行人检测与跟踪国内外研究现状

合集下载

视频监控系统中的行人检测与跟踪技术研究

视频监控系统中的行人检测与跟踪技术研究

视频监控系统中的行人检测与跟踪技术研究摘要:近年来,社会安全和监测需求的增加使得视频监控系统成为现代城市不可或缺的一部分。

而行人检测与跟踪作为视频监控系统中的关键技术之一,在实现视频监控的自动化、智能化方面发挥着重要作用。

本文通过对行人检测与跟踪技术的研究,探讨了目前主流的行人检测与跟踪方法,包括传统的基于图像处理技术的方法和新兴的深度学习方法,并对其性能进行了综合评估。

研究结果表明,深度学习方法在行人检测与跟踪的准确性上具有优势,并且在实时性和鲁棒性方面也有较好的表现。

1. 引言随着城市化进程的加快,城市的安全和监控需求日益突出。

作为现代城市安全管理的重要手段,视频监控系统的应用越来越广泛。

然而,在大规模视频监控系统中,人工手动监控是非常困难和低效的,因此如何实现对视频监控系统的自动化、智能化非常重要。

2. 行人检测技术2.1 传统图像处理方法传统的行人检测方法主要基于图像处理技术,如背景差分、移动目标检测、形状特征等。

这些方法通常需要手动进行特征工程,提取图像的低级特征,再通过分类器进行行人的检测。

然而,这些方法在复杂场景下,如光照变化、遮挡、行人姿态变化等情况下效果不佳。

2.2 深度学习方法近年来,深度学习方法的发展为行人检测带来了新的机遇。

以卷积神经网络(CNN)为代表的深度学习方法利用多层神经网络对图像进行端到端的训练和分类,从而克服了传统方法中需要手动设计特征的缺点。

深度学习方法能够自动地从数据中学习到更高层次的特征表示,并具有较好的泛化能力。

3. 行人跟踪技术行人跟踪技术在视频监控系统中有着广泛的应用,主要用于实时追踪行人的位置和运动轨迹。

行人跟踪技术的目标是从视频序列中连续检测和更新行人的位置。

常见的行人跟踪方法包括基于像素的方法、基于特征点的方法以及基于深度学习的方法。

4. 实验与性能评估本文选取了一些常用的行人检测与跟踪方法进行了实验与性能评估。

评估指标包括准确率、召回率、漏检率以及平均精度均值(mean Average Precision,mAP)等。

视频监控系统中的行人检测与追踪算法研究与应用

视频监控系统中的行人检测与追踪算法研究与应用

视频监控系统中的行人检测与追踪算法研究与应用摘要:随着科技的发展,视频监控系统在各个领域中得到了广泛的应用。

其中,行人检测与追踪算法是视频监控系统中的重要研究内容。

本文将探讨行人检测与追踪算法的研究现状以及在实际应用中的意义,并介绍基于深度学习的行人检测与追踪算法的常用方法和技术。

1. 引言视频监控系统已成为现代社会安全领域的重要手段之一。

为了提高视频监控系统的效果和工作效率,行人检测与追踪算法的研究成为一个重要的课题。

2. 行人检测算法的研究现状行人检测算法的研究主要分为两个阶段:基于传统机器学习的算法和基于深度学习的算法。

传统机器学习算法主要包括HOG+SVM、Haar Cascade等。

这些算法在行人检测中取得了一定的成果,但是在复杂环境下仍然存在准确率低和鲁棒性差的问题。

而基于深度学习的算法通过引入卷积神经网络(CNN)和循环神经网络(RNN)等技术,能够提高行人检测的准确率和鲁棒性。

3. 基于深度学习的行人检测与追踪算法基于深度学习的行人检测与追踪算法主要包括以下几种常用方法:(1)Faster R-CNN:通过引入区域建议网络(RPN)来生成候选框,然后对候选框进行分类和回归,实现行人检测和定位。

(2)YOLO:将行人检测任务视为一个回归问题,并通过单个网络直接预测候选框的位置和类别。

(3)SSD:结合了Faster R-CNN和YOLO的特点,通过卷积层和预测层来检测各个尺度的目标。

(4)MC-CNN:通过多通道卷积神经网络将不同尺度的信息整合,提高行人检测的准确性。

4. 行人追踪算法的研究现状行人追踪算法主要分为基于检测与跟踪的方法和基于特征的方法。

基于检测与跟踪的方法主要利用行人检测算法提取出的特征进行行人目标的跟踪,具有较高的准确率和鲁棒性。

基于特征的方法则通过提取行人目标在时间序列中的特征进行跟踪,可以实现更加精细的目标追踪。

5. 行人检测与追踪算法在实际应用中的意义行人检测与追踪算法在实际应用中具有广泛的意义。

行人检测综述报告[推荐]

行人检测综述报告[推荐]

行人检测综述报告[推荐]第一篇:行人检测综述报告[推荐]基于深度神经网络的行人检测综述摘要:行人检测是汽车自动驾驶的基础技术之一。

基于深度神经网络模型的行人检测方法取得的效果已经远超于使用传统特征经行识别得到的效果。

仿生物视觉系统的卷积神经网络作为深度学习的重要组成、在图像、语音等领域得到了成功应用。

其局部感受野、权值共享和降采样三个特点使之成为智能机器视觉领域的研究热点。

通过增加网络层数所构造的深层神经网络使机器能够获得抽象概念能力,在诸多领域都取得了巨大的成功,又掀起了神经网络研究的一个新高潮。

本文回顾了神经网络的发展历程,综述了其当前研究进展以及存在的问题,展望了未来神经网络的发展方向。

关键词:行人检测;卷积神经网络;深度学习Survey of Pedestrian detection based on Deep Neural Network Yin Guangchuan,Zhangshuai,Qi Shuaihui Abstract:Pedestrian detection is one of the basic technologies of unmanned vehicles. The pedestrian detection method based on the deep neural network model has achieved much more effect than the traditional one. Convolutional neural network which imitates the biological vision system has made great success on image and audio, which is the important component of deep learning. Local receptive field, sharing weights and down sampling are three important characteristics of CNN which lead it to be the hotspot in the field of intelligent machine vision.With the increasing number of layers, deep neural network entitles machines the capability to capture “abstract concepts” and it has achieved great success in various fields, leading a new and advanced trend in neural network research. This paper recalls the development of neuralnetwork, summarizes the latest progress and existing problems considering neural network and points out its possible future directions.Keywords: pedestrian detection; convolutional neural network; deep learning国防科技大学课程设计机器视觉1 引言行人兼具刚性和柔性物体的特性,外观易受穿着、尺度、遮挡、姿态和视角等影响,使得行人检测成为计算机视觉的研究难点与热点。

行人检测与跟踪技术研究

行人检测与跟踪技术研究

行人检测与跟踪技术研究近年来,随着智能交通系统的逐渐发展,行人检测和跟踪技术在其中发挥着越来越重要的作用。

这项技术的目的是对行人进行实时监测,实现智能化的路面交通管理,为驾驶员和行人提供更安全、更便捷的交通出行环境。

一、行人检测技术行人检测技术是指在视频监控系统中利用图像处理算法对行人进行准确、高效的检测。

具体而言,这项技术需要在视频流中识别行人的存在性、位置、大小等特征,并通过人体姿态估计和运动分析等方式对行人的动态行为进行分析,从而实现实时的行人监测功能。

在行人检测技术中,目前比较常用的算法包括基于Haar特征的级联分类器算法(如OpenCV中的HOG算法)和DPM (Deformable Parts Model)算法。

这些算法主要通过一些特征提取方法和机器学习算法对行人和背景进行分类,从而实现对行人的检测。

其中,基于级联分类器的算法通过在特征空间中不断筛选准确性更高的特征,逐步提高分类器的准确率;DPM算法则通过对行人的不同部位进行分析和建模,进一步提高行人检测的准确度。

二、行人跟踪技术行人跟踪技术是指在视频监控系统中对行人进行实时追踪的一项技术。

与行人检测技术不同的是,行人跟踪技术需要在行人被检测到后,对其进行实时追踪,以拟合其运动轨迹,并进行有效的遮挡处理,保证行人的连续追踪。

在行人跟踪技术中,主要采用的算法包括卡尔曼滤波(Kalman Filter)算法、粒子滤波(Particle Filter)算法、基于卷积神经网络(CNN)的多目标跟踪算法等。

其中,卡尔曼滤波算法主要基于贝叶斯理论,根据物体位置、速度以及加速度等参数进行预测,在物体目标跟踪上应用广泛;粒子滤波算法利用大量的随机样本对目标运动轨迹进行建模,并通过计算其可信度来实现有效的目标跟踪;基于CNN的多目标跟踪算法则利用深度卷积神经网络对物体位置进行追踪,准确度和鲁棒性都有很大提升。

三、行人检测与跟踪技术在实际应用中的问题虽然行人检测和跟踪技术已经得到了广泛的实际应用,但在实际环境中,这项技术还存在着一些问题:1. 遮挡问题:在行人跟踪过程中,经常会出现部分或整体被其他物体遮挡的情况,这会导致跟踪失败。

行人检测与目标跟踪算法研究

行人检测与目标跟踪算法研究

基于opencv中光流法的运动行人目标跟踪与检测一、课题研究背景及方法行人检测具有极其广泛的应用:智能辅助驾驶,智能监控,行人分析以及智能机器人等领域。

从2005年以来行人检测进入了一个快速的发展阶段,但是也存在很多问题还有待解决,个人觉得主要还是在性能和速度方面还不能达到一个权衡。

早期以静态图像处理中的分割、边缘提取、运动检测等方法为主。

例如(1)以Gavrila为代表的全局模板方法:基于轮廓的分层匹配算法,构造了将近2500个轮廓模板对行人进行匹配, 从而识别出行人。

为了解决模板数量众多而引起的速度下降问题,采用了由粗到细的分层搜索策略以加快搜索速度。

另外,匹配的时候通过计算模板与待检测窗口的距离变换来度量两者之间的相似性。

(2)以Broggi为代表的局部模板方法:利用不同大小的二值图像模板来对人头和肩部进行建模,通过将输入图像的边缘图像与该二值模板进行比较从而识别行人,该方法被用到意大利Parma大学开发的ARGO智能车中。

(3)以Lipton为代表的光流检测方法:计算运动区域内的残余光流;(4)以Heisele为代表的运动检测方法:提取行人腿部运动特征;(5)以Wohler为代表的神经网络方法:构建一个自适应时间延迟神经网络来判断是否是人体的运动图片序列;以上方法,存在速度慢、检测率低、误报率高的特点。

2、行人检测的研究现状(1)基于背景建模的方法:分割出前景,提取其中的运动目标,然后进一步提取特征,分类判别;在存在下雨、下雪、刮风、树叶晃动、灯光忽明忽暗等场合,该方法的鲁棒性不高,抗干扰能力较差。

且背景建模方法的模型过于复杂,对参数较为敏感。

(2)基于统计学习的方法:根据大量训练样本构建行人检测分类器。

提取的特征一般有目标的灰度、边缘、纹理、形状、梯度直方图等信息,分类器包括神经网络、SVM,adaboost等。

该方法存在以下难点:(a)行人的姿态、服饰各不相同;(b)提取的特征在特征空间中的分布不够紧凑;(c)分类器的性能受训练样本的影响较大;(d)离线训练时的负样本无法涵盖所有真实应用场景的情况;尽管基于统计学习的行人检测方法存在着诸多的缺点,但依然有很多人将注意力集中于此。

行人检测与跟踪国内外研究现状

行人检测与跟踪国内外研究现状

行人检测与跟踪国内外研究现状1.2行人检测与跟踪国内外研究现状视觉跟踪和目标检测是计算机视觉领域内较早开始的研究方向。

经过几十年的积累,这两个方向已经取得了显著的发展。

然而,很多方法只是在相对较好地程度上解决了一些关键问题。

并且仍旧有不少一般性的关键问题未得到有效的解决。

国内外很多研究机构都在致力于研究和发展这两个方向。

近些年这两个方向持续发展,涌现了很多比较优秀的方法。

国外的很多大学和研究机构(如卡内基梅隆大学、南加州大学和法国国家计算机科学与控制研究所等)都有计算机视觉小组,长期地研究视频跟踪和目标检测。

国内的很多大学和研究所等(如清华大学、上海交大和自动化所等)也有相关的研究小组,并取得了一些优秀的研究成果。

1.2.1行人检测技术国内外研究现状中科院计算机科学重点实验室孙庆杰等人利用基于侧影的人体模型及其对应的概率模型,提出了一种基于矩形拟合的人体检测算法。

中科院自动化所谭铁牛等对人运动进行视觉分析,其核心是利用计算机视觉技术从图像序列中检测、跟踪、识别人并对其行为进行理解与描述,它主要应用在视觉监控领域和基于步态的身份鉴定。

步态识别就是根据人们走路的姿势进行身份鉴定,依据人体行走运动很大程度上依赖于轮廓随着时间的形状变化的直观想法,提出一种基于时空轮廓分析的步态识别算法;基于行走运动的关节角度变化包含着丰富的个体识别信息的思想,提出一种基于模型的步态识别算法。

实验结果表明该算法不仅获得了令人鼓舞的识别性能,而且拥有相对较低的计算代价。

但是该方法只能检测出运动的行人。

西安交通大学郑南宁等研究了利用支持向量机识别行人的方法,通过稀疏Gabor滤波器提取行人样本图像中行人的特征,然后利用支持向量机来训练所提取的样本特征,并用训练得到的分类器通过遍历图像的方式将图像中可能属于行人的窗口提取出来。

尽管用Gabor滤波器提取特征效果相对较好,但耗时很长,不适合于实时图像的处理。

上海交通大学田广等提出了一种coarse-to-fine的行人检测方法,将一个人建模成人体自然部位的组装,人体的所有部位包括头肩、躯干和腿、采用绝对值类Haar特征集和Edgelet特征集,在这些特征集上,采用softcascade训练各个部位的检测器和全身检测器。

行人跟踪技术国内外研究现状

行人跟踪技术国内外研究现状

1.2.2 行人跟踪技术国内外研究现状行人跟踪就是在各帧图像中检测定位出行人。

近年来,行人跟踪技术备受国内外专家学者的重视。

常用的跟踪算法有粒子滤波算法[4,5]、Kalman 滤波算法[6]以及MeanShfit算法[7,8]。

Kalman 滤波是基于高斯分布的线性运动状态预测方法,不能有效的处理多峰模式的分布情况;以颜色特征来描述目标特征的MeanShift算法具有实时、快速、计算简单、易于实现等优点,而被广泛使用。

然而已有的MeanShift算法大多只利用单一的颜色特征而忽略其它特征,当目标与背景颜色相似,或者光照剧烈变化时难以对目标进行有效的跟踪。

粒子滤波算法存在粒子退化的严重问题,运算量通常较大。

根据跟踪方法的不同,一般将行人跟踪分为四类:基于模型的跟踪、基于区域的跟踪、基于主动轮廓的跟踪和基于特征的跟踪。

1)基于特征的跟踪主要包括特征提取和特征匹配两步。

特征提取是在原始图像中提取出最能描绘和识别行人的易用特征。

提取的特征应具有代表性,特征计算应该相对简单,以及对图像平移、旋转、尺度变化等的不变性[5]。

行人跟踪中常用特征主要有颜色、高宽比、边缘、轮廓、周长、面积、质心、位置等。

行人是非刚性目标,具有不规则性,对其提取的特征直接影响到跟踪的准确性。

实际应用中,常选择多个特征相结合进行匹配,提高跟踪的准确性。

文献[16] 提出了一种基于空间边缘方向直方图的Meanshift 跟踪算法,使用空间分布和纹理信息作为匹配特征,克服了传统的Meanshift 算法,只利用颜色直方图作为特征容易造成跟踪丢失缺陷,实现了遮挡、和尺度缩放等复杂情况下对行人的有效跟踪。

文献[17]提出使用空间位置、形状特征和颜色信息结合的方法,使用Kalman 滤波预测进行行人跟踪,用一个紧密包含行人的矩形框中心表示行人的位置;跟踪过程中,当形状特征不可靠时使用颜色特征,在实际场景中对单个和多个行人跟踪都具有很好的鲁棒性。

视频监控系统中的行人检测与跟踪研究

视频监控系统中的行人检测与跟踪研究

视频监控系统中的行人检测与跟踪研究近年来,随着科技的不断发展,视频监控系统在各个领域得到广泛应用。

而视频监控系统中的行人检测与跟踪技术则是其中一个非常重要的研究方向。

本文将深入探讨视频监控系统中的行人检测与跟踪研究,分析其应用背景、关键技术与挑战,以及目前的研究进展。

首先,我们来了解一下视频监控系统中行人检测与跟踪的应用背景。

随着城市化进程的加速,公共安全问题日益凸显,特别是对于城市交通、重要场所和公共区域的安全监控需求。

行人检测与跟踪技术可以实时监测和记录人员的行为动态,预防和响应各类安全事件,提高公共安全管理的效能,因此在交通管理、社会治安和商业智能等领域有着广泛的应用前景。

行人检测与跟踪的关键技术主要包括目标检测和目标跟踪两个方面。

目标检测旨在从视频中准确地定位和识别出行人的位置和轮廓信息,而目标跟踪则是在视频序列中连续追踪目标行人的运动轨迹。

这两个技术相辅相成,共同构成了视频监控系统中行人检测与跟踪的核心。

目标检测是行人检测与跟踪中的关键环节之一。

目前,常用的行人检测方法包括基于深度学习的方法和传统的机器学习方法。

基于深度学习的方法具有较高的准确性和鲁棒性,包括使用卷积神经网络(CNN)的方法,如Faster R-CNN和YOLO等。

这些方法通过学习大量标注的行人图像,可以在复杂背景下准确地检测出行人,具有较高的检测速度和较低的误检率。

传统的机器学习方法则多采用特征提取和分类器结合的方式,如Haar特征和SVM等。

虽然传统方法在一些场景中仍然具有一定的应用价值,但其准确性和鲁棒性相对较低。

目标跟踪是行人检测与跟踪中的另一个关键环节。

目前,常用的行人跟踪方法包括基于外观模型的方法和基于深度学习的方法。

基于外观模型的方法主要使用目标的视觉特征进行匹配和跟踪,如颜色、纹理和形状等。

这些方法在处理光照变化、尺度变化和遮挡等问题上具有一定的鲁棒性,但容易受到目标外观变化和相似目标的干扰。

基于深度学习的方法则通过学习大量标注的视频序列,可以准确地抽取目标的运动特征和上下文信息,如Siamese网络和多目标跟踪网络等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行人检测与跟踪国内外研究现状
1.2行人检测与跟踪国内外研究现状
视觉跟踪和目标检测是计算机视觉领域内较早开始的研究方向。

经过几十年的积累,这两个方向已经取得了显著的发展。

然而,很多方法只是在相对较好地程度上解决了一些关键问题。

并且仍旧有不少一般性的关键问题未得到有效的解决。

国内外很多研究机构都在致力于研究和发展这两个方向。

近些年这两个方向持续发展,涌现了很多比较优秀的方法。

国外的很多大学和研究机构(如卡内基梅隆大学、南加州大学和法国国家计算机科学与控制研究所等)都有计算机视觉小组,长期地研究视频跟踪和目标检测。

国内的很多大学和研究所等(如清华大学、上海交大和自动化所等)也有相关的研究小组,并取得了一些优秀的研究成果。

1.2.1行人检测技术国内外研究现状
中科院计算机科学重点实验室孙庆杰等人利用基于侧影的人体模型及其对应的概率模型,提出了一种基于矩形拟合的人体检测算法。

中科院自动化所谭铁牛等对人运动进行视觉分析,其核心是利用计算机视觉技术从图像序列中检测、跟踪、识别人并对其行为进行理解与描述,它主要应用在视觉监控领域和基于步态的身份鉴定。

步态识别就是根据人们走路的姿势进行身份鉴定,依据人体行走运动很大程度上依赖于轮廓随着时间的形状变化的直观想法,提出一种基于时空轮廓分析的步态识别算法;基于行走运动的关节角度变化包含着丰富的个体识别信息的思想,提出一种基于模型的步态识别算法。

实验结果表明该算法不仅获得了令人鼓舞的识别性能,而且拥有相对较低的计算代价。

但是该方法只能检测出运动的行人。

西安交通大学郑南宁等研究了利用支持向量机识别行人的方法,通过稀疏Gabor滤波器提取行人样本图像中行人的特征,然后利用支持向量机来训练所提取的样本特征,并用训练得到的分类器通过遍历图像的方式将图像中可能属于行人的窗口提取出来。

尽管用Gabor滤波器提取特征效果相对较好,但耗时很长,不适合于实时图像的处理。

上海交通大学田广等提出了一种coarse-to-fine的行人检测方法,将一个人建模成人体自然部位的组装,人体的所有部位包括头肩、躯干和腿、采用绝对值类Haar特征集和Edgelet特征集,在这些特征集上,采用softcascade训练各个部位的检测器和全身检测器。

首先采用全身检测器在整个图像中产生候选行人区域,然后用基于贝叶斯决策的组合算法进一步确定候选区域中的行人。

实验结果表明该算法有很好的检测性能能在杂乱的自然场景中有效的检测行人。

但该方法的识别率是78.3%,识别率不高,且该模型比较难构建,模型求解也比较复杂。

目前,在国外许多文献中提出了基于机器视觉的行人检测方法,意大利帕尔玛大学的AlbertoBroggi教授在ARGO项目中采用一种基于外形的行人检测算法。

算法首先根据行人相对于垂直轴有很强的垂直边缘对称性、尺寸和外貌比例等在
图像中找到感兴趣区域,然后提取垂直边缘,选择具有高垂直对称性的区域。

通过计算边缘的熵值去掉图像中始终一致的区域。

在剩下的具有对称性的候选区域中,寻找目标侧向和底部边界画出矩形方框,通过包含行人头部模型匹配定位行人头部。

在市区试验表明,当视野中有完整的行人存在时能得到较好的效果,在10一40m的范围内都可以正确地进行识别,并且可以较好地适应复杂的外界环境。

美国麻省理工学院的 M.Oren 与 C.Papageorgiou建立了Haar 小波模板,并将其应用于行人检测当中,Haar 小波模板常用于表达简单的物体,具有有效、快速检测的特点,现已被广泛的应用于图像的物体检测中,同样 Haar 小波模板行人检测算法也成为行人检测领域经典算法之一。

法国的 Navneet Dalal 和 Bill Triggs使用梯度方向直方图(HOG)来表示人体特征,并在 INRIAPerson 样本库上进行了验证。

此方法检测率高,在人体检测方面有着很强的适用性,同样的该算法在道路行人检测也有很强表现力,现已引起很多学者的关注。

伊利诺伊大学的 Niebles. J.C等人,提出了一种使用 AdaBoost级联模型的行人识别算法,并将该识别算法应用到行人检测领域,使得行人检测识别效果有所改进。

相关文档
最新文档