扭转例题-扭转变形

合集下载

材料力学扭转第5节 圆轴扭转时的变形

材料力学扭转第5节 圆轴扭转时的变形

BA

T1l1 GI P1

180


0.8110
CB

T2l2 GI P 2

180


0.9810
CA CB BA 0.9810 (0.8110 ) 0.17 0
例4-4 如图,已知ABC轴结构尺寸为 lAB 1.6m, lBC 1.4m。材料切变模量 G 80GPa,轴上作用有外 力矩 M A 900 N·m,M B 1500 N·m,M C 600 N·m,试
求截面C的相对截面A的转角。
解: 1)用截面法求
各段扭矩
1
2
AB 段:
一、圆轴扭转时的扭转变形
• 扭转角:圆轴扭转时,两横
A

BO
截面相对转过的角度称为这
两截面的相对扭转角。
M
M
d

T (x) GIP
dx


l d

T (x)
l GIP
dx
若在圆轴的 l 长度内,T、G、
IP 均为常数,则圆轴两端截面的 相对扭转角为:
Tl
GIP
• 抗扭刚度:式中的 GIP 称为圆轴的抗扭刚度,它反 映了圆轴抵抗扭转变形的能力。
T1 MA 900 N m
BC 段:
T
600Nm
T2 M c 600 N m
画出扭矩图如图所示
900Nm
AB 截面 极惯性矩
I P1

d14
32
BC 截面 极惯性矩
2)C 截面相对于 A 截面的转角
IP2

d
4AB 段: BC 段:

材料力学扭转练习题

材料力学扭转练习题

材料力学扭转练习题基本概念题一、选择题1. 图示传动轴,主动轮A的输入功率为PA =0 kW,从动轮B,C,D,E的输出功率分别为PB =0 kW,PC = kW,PD = 10 kW,PE = 1kW。

则轴上最大扭矩T。

A.BA段 B.AC段 C.CD段 D.DE段max出现在题1图2. 图示单元体的应力状态中属正确的纯剪切状态的是。

题2图3. 上题图示单元体的应力状态中属正确的是。

4. 下列关于剪应力互等定理的论述中正确的是。

A.剪应力互等定理是由平衡B.剪应力互等定理仅适用于纯剪切的情况C.剪应力互等定理适用于各种受力杆件D.剪应力互等定理仅适用于弹性范围E.剪应力互等定理与材料的性能无关5. 图示受扭圆轴,其横截面上的剪应力分布图正确的是。

-12-题5图6. 实心圆轴,两端受扭转外力偶作用。

直径为D时,设轴内的最大剪应力为?,若轴的直径改为D2,其它条件不变,则轴内的最大剪应力变为。

A.8? B.?C.16? D.?7. 受扭空心圆轴,在横截面积相等的条件下,下列承载能力最大的轴是。

A.??0 B.??0.5C.??0. D.??0.88. 扭转应力公式T?的适用范围是。

IpA.各种等截面直杆 B.实心或空心圆截面直杆C.矩形截面直杆 D.弹性变形 E.弹性非弹性范围 9. 直径为D的实心圆轴,最大的容许扭矩为T,若将轴的横截面积增加一倍,则其最大容许扭矩为。

A.2TB.2T C.22TD.4T10. 材料相同的两根圆轴,一根为实心,直径为D1;另一根为空心,内径为d2,外径为D2d2D??。

若两轴横截面上的扭矩T,和最大剪应力?max均相同,则两轴外径之比1 D2D2为。

A.1??B.1?? C.343D.411. 阶梯圆轴及其受力如图所示,其中AB段的最大剪应力?max1与BC段的最大剪应力?max2的关系是。

A.?max1??max2B.?max1?313?max2C.?max1??max2D.?ma x1??max248-13-题12图题13图12. 在图示的圆轴中,AB段的相对扭转角?1和BC段的相对扭转角?2的关系是。

扭转典型习题解析

扭转典型习题解析

扭转典型习题解析1 一内径d =100mm 的空心圆轴如图示,已知圆轴受扭矩m kN 5⋅=T ,许用切应力][τ=80MPa ,试确定空心圆轴的壁厚。

解题分析:因为不知道壁厚,所以不能确定是不是薄壁圆管。

分别按薄壁圆管和空心圆轴设计。

解: 1、按薄壁圆管设计薄壁圆管扭转时,假设切应力沿壁厚均匀分布,设壁厚为δ,平均半径为2/0)(δ+=d R ,则扭转切应力为 δτ20π2R T=强度条件为][ττ≤,于是得][π22τδδTd =+)( ][π22223τδδδTd d =++ ()Pa1080πm N 1052m 10100m 1010026323233××⋅××=×+××+−−δδδ解得 mm 70.3m 1070.33=×=−δ 2、按空心圆轴设计强度条件为 ][pmax ττ≤=W T将δ216π44p +=−=d D d D DW );(代入得][π16][π][π164444=−−≤−τττd TD D d D DT,)(0Pa)108(m 1.0πm N 10516Pa 1080π64346=××−×⋅××−×××)(D D解得mm 107.7m 10107.73=×=−Dmm 85.32mm100mm 7.1072=−=−=d D δ 比较可知,两种设计的结果非常接近。

讨论: 当10/0R ≤δ时,即认为是薄壁圆管,可以直接使用薄壁管扭转公式。

2 图示受扭圆杆,沿平面ABCD 截取下半部分为研究对象,如图b 所示。

试问截面ABCD 上的切向内力所形成的力偶矩将由哪个力偶矩来平衡?解题分析:由切应力互等定理可知截面ABCD 上的切向内力分布及其大小。

该截面上切向内力形成一个垂直向上的力偶矩。

在图b 中,左右两个横截面上的水平切向内力分量形成垂直于截面ABCD 的竖直向下的力偶矩,正好与截面ABCD 上切向内力的合力偶矩平衡。

杆在扭转时的变形 · 刚度条件

杆在扭转时的变形 · 刚度条件
2
πd A实 1749 mm 2 4 2 2 π(76 71 ) A空 577mm 2 4
两轴材料、长度均相同, 故两轴重量比等于两轴的横截面积比,
A2 577 0.329 A1 1749
在最大切应力相等的情况下空心圆轴比实心圆轴轻, 即节省材料.
例题7 两端固定的圆截面杆AB, 在截面C 处受一个扭转力偶矩
Me 的作用, 如图所示.已知杆的抗扭刚度 GIp, 试求杆两端的支反 力偶矩. Me
A a
C
B b
l
解:去掉约束,代之以约束反力偶矩
Mx 0
M eA M eB M e 0
这是一次超静定问题,
Me
A
a
须建立一个补充方程
杆的变形相容条件是 C 截面相对于两固定端 A和B的相对扭转角相等.
'

Mt Ip
M tl GI p
max

• The strengh condition • The rigidity condition
Mt Wp
180
Mp GI p


o
例题5 图示等直杆, 已知直径d = 40mm, a = 400mm, 材料的剪切
弹性模量G = 80GPa,DB =1°. 试求:
(1) AD杆的最大切应力; (2)扭转角 CA 解:画扭矩图 Me D a C a 2Me B 2a 3Me Me +
3Me
A
Tmax= 3Me 计算外力偶矩Me
材料的许用切应力 [ ] = 100MPa, 切变模量为 G = 80GPa, 轴的许可扭角[′ ] = 2/m . 试校核轴的强度和刚度.

扭转变形的生活例子

扭转变形的生活例子

扭转变形的生活例子
扭转变形的例子:拧毛巾、拧衣物。

凡物体受到外力而发生形状变化谓之“形变”。

物体由于外因或内在缺陷,物质微粒的相对位置发生改变,也可引起形态的变化。

形变的种类有:
1、纵向形变:杆的两端受到压力或拉力时,长度发生改变;
例如:拉橡皮筋。

2、体积形变:物体体积大小的改变;
例如:吹气球。

3、切变:物体两相对的表面受到在表面内的(切向)力偶作用时,两表面发生相对位移,称为切变;
例如:放在桌子上切过的苹果。

4、扭转:一个圆柱状物体,两端各受方向相反的力矩作用而扭转,称扭转形变;
例如:拧毛巾
5、弯曲:两端固定的钢筋,因负荷而弯曲,称弯曲形变。

无论产生什么形变,都可归结为长变与切变。

材料力学-扭转-计算公式及例题

材料力学-扭转-计算公式及例题

求 AB段Mn(1-1剖面)
K N·m 4.50 背向剖切面为正
求 BC段Mn(2-2剖
面) K N·m
-4.50
求 CD段Mn(3-3剖面)
K N·m -1.50
D>=103mm
已知 CD段Mn(3-3剖面)
K N·m -1.5

IP m4 1.19E-05
求 φB-A
° 0.216
求 ΦC-B
K N·m
K N·m
K N·m
K N·m
数值
0.62
2.05
1.43
0.62
横截面上的力偶矩的方向,为外力偶矩(如T1,T2,T3)指向剖切面为负,背向剖切面为正
校核AC段 的强度(实
数据状态
代号
单位
数值 校核DB段 的强度(实
数据状态
代号
单位
已知 d1 mm 40
已知 d2 mm
已知 Mn(AC) K N·m 0.62
°/m
m4
1.05E+01 5.00E-01 1.50E-08
,试设 计截面的内
求 D0 mm 63.38
求 d mm 60.44
求 A1/A2
mm 0.51
d2=70mm。 。材料的许用切应 轴的强度和刚度。
。材料的许用切应 轴的强度和刚度。
求 CD段Mn(2-2剖面)
K N·m 0.62 背向剖切面为正
° -0.270
求 φD-C
° -0.108
强度计算 序号
名称
代号
单位
max
M n max Wp
[ ]
1
横截面上的最大扭 矩
Mn max

第7章例题-应力状态-扭转应变

第7章例题-应力状态-扭转应变

例 直径为 d 的圆轴受外力偶矩 Mt 作用而发生扭转变形。已
知材料的 E, 。为测量 Mt,现测得圆轴表面 K 处,与轴
工 程
线成 45º角的方向的应变 45,建立 Mt 与该应变的关系。
力 学
3. 得到 Mt
Mt
应变片
Mt
第 8
45

1 E
(1
) 16M t d3
d
K 45
例 直径为 d 的圆轴受外力偶矩 Mt 作用而发生扭转变形。已
知材料的 E, 。为测量 Mt,现测得圆轴表面 K 处,与轴
工 程
线成 45º角的方向的应变 45,建立 Mt 与该应变的关系。
力 学
解 1. K 处剪应力
Mt
应变片
Mt
第 8
T
WP

Mt
d3

16M
d3
t

16
d
K 45

应 力

Mt

d 3E45 16(1 )


1 45




强 度
工程中测量扭矩的方法


3
理 论
1 , 2 0, 3
版权所有
2
张强 钟艳玲
应 力 状 态 理 论 与 强 度 理 论
版权所有 张强 钟艳玲
2. K 处 45º方向应变
45

1 E
[1

( 2
3)] 1 45来自 1 [ (0 )]
E
3

1 (1 )
E

1 E
(1

扭转变形相对扭转角

扭转变形相对扭转角

2. 刚度校核
1
d
dx
1
T1 GIp
2
d
dx
2
T2 GIp
因 T1 T2

max
d
dx max
1
T1 GIp
max
180 N m
180
(80 109 Pa)(3.0 105 10-12 m4 ) π
0.43 () / m [ ]
轴的刚度足够
2.扭矩图
3.直径d1的选取 按强度条件
45°
0 , max ; 横截面上!
´
结论:
若材料抗剪切能力差,构件沿横截面发生破坏(塑性材料);
若材料抗拉压能力差,构件沿45斜截面发生破坏(脆性材料)。
§4-7 矩形截面杆的自由扭转
常见的非圆截面受扭杆为矩形截面杆和薄壁杆件 圆杆扭转时—— 横截面保持为平面; 非圆杆扭转时——横截面由平面变为曲面(发生翘曲)。
Gh
3
3Tl
2πR0G
3
开 闭
3
R0
2
1200
在抗扭性能方面,闭口薄壁杆远比开口薄壁杆好
§4-6 圆轴扭转破坏分析
低碳钢试件:沿横截面断开。
材料抗剪切能力差,构 件沿横截面因切应力而发生 破坏(塑性材料);
铸铁试件:
沿与轴线约成45的螺旋 线断开。
材料抗拉能力差, 构件沿45斜截面因拉 应力而破坏(脆性材 料)。
´ e
n
x
b ´f t
设:ef 边的面积为 dA 则 eb 边的面积为dAcosα ef 边的面积为dAsinα
T
故 1 2 0
b
n 0
故 n 0 max
h
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档