y= cos x • |tan| =—sin x;当n<<3n寸,y= cos x |tax|= sin x,故其图象为C.6. 答案D解析作出函数y = 2cos x, x€ [0,2 n]图象,函数y = 2cos x,x€ [0,2 n的图象与直线y = 2围成的平面图形为如图所示的阴影部分. 利用图象的对称性可知该阴影部分的面积等于矩形OABC的面积,又••• OA= 2, OC= 2n,S阴影部分=S矩形OABC = 2 X 2 n= 4 n.、填空题7. 答案{x|2k n<<2k n+ n k€ Z}1解析由log2sin x> 0知0<sin x< 1,由正弦函数图象知2kn«2k n+n k€乙… 2 2& 答案2k n—3冗,2k n+ k€ Z1 2 2解析2cos x+ 1> 0 , cos x>—2,结合图象知x€ 2k n— " n, 2k n+" n , k€ Z.9.答案(一4,— nU [0 , n]sin x > 0, 2kx < 2k n+ n,解析2?16— x 2>0 — 4<x<4? — 4<x W — n 或 0 < x W n. 解析 由题意知sin x — cos x >0, 即卩cos x W sin x ,在同一坐标系画出 y = sin x , x € [0,2 n 与三、解答题11•解(1)取值列表如下:x 0 n2 n3 2n 2 n sin x 0 1 0 —1 0 1 ,. 1 3 1 1 1 -+ sin x222222⑵描点、连线,如图所示.12.解 函数y = cos x , x € [0,2 n 的图象如图所示: 根据图象可得不等式的解集为n, ,5 n 7 n, , 5 n{x|—W x < 或一W x < }3 6 63,.10.答案n 5 n 4,~4y = cos x , x € [0,2n 观察图象知x € 4, 5 n~4 .n 的图象,sin x 2k x< 2k n+n, 13.解(1)y= |sin x|=—sin x 2k n+n<W 2k n+ 2 n(k€ Z).其图象如图所示,sin x x>0 ,(2)y= sin |x| =—sin x x<0 .其图象如图所示,。

4.3一次函数的图象(第1课时)

4.3一次函数的图象(第1课时)
的图象上吗?
都在
(2)正比例函数y=-3x的图象上的点
(x,y)都满足关系式y=-3x吗?
满足
(3)正比例函数y = kx 图象有何特点?
你是怎样理解的?
正比例函数 y = kx (k≠0) 的图象是一
原点(0,0)
直线
条经过 _______________
的_______。
y
5
4
3
2
1
-3 -2 -1 0 1 2 3
(1,5),(-1,5),(0.5,-2.5),(-5,1).
解:将各点的坐标依次代入验证,可知点(-1,5),
(0.5,-2.5)在正比例函数y=-5x的图象上.
2.画出下列正比例函数的图象:
2
2
(1)y 4 x;(2)y x; (3)y x .
3
3
解:三个函数分别列表如下:
(1)
例题讲解
例1 画出正比例函数 y =2x 的图象
解:
y
1. 列表
x … -2 -1 0 1
2 …
y … -4 -2 0
4
2
2. 描点
3. 连线
它是一条直线。

5
4
3
2
1
y=2x
-3 -2 -1 0 1 2 3
-1
-2
-3
-4
x
做一做
议一议
(1)满足关系式y=-3x的x,y所对应的点(x,y)都在正比例函数y=-3x
(1)、当k>0时,图象经过第 一、三
右 上升 ,y的值随着x值得增大而
象限,从左向
增大
;
(2)、当k<0时,图象经过第 二、四 象限,从左向

高三数学一轮复习 第2章 函数、导数及其应用第7课时 函数的图象精品课件

高三数学一轮复习 第2章 函数、导数及其应用第7课时 函数的图象精品课件

答案: D
3.为了得到函数y=2x-3-1的图象,只需把函数y=2x的图象上所 有的点( )
A.向右平移3个单位长度,再向下平移1个单位长度 B.向左平移3个单位长度,再向下平移1个单位长度 C.向右平移3个单位长度,再向上平移1个单位长度 D.向左平移3个单位长度,再向上平移1个单位长度 解析: 由y=2x得到y=2x-3-1,只需向右平移3个单位,向下平 移1个单位. 答案: A
1.(2010·重庆卷)函数f(x)=4x2+x 1的图象(
)
A.关于原点对称
B.关于直线y=x对称
C.关于x轴对称
D.关于y轴对称
解析: ∵f(x)=4x2+x 1=2x+2-x,∴f(-x)=f(x),是偶函数. 答案: D
2.(2009·北京卷)为了得到函数y=lg
x+3 10
的图象,只需把函数y=
答案: A
【变式训练】 3.若1<x<3,a为何值时,x2-5x+3+a=0有两解、 一解、无解?
解析: 原方程化为:a=-x2+5x-3,① 作出函数 y=-x2+5x-3(1<x<3)的图象如图, 显然该图象与直线 y=a 的交点的横坐标是方程①的解, 由图可知,当 3<a<143时,原方程有两解; 当 1<a≤3 或 a=143时,原方程有一解; 当 a>143或 a≤1 时,原方程无解.
分别画出下列函数的图象: (1)y=|lg x|; (2)y=2x+2; (3)y=x2-2|x|-1.
lg x x≥1 解析: (1)y=-lg x 0<x<1. 图象如图①. (2)将y=2x的图象向左平移2个单位.图象如图②.
x2-2x-1 x≥0 (3)y=x2+2x-1 x<0 .图象如图③.
有两个不同实根,则a的取值范围为( )

实验1_函数的图形

实验1_函数的图形

实验1曲线绘图实验目的•学习Matlab绘图命令;•进一步理解函数概念。

1.曲线图Matlab作图是通过描点、连线来实现的,故在画一个曲线图形之前,必须先取得该图形上的一系列的点的坐标(即横坐标和纵坐标),然后将该点集的坐标传给Matlab函数画图.命令为:PLOT(X,Y,’S’)线型X,Y是向量,分别表示点集的横坐标和纵坐标PLOT(X,Y)--画实线PLOT(X,Y1,’S1’,X,Y2,’S2’,……,X,Yn,’Sn’)--将多条线画在一起例1在[0,2*pi]用红线画sin(x),用绿圈画cos(x). x=linspace(0,2*pi,30);解:y=sin(x);z=cos(x);plot(x,y,'r',x,z,‘g o')G 绿色o 圈表1 基本线型和颜色符号颜色符号线型y黄色.点m紫红0圆圈c青色x x标记r红色+加号g绿色*星号b兰色-实线w白色:点线k黑色-.点划线--虚线2.符号函数(显函数、隐函数和参数方程)画图(1) ezplotezplot(‘f(x)’,[a,b])表示在a<x<b绘制显函数f=f(x)的函数图ezplot(‘f(x,y)’,[xmin,xmax,ymin,ymax])表示在区间xmin<x<xmax和ymin<y<ymax绘制隐函数f(x,y)=0的函数图ezplot(‘x(t)’,’y(t)’,[tmin,tmax])表示在区间tmin<t<tmax绘制参数方程x=x(t),y=y(t)的函数图例2 在[0,pi]上画y=cos(x)的图形解输入命令ezplot('cos(x)',[0,pi])解输入命令ezplot('cos(t)^3','sin(t)^3',[0,2*pi])例4 在[-2,0.5],[0,2]上画隐函数0)sin(=+xy e x的图 解输入命令ezplot('exp(x)+sin(x*y)',[-2,0.5,0,2])例3 在[0,2*pi]上画t x 3cos =,t y 3sin =星形图如何利用ezplot画出颜色图(2) fplotfplot(‘fun’,lims)表示绘制字符串fun指定的函数在lims=[xmin,xmax]的图形.注意:[1] fun必须是M文件的函数名或是独立变量为x的字符串.[2] fplot函数不能画参数方程和隐函数图形,但在一个图上可以画多个图形。

2.7 函数的图像

2.7 函数的图像

∴x - <a 在x∈(-1,1)恒成立,
2
2 1
x
高考第一轮复习用书· 数学(理科)
第二章 2.7 函数的图像
令g(x)=x - ,φ(x)=a ,
2
2 1
x
当x∈(-1,1)时,g(x)的图象在φ(x)的图象的下方.
高考第一轮复习用书· 数学(理科)
-1
第二章 2.7 函数的图像
当a>1时,结合图象可知a ≥ ,即1<a≤2;当0<a<1时,结合图
5.若定义在R上的函数f(x)关于点(a,c)成中心对称,关于直线x =b(b>a)成轴对称,则函数f(x)为周期函数,4b-4a是它的一个周 期.
高考第一轮复习用书· 数学(理科)
第二章 2.7 函数的图像
1.方程log2(x+4)=3 的实根的个数为 ( (A)0个. (B)1个. (C)2个.
x
) (D)3个.
【解析】借助图形,由图可知.
【答案】C
高考第一轮复习用书· 数学(理科)
第二章 2.7 函数的图像
2.函数f(x)=
ln | x | x
的图象大致是(
)
【解析】f(-x)= 排除A、B、C. 【答案】D
ln | x | ln | x | =- x x
=-f(x),故f(x)为奇函数;又f(1)=0,故
高考第一轮复习用书· 数学(理科)
第二章 2.7 函数的图像
变式训练3 已知f(x)是R上的单调函数,且对任意的实数a∈ R,有f(-a)+f(a)=0恒成立,若f(-3)=2. (1)试判断f(x)在R上的单调性,并说明理由; (2)解关于x的不等式:f(
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生做题前请先回答以下问题
问题1:确定函数图象,通常研究不同背景下两变量之间的函数关系,以函数图象的形式进行描述.常考查_________________________.
处理思路:
①____________________;
②____________________;
③结合表达式进行验证.
函数图象的分析与作图(一)
一、单选题(共6道,每道16分)
1.如图,在边长为4的正方形ABCD中,动点P从点A出发,以每秒1个单位长度的速度沿线段AB向点B运动,同时动点Q从点B出发,以每秒2个单位长度的速度沿折线BC-CD运动,当点P运动到点B时,P,Q两点同时停止运动.设点P运动的时间为t,△APQ的面积为S(记初始时刻的面积为0),则S关于t的函数图象为( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:确定函数图象
2.如图,已知等边三角形ABC的边长为2,动点P从点A出发,以每秒1个单位长度的速度沿A→B→C→A的方向运动,到达点A时停止.设运动的时间为x秒,,则y关于x的函数图象为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:确定函数图象
3.如图,四边形ABCD是边长为1的正方形,四边形EFGH是边长为2的正方形,点D与点F重合,点B,D(F),H在同一条直线上.将正方形ABCD沿FH向右平移,当点B与点H 重合时停止.设点D,F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与x之间的函数关系的图象是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:确定函数图象
4.如图,半圆O的直径AB=2,AP是半圆O的切线,C是射线AP上一动点(不与点A重合),连接BC,交半圆O于点M,过点M作MN⊥AB于点N.设AN的长为x,图中阴影部分的面积之和为y,则关于的函数图象大致为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:确定函数图象
5.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点
同时出发,以1cm/s的速度沿BC,CD向终点C,D运动.设运动的时间为t(s),△OEF的面积为,则与t(s)之间的函数关系可用图象表示为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:确定函数图象
6.一天,小亮看到家中的塑料桶中有一个竖直放置的玻璃杯,塑料桶和玻璃杯都是圆柱形,桶口的半径是杯口半径的2倍,其主视图如图所示.小亮决定做个试验:把塑料桶和玻璃杯看作一个容器,对准杯口匀速注水,注水过程中杯子始终竖直放置,则下列能反映容器最高水位h与注水时间t之间关系的大致图象是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:确定函数图象。

相关文档
最新文档