进化算法-遗传算法
进化计算与遗传算法

进化计算的主要分支
——进化策略
• (l+1)进化策略或二元(two-membered)进 化策略: 种群中只包含一个个体,而且只使用变异作。在 每一进化代,变异后的个体与其父体进行比较再 选择两者之优。它使用的变异算子是基于正态分 布的变异操作 • 进化策略 种群内含有 个个体,随机地选取一个个体进 行变异,然后取代群体中最差的个体
从生物进化到进化计算
• 杂交:通过杂交随机组合来自父代染色体 上的遗传物质,产生不同于它们父代的染 色体。生物进化过程不需要记忆,能很好 地适应自然环境的信息都包含在当前生物 体所携带的染色体的基因库中,并由子代 个体继承下来。
从生物进化到进化计算
• 突变:随机改变父代个体的染色体上的基 因结构,产生具有新染色体的子代个体。 变异是一种不可逆过程,具有突发性、间 断性和不可预测性,对于保证群体的多样 性具有不可替代的作用。
• 另外,生物进化是一个开放的过程,自然 界对进化中的生物群体提供及时的反馈信 息,或称为外界对生物的评价。由此形成 了生物进化的外部动力机制。
从生物进化到进化计算
进化计算的特点: • 进化计算采用简单的编码技术来表示各种 复杂的结构,并通过对一组编码表示进行 简单的遗传操作和优胜劣汰的自然选择来 指导学习和确定搜索的方向。 • 它采用种群(即一组表示)的方式组织搜 索,这使得它可以同时搜索解空间内的多 个区域。而且用种群组织搜索的方式使得 进化算法特别适合大规模并行计算。
从生物进化到进化计算
• 在赋予进化计算自组织、自适应和自学习等特 征的同时,优胜劣汰的自然选择和简单的遗传 操作使进化计算具有不受其搜索空间限制性条 件(如可微、连续、单峰等)的约束及不需要 其它辅助信息(如导数)的特点
• 这些崭新的特点使得进化计算不仅能获得较高 的效率而且具有简单、易于操作和通用的特性, 而这些特性正是进化计算越来越受到人们青睐 的主要原因之一
遗传算法遗传算法

(5)遗传算法在解空间进行高效启发式搜索,而非盲 目地穷举或完全随机搜索;
(6)遗传算法对于待寻优的函数基本无限制,它既不 要求函数连续,也不要求函数可微,既可以是数学解 析式所表示的显函数,又可以是映射矩阵甚至是神经 网络的隐函数,因而应用范围较广;
(7)遗传算法具有并行计算的特点,因而可通过大规 模并行计算来提高计算速度,适合大规模复杂问题的 优化。
26
(4)基本遗传算法的运行参数 有下述4个运行参数需要提前设定:
M:群体大小,即群体中所含个体的数量,一般取为 20~100; G:遗传算法的终止进化代数,一般取为100~500; Pc:交叉概率,一般取为0.4~0.99;
Pm:变异概率,一般取为0.0001~0.1。
27
10.4.2 遗传算法的应用步骤
遗传算法简称GA(Genetic Algorithms)是1962年 由美国Michigan大学的Holland教授提出的模拟自然 界遗传机制和生物进化论而成的一种并行随机搜索最 优化方法。
遗传算法是以达尔文的自然选择学说为基础发展起 来的。自然选择学说包括以下三个方面:
1
(1)遗传:这是生物的普遍特征,亲代把生物信息交 给子代,子代总是和亲代具有相同或相似的性状。生 物有了这个特征,物种才能稳定存在。
18
(3)生产调度问题 在很多情况下,采用建立数学模型的方法难以对生
产调度问题进行精确求解。在现实生产中多采用一些 经验进行调度。遗传算法是解决复杂调度问题的有效 工具,在单件生产车间调度、流水线生产车间调度、 生产规划、任务分配等方面遗传算法都得到了有效的 应用。
19
(4)自动控制。 在自动控制领域中有很多与优化相关的问题需要求
10
遗传算法

2019/12/10
4
轮盘法
6.5% 25.4%
42.2%
(1) 计算每个染色体xi 的适应度f(xi);
35.9%
popsize
(2) 找出群体的适应度之和;SUM f ( xi )
群体(population) 由染色体组成的集合。
代遗传操作 遗传操作作用于群体而产生新的群体。
2019/12/10
2
二、基本算法
用于比较不同的解以 确定哪 一个解是更好 的一个措施。
2019/12/10
3
三、基本遗传算子
选择算子(Selection)
用于模拟生物界去劣存优的自然选择现象。它从旧 种群中选择出适应性强的某些染色体,放人匹配集(缓 冲区),为染色体交换和变异运算产生新种群作准备。
1
一、相关概念
染色体(chromosome)或个体(individual) 把每一个 可能的解编码为一个向量,用来描述基本的遗传结构。 例如,用0,1 组成的串可以表示染色体。
基因
向量中的每一个元素
适应度(fitness) 每个染色体所对应的一个适应值。 在优化问题中,适应度来自于一个目标评价函数。
(7) 重复执行(5)(6)直到缓冲区中有足够多的染色体。
2019/12/10
5
交叉算子(Crossover)
具体做法:
(1) 缓冲区中任选两个染色体(双染色体);
(2) 随机选择交换点位置J,0<J<L(染色体长度);
(3) 交换双亲染色体交换点右边的部分。(单点交叉)
遗传算法的基本原理与流程

遗传算法的基本原理与流程遗传算法是一种模拟生物进化过程的优化算法,它通过模拟自然选择、交叉和变异等过程,逐步搜索最优解。
本文将介绍遗传算法的基本原理与流程。
一、基本原理遗传算法的基本原理是基于达尔文的进化论和孟德尔的遗传学理论。
它将问题的解表示为一个个体的染色体,染色体由基因组成。
每个基因代表问题的一个变量或决策。
通过改变基因的组合,可以得到不同的解。
而适应度函数则用来评估每个个体的适应程度,即解的优劣程度。
遗传算法的核心思想是通过模拟自然选择、交叉和变异等过程,逐步优化解的质量。
在自然选择中,适应度高的个体有更大的概率被选择为父代,而适应度低的个体则有较小的概率被选择。
交叉操作模拟了生物的基因交换过程,将两个父代个体的染色体片段进行交叉,生成新的个体。
变异操作则模拟了基因突变的过程,通过改变染色体中的基因值,引入新的解。
二、流程遗传算法的流程一般包括初始化、选择、交叉、变异和更新等步骤。
1. 初始化:首先,需要确定问题的解空间和染色体编码方式。
然后,随机生成一组初始个体作为种群。
2. 选择:根据适应度函数,选择适应度较高的个体作为父代。
常见的选择方法有轮盘赌选择、锦标赛选择等。
3. 交叉:从父代中选取两个个体进行交叉操作,生成新的个体。
交叉操作可以是单点交叉、多点交叉或均匀交叉等。
4. 变异:对新生成的个体进行变异操作,引入新的解。
变异操作可以是位变异、插入变异或交换变异等。
5. 更新:根据适应度函数,选择新生成的个体和原始个体中适应度较高的个体,更新种群。
以上步骤可以迭代执行,直到满足终止条件,例如达到最大迭代次数或找到满意的解。
三、应用与优势遗传算法广泛应用于组合优化、函数优化、机器学习等领域。
它具有以下优势:1. 全局搜索能力:遗传算法能够在解空间中进行全局搜索,避免陷入局部最优解。
2. 并行性:由于遗传算法的并行性,可以同时处理多个个体,加快搜索速度。
3. 适应性:遗传算法能够自适应地调整搜索策略,根据不同问题的特点进行优化。
遗传算法的原理

遗传算法的原理遗传算法是一种基于自然选择和遗传进化理论的优化算法,它模拟了自然界中生物种群的进化过程,通过对种群个体的基因组合、变异、交叉等操作,逐步优化种群的适应度,最终得到最优解。
遗传算法的基本原理是通过不断迭代的方式,从初始解开始,逐步搜索解空间中的最优解。
具体而言,遗传算法包括以下几个步骤:1.初始化:首先随机生成一组初始解,也就是种群,每个个体都由一组基因表示。
2.选择:根据适应度函数,选择一部分个体作为父代,这些个体具有更好的适应度,有更大的概率被选择到下一代。
3.交叉:将父代个体的基因进行随机组合,生成新的个体。
交叉操作的目的是产生新的基因组合,增加种群的多样性,避免陷入局部最优解。
4.变异:在新个体中随机选择一些基因进行变异,即将基因值进行随机改变。
变异操作的目的是引入新的基因组合,增加种群的多样性,有助于跳出局部最优解。
5.评价:根据适应度函数,对新个体进行评估,计算其适应度值。
适应度函数是用来评价个体在解空间中的优劣程度的函数。
6.筛选:根据适应度值,选择一部分个体作为下一代种群。
一般来说,适应度值越高的个体被选择的概率越大。
7.迭代:对于新的种群,进行交叉、变异等操作,重复上述步骤,直到达到预设条件或达到最大迭代次数。
遗传算法的优点是适用于各种类型的问题,而且具有全局寻优能力,能够得到全局最优解。
另外,遗传算法具有并行处理能力,可以加速求解过程。
不过,遗传算法也存在一些缺点,比如需要大量的计算资源,而且求解过程可能会陷入局部最优解。
在实际应用中,遗传算法已经被广泛应用于各种领域,比如工程设计、机器学习、金融分析等。
遗传算法能够帮助我们在复杂的问题中寻找最优解,提高效率和准确度。
(完整版)遗传算法简介及代码详解

遗传算法简述及代码详解声明:本文内容整理自网络,认为原作者同意转载,如有冒犯请联系我。
遗传算法基本内容遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。
遗传学与遗传算法中的基础术语比较染色体:又可以叫做基因型个体(individuals)群体/种群(population):一定数量的个体组成,及一定数量的染色体组成,群体中个体的数量叫做群体大小。
初始群体:若干染色体的集合,即解的规模,如30,50等,认为是随机选取的数据集合。
适应度(fitness):各个个体对环境的适应程度优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码/译码,因为优化后要进行评价(此时得到的解是否较之前解优越),所以要返回问题空间,故要进行解码。
SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;如果直接生成二进制初始种群,则不必有编码过程,但要求解码时将染色体解码到问题可行域内。
遗传算法的准备工作:1) 数据转换操作,包括表现型到基因型的转换和基因型到表现型的转换。
前者是把求解空间中的参数转化成遗传空间中的染色体或者个体(encoding),后者是它的逆操作(decoding)2) 确定适应度计算函数,可以将个体值经过该函数转换为该个体的适应度,该适应度的高低要能充分反映该个体对于解得优秀程度。
非常重要的过程。
遗传算法基本过程为:1) 编码,创建初始群体2) 群体中个体适应度计算3) 评估适应度4) 根据适应度选择个体5) 被选择个体进行交叉繁殖6) 在繁殖的过程中引入变异机制7) 繁殖出新的群体,回到第二步实例一:(建议先看实例二)求 []30,0∈x 范围内的()210-=x y 的最小值1) 编码算法选择为"将x 转化为2进制的串",串的长度为5位(串的长度根据解的精度设 定,串长度越长解得精度越高)。
遗传算法解释及代码(一看就懂)

遗传算法( GA , Genetic Algorithm ) ,也称进化算法。
遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。
因此在介绍遗传算法前有必要简单的介绍生物进化知识。
一.进化论知识作为遗传算法生物背景的介绍,下面容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。
个体:组成种群的单个生物。
基因 ( Gene ) :一个遗传因子。
染色体 ( Chromosome ):包含一组的基因。
生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。
适应度低的个体参与繁殖的机会比较少,后代就会越来越少。
遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。
简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。
那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。
二.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。
这样进化N代后就很有可能会进化出适应度函数值很高的个体。
举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。
这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。
编码:需要将问题的解编码成字符串的形式才能使用遗传算法。
遗传算法

11
5.3.2 遗传算法——研究内容
• 性能分析。遗传算法的性能分析一直都是遗传算法研究领域中最重要 的主题之一。在遗传算法中,群体规模、杂交和变异算子的概率等控 制参数的选取是非常困难的,同时它们又是必不可少的实验参数。遗 传算法还存在一个过早收敛问题,也就是说遗传算法的最后结果并不 总是达到最优解,怎样阻止过早收敛问题是人们感兴趣的问题之一。 另外,为了拓广遗传算法的应用范围,人们在不断研究新的遗传染色 体表示法和新的遗传算子。
(3) 令t=0,随机选择N个染色体初始化种群P(0); (4) 定义适应度函数f(f>0); (5) 计算P(t)中每个染色体的适应值; (6) t=t+1; (7) 运用选择算子,从P(t-1)中得到P(t); (8) 对P(t)中的每个染色体,按概率Pc参与交叉; (9) 对染色体中的基因,以概率Pm参与变异运算; (10) 判断群体性能是否满足预先设定的终止标准,若不满足则返 回(5)。
利人,遗传学的奠基人。
“种瓜得瓜,种豆得豆” “龙生龙,凤生凤,老鼠 生儿打地洞”
6
在自然界,构成生物基本结构与功能的单位是细胞(Cell)。细胞 中含有一种包含着所有遗传信息的复杂而又微小的丝状化合物,人们称 其为染色体(Chromosome)。在染色体中,遗传信息由基因(Gene)所 组成,基因决定着生物的性状,是遗传的基本单位。染色体的形状是一 种双螺旋结构,构成染色体的主要物质叫做脱氧核糖核酸(DNA),每个 基因都在DNA长链中占有一定的位置。一个细胞中的所有染色体所携带 的遗传信息的全体称为一个基因组(Genome)。细胞在分裂过程中,其遗 传物质DNA通过复制转移到新生细胞中,从而实现了生物的遗传功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6/50
(1) 编码机制
二进制编码
每一个位( 0或1 )-基因 字符串-染色体
多值编码方法 实数编码
7/50
(2) 适应度函数
优化问题的目标函数 “适应度值”的计算直接通过将目标函数经 一定的线性变换映射到的[0,1]区间内的 一个值。
8/50
(3) 选择机制
基本思想取自于自然界进化论的“适者生 存”。 适应度值越高的个体,生存的数量也越高。 满足“优胜劣汰”自然法则。 也可称为复制机制 比例选择法(Proportionate selection scheme) 转轮选择法(Roulette Wheel Selection Scheme) :随机方法
13/50
举例
群体 P1 (随机初始化) 染色体 适应度值
0000011100 1000011111
0110101011 1111111011
0.2 0.6
0.6 0.9
14/50
(2) 选择
以 fi / f 的比例分配转轮
群体P4 (变异运算后)ቤተ መጻሕፍቲ ባይዱ
染色体 1000011011
0110111011 1111111011 0111111111
适应度值 0.5
0.7 0.9 0.9
18/50
(5) 终止准则判断
方法有两类:
一是系统的性能指标已经满足要求; 二是学习次数已经达到最大允许次数。
3/50
步骤
(1)
(2) (3) (4) (5) (6)
• 群体的初始化;
• 评价群体中每一个体的性能;
• 选择下一代个体; • 执行简单的操作算子(如交叉、变异); • 评价下一代群体的性能; • 判断终止条件满足否?若不,则转(3)继续;若满足,则 结束
9/50
(4) 交叉算子
模拟有性繁殖现象 随机地从父辈集合中选取两个个体作为双亲。 设L表示一个体的字符串(染色体)长度, 随机地产生(0~L)之间的一个数d,并把此点 位置称为交叉点。交叉运算就是将双亲的基 因链在交叉点断裂,且将在交叉点之后的基 因根据交叉率的条件决定是否进行相互交换 形成下一代。 所谓交叉率pc是根据优化问题预先确定的一 个0~1之间的值。通常取0.6~0.9。
①
② ③ ④ ⑤
• 群体初始化;
• 繁殖;
• 交叉;
• 变异;
• 终止准则判断,若不满足,重 复②~④;否则,搜索结束。
12/50
(1) 群体初始化
群体规模N 一般情况下取N=10~200之间为宜。
初始群体的构成 随机选择
群体 P3 (交叉运算后) 染色体 10000|11011 0110101011 适应度值 0.5 0.6
1111111011 11111|11111
0.9 1.0
17/50
(4) 变异
取pm=0.05 P4给出了第2个个体和第4个个体中分别有一 个基因发生变异后的情况。
10/50
(5) 变异算子
模拟基因突变现象 所谓变异指的是随机地选取染色体中的某个 基因(也即字符串中的某一位)进行取反运 算,即将原有的“1”变为“0” 和反之。 变异率pm取比较小的数值,一般pm为0.001~ 0.2。
11/50
3. 遗传学习算法的设计举例
15/50
选择举例
群体 P2 (经选择后) 染色体 1000011111 适应度值 0.6
0110101011 1111111011
1111111011
0.6 0.9
0.9
16/50
(3) 交叉
本例中随机选取1和4号个体、2和3号个体分 别形成两对进行交叉运算。当取交叉率 pc=0.5时,只有个体1和4这一对双亲进行真 正的交叉运算,而另一对个体2和3不进行交 叉运算。
4/50
需要解决的问题
编码机制; 选择机制; 控制参数选择; 二进制字符串的群体构成; 适应度函数的计算 遗传算子(交叉、变异)的定义。
5/50
2. 遗传学习算法的操作算子
编码机制 (Encoding mechanism) 适应度函数(Fitness function) 选择机制(Selection mechanism) 交叉算子(Crossover) 变异算子(Mutation)
19/50
8.2 遗传学习原理与算法
8.2.1 遗传学习的基本思想 8.2.2 遗传学习算法的理论基础
8.2.3 遗传学习算法的改良
8.2.4 遗传学习算法的应用
20/50
8.2.2 理论基础
有多种理论分析遗传算法的收敛性,例如
Holland提出的模板理论(Schema theory) Goldberg提出的建筑块假设(Building block hypothesis)。
它们通过计算有用相似性,检查包含在群体 中的各种模板的增长速率来表明遗传学习的 能力。 这里主要介绍模板定理
第8章
进化算法-遗传算法
智能控制基础
8.2 遗传学习原理与算法
8.2.1 遗传学习的基本思想 8.2.2 遗传学习算法的理论基础
8.2.3 遗传学习算法的改良
8.2.4 遗传学习算法的应用
2/50
1. 问题的提出
美国的J. Holland教授于1975年提出 在遗传学的基础上利用计算机来模拟生物的 进化过程,从而实现复杂问题的优化求解。 模拟生物染色体的运作(复制、交叉、变 异),是一种随机化搜索算法