三角函数1
浅议“1”在三角函数中的作用

浅议“1”在三角函数中的作用作者:赵春燕来源:《散文百家·下旬刊》2016年第01期在数学中,数字“1”可以说是无处不在,无时不有。
尽管它只是一个普通的小数字,但在解决某些数学问题中却起着不可忽视的大作用。
尤其是在三角函数问题中,如果能够巧妙、合理地使用“1”,那么在解题中就能化繁为简,化难为易。
当你在题海中“山重水复疑无路”时,它就可让你“柳暗花明又一村”,从而思路豁然开朗,效果事半功倍。
下面就结合我个人的教学实践,谈谈“1”在三角函数中的作用。
一、直接利用sin2α+cos2α=1进行解题在题中如果出现了sin2α+cos2α或1,可以根据需要互相替换,从而迅速解决问题。
例1:已知α是第一象限角,化简:1+2sinαcosα解析:对于根式的化简,思路主要是去根号,而对这个题目首先要考虑根号下是否能够配成完全平方式,沿着这个思路我们可以联想到把“1”化成“sin2α+cos2α”,根号下就成了完全平方式,然后再根据α是第一象限角,即sinα+cosα>0,从而得出结果。
解:1+2sinαcosα=sin2α+2sinαcosα+cos2α=(sinα+cosα)2=sinα+cosαΘα是第一象限角∴sinα+cosα>0∴1+2sinαcosα=sinα+cosα例2:已知sinx=m-3[]m+5,cosx=4-2m[]m+5求m的值。
解析:本题要求的结果是m的值,而含有m的式子分别表示了sinx和cosx,利用sin2α+cos2α=1就可以把含有m的两个式子联系在一起,从而得到一个关于m的一元二次方程,解方程就可以得到m。
解:Θsin2α+cos2α=1 ∴(m-3[]m+5)2+(4-2m[]m+5)2=1即m(m-8)=0 ∴m=0或m=8二、利用特殊角的三角函数值为1进行解题在有些三角题中,1会直接出现在题目中,而1=tan45°=cos0°=sin90°=…,能否将1恰当地换成上述的这些量,将对我们的解题大有帮助。
第一章--三角函数(北师大新版)

第一章 直角三角形的边角关系1.1 锐角三角函数1、锐角三角函数的定义 在Rt △ABC 中,∠C=90°.(1)正弦:我们把锐角A 的对边a 与斜边c 的比叫做∠A 的正弦,记作sinA .即sinA=斜边边的对A ∠=ca.(2)余弦:锐角A 的邻边b 与斜边c 的比叫做∠A 的余弦,记作cosA .即cosA=斜边邻边的A ∠=c b.(3)正切:锐角A 的对边a 与邻边b 的比叫做∠A 的正切,记作tanA .即tanA=边对边的邻A ∠的A ∠=ba.(4)三角函数:锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数.锐角三角函数的定义1.如图,在菱形ABCD 中,DE ⊥AB ,cos A =,BE=2,则tan ∠DBE 的值( ) A 、 B 、2 C 、D 、第1题 第2题 第3题2.如图,点A 为∠α边上的任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cos α的值,错误的是( )A .BD BCB .BC ABC .ADAC D .CD AC3.三角形在正方形网格纸中的位置如图所示,则cos α的值是 .4.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是 .第4题 第5题 第6题 第7题 5.如图,将∠AOB 放在边长为1的小正方形组成的网格中,则tan ∠AOB=_______________. 6.如图,△ABC 的各个顶点都在正方形的格点上,则sin A 的值为 . 7.正方形网格中,∠AOB 如图放置,则cos ∠AOB 的值为 .8.如图,在2×2正方形网格中,以格点为顶点的△ABC 的面积等于23,则sin ∠CAB= .9.如图,已知直线l 1∥l 2∥l 3∥l 4,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sinα= .2.2 30°、45°、60°角的三角函数值1、同角三角函数的关系(1)平方关系:sin 2A+cos 2A=1;(2)正余弦与正切之间的关系(积的关系):一个角的正切值等于这个角的正弦与余弦的比,即tanA=AAcos sin 或sinA=tanA•cosA .2、互余两角的三角函数的关系 在直角三角形中,∠A+∠B=90°时,正余弦之间的关系为:①一个角的正弦值等于这个角的余角的余弦值,即sinA=cos (90°-∠A ); ②一个角的余弦值等于这个角的余角的正弦值,即cosA=sin (90°-∠A ); 也可以理解成若∠A+∠B=90°,那么sinA=cosB 或sinB=cosA . 3、特殊角的三角函数值特殊角的三角函数值1.把一块直尺与一块三角板如图放置,若sin ∠1=22,则∠2的度数为 .2.若2cos (α+15°)=1,则α= 度. 3.在△ABC 中,若,∠A ,∠B 都是锐角,则∠C的度数是 .2.4 解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形. (2)解直角三角形要用到的关系①锐角直角的关系:∠A+∠B=90°; ②三边之间的关系:a 2+b 2=c 2; ③边角之间的关系:sin A=c a ,cos A=c b ,tan A=ba . 基础训练1.如图,在△ABC 中,cosB=22,sinC=53,AC=10,则△ABC 的面积为 .第1题 第2题 第3题 2.如图,在 Rt △ABO 中,斜边 AB=1,若 OC ∥BA ,∠AOC=36°,则下面四个结论: ①点B 到AO 的距离为sin54°; ②点B 到AO 的距离为tan36°;③点A 到OC 的距离为sin36°•sin54°; ④点A 到OC 的距离为cos36°•sin54°. 其中正确的是 (填序号).3.如图,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阴影部分)的面积为 .4.如图,在△ABC 中,AB=AC=13,BC=10,点D 为BC 的中点,DE ⊥AB 于点E ,则tan ∠BDE 的值等于 .第4题 第5题 第6题5.如图,已知Rt △ABC 中,斜边BC 上的高AD=3,cos B=53,则AC 的长为 .6.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过点O 作OE ⊥AC 交AD 于E ,若AB=6,AD=8,sin ∠OEA= .7.如图,△ABC 中,∠A=30°,tan B =23,AC=23,则AB 的长为 .8.如图,已知AC=4,求AB 和BC 的长.9.如图,已知在△ABC 中,∠ABC=30°,BC=8,sin ∠A=55,BD 是AC 边上的中线.求: (1)△ABC 的面积; (2)∠ABD 的正切值.拓展提升1.如图所示,在△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,且BE=2AE ,已知AD=33,tan ∠BCE=33,那么CE 等于 .第1题 第2题 第3题2.如图,已知点A (53,0),直线y=x+b (b >0)与y 轴交于点B ,连接AB ,∠α=75°,则b= . 3.在Rt △ACB 中,∠C=90°,点D 是AC 的中点,cos ∠CBD=415,则sin ∠ABD= . 4.如图,在△ABC 中,∠BAC=90°,AB=AC ,点D 为边AC 的中点,DE ⊥BC 于点E ,连接BD ,则tan ∠DBC 的值为 。
任意角三角函数1

(k z)
0
0 把角化到0
~ 360
小结
(+ ) ( )
(2)三角函数在象限内的符号
(+ ) ( ) ( )
-
(+ )
( )
-
(+ )
-
-
( )
-
(+ )
(+ )
( )
-
cos a a a sin tan
作业: P20 习题1.2 第2大题, 第3大题的(3)和(4), 第5大题
例题1 5 求 的正弦,余弦,正切的值 3
例题1 5 y 求 3 的正弦,余弦,正切的值
1 x 2
3 y 2
r 1
5 3
O
1 2
5 3 sin y 3 2
1
3 2
x
5 1 cos x 3 2
5 y tan 3 3 x
1 3 P , 2 2
sin x cos x tan x 4.函数y + + 的值域是( ) sin x cos x tan x A.1,3 B.1, 3 C.1,1,3 D.3, 1,3 5.若 sin cos 0, 则 在 ( A.第一, 二象限角 C.第一,四象限角 ) B.第一, 三象限角 D.第二,四象限角
若OP r 1 ,则
Y
MP sin OP
P(x,y)
y
O M X
OM cos OP
x y MP tan OM x
在直角坐标系中,以原点O为 圆心,以单位长度为半径的圆 叫单位圆
任意角的三角函数(1)

《任意角三角函数的定义》问题导读—评价单【学习目标】掌握简单三角函数的计算方法再具体点【学习重点】三角函数线的理解与掌握【学习难点】利用三角函数线解决具体问题。
【学法指导】初中学习过的在直角三角形中三角函数的定义【预习评价】问题探究一单位圆中三角函数的定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:①y叫做α的,记作sinα,即sinα=y;②x叫做α的,记作,即cosα=x;③yx叫做α的,记作,即tanα=yx(x≠0).问题探究二(1)三角函数值的大小与点P在终边的位置是否有关?(2)三角函数在各象限内的符号怎样。
问题探究三终边相同的角的同名三角函数值间的关系问题探究四请表示出终边落在四个象限的三角函数线。
《任意角的三角函数定义》问题解决—评价单【教师生成的问题】问题1、已知角α的终边落在直线y=2x上,求sinα,cosα,tanα.(课本例一)注明出处问题2、化简:sin x|sin x|+|cos x|cos x+tan x|tan x|⎝⎛⎭⎪⎫其中x≠kπ2,k∈Z.()例三求值:(1)sin(-1320°)cos1110°+cos(-1020°)sin750°+tan495°;(2)sin(-116π)+cos12π5·tan4π.例四利用单位圆中的三角函数线,分别确定角θ的取值范围:(1)sinθ≥32;(2)-12≤cosθ<32.《任意角的三角函数定义》问题拓展—评价单一、选择题1.(点P(tan2009°,cos2009°)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.设a=sin 2π7,b=cos2π7,c=tan2π7,则()A.a<b<c B.a<c<b C.b<c<a D.b<a<c3.若点P(3,y)是角α终边上的一点,且满足y<0,cosα=35,则tanα=()A.-34 B.34 C.43 D.-434.设0≤α<2π,若sinα>3cosα,则α的取值范围是()A .(π3,π2)B .(π3,π)C .(π3,4π3)D .(π3,π2)∪(4π3,32π)二、填空题5.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则a 的取值范围是________.6.sin390°-2cos765°+3cos(-660°)-3tan(-330°)=________. 三、解答题7.求下列三角函数值:(1)cos(-1 050°); (2)tan 8π3.8.求下列函数的定义域:(1)y =2cos x -1; (2)y =lg(3-4sin 2x ) 【多元评价】。
三角函数第一讲

三角函数第一讲:任意角与弧度制角的定义(一)角的概念: 1 任意角正角:按顺时针方向形成的角 负角:按逆时针方向形成的角 2 象限角定义:角的顶在原点始边与x 轴重合,终边在第几象限此角就是第几象限角。
与角α有相同终边所有角表示为:α+2kπ(k 为任意整数) (1)在直角坐标系内讨论角:注意:若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。
(2)①与角终边相同的角的集合:},2|{},360|{0Z k k Z k k ∈+=∈+=απββαββ或(3)区间角的表示: ①象限角:象限角象限角的集合表示第一象限角的集合 o o o {|360<<36090,x k k k α⋅⋅+∈Z } 第二象限角的集合 o o o o {|36090<<360180,x k k k α⋅+⋅+∈Z } 第三象限角的集合 o o o o {|360180<<360270,x k k k α⋅+⋅+∈Z } 第四象限角的集合o o o o {|360270<<360360,x k k k α⋅+⋅+∈Z }②写出图中所表示的区间角: 由α的终边所在的象限, 来判断2α所在的象限,来判断3α所在的象限例:如果α是第一象限角,要求α/2的象限:把每个象限平分,因为α是第一象限角,所以选择1的位置:α/2在第一和第三象限,α/3同理把每个象限三等分。
α(二)弧度制1 弧度角的规定.它的单位是rad 读作弧度如图:∠AOB=1rad∠AOC=2rad 周角=2πrad定义:长度等于半径长的弧所对的圆心角称为1弧度的角。
与圆的半径无关以弧度为单位来度量角的制度叫弧度制。
(1)正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0 (2)角α的弧度数的绝对值 (l 为弧长,r 为半径) (3)用角度制和弧度制来度量零角,单位不同,但数量相同(都是0)弧度制与角度制的换算公式:弧度制=角度制*π/180o角度制=弧度制*180o /π 2π=360o弧度数α与弧长L 与半径R 的关系:L=Rα(可用来求弧长与半径) (4)弧长公式:L=Rα;扇形面积公式:221R S α=弧长公式:180rn l π=,扇形面积公式:3602R n S π=扇(初中)2 弧度制与角度制的换算:因为周角的弧度数是2π,角度是360°,所以有 radrad radrad 01745.018011802360≈===ππποοο把上面的关系反过来写οο1803602==rad rad ππ815730.57)180(1'=≈=οοοrad rad π之间的一些特殊角的度数与弧度数的互化必需熟练掌握.度0°30°45°60°90°120° 135° 150° 180° 270° 360°rl=αοο360~0o r C2rad 1rad r l=2r o A AB类型一:角的概念问题1. 终边相同的角的表示例1 若角α是第三象限的角,则角α-的终边在第______象限. 答案:二.解析:因为α是第三象限的角,故oooo360270<<360180,k k k α-⋅---⋅-∈Z ,则o 360k ⋅o o o 270<<360180,k k α--⋅-∈Z ,故α-的终边在第二象限.练习:与o 610角终边相同的角可表示为_____________. 【答案:oo360250(k k ⋅+∈Z )】 2. 象限角的表示例2 已知角α是第二象限角,问(1)角2α是第几象限的角?(2)角2α终边的位置. 思路:先根据已知条件得出角的范围,再通过讨论k 值来确定象限角.解析:(1)因为α是第二象限的角,故oooo36090<<360180(k k k α⋅+⋅+∈Z ),故︒︒︒︒+⋅<<-⋅45180245180k k αo 180k ⋅o o o 45<<18090(2k k α+⋅+∈Z ).当k 为偶数时,2α在第一象限;当k 为奇数时,2α在第三象限,故2α为第一或第三象限角. (2)由oooo36090<<360180(k k k α⋅+⋅+∈Z ),得o o o 2360180<2<2360k k α⋅+⋅+ o 360(k ∈Z ),故角2α终边在下半平面.点评:已知α所在象限,求(n nα∈N *)所在象限的问题,一般都要分几种情况进行讨论.结论:类型二:弧度制与弧长公式 1.角度制与弧度制的互化例3 把下列各角的度数化为弧度数:⑴ο150 ⑵'3037ο ⑶'3022ο- ⑷解 因为1801π=οrad ,所以ο315-⑴ rad rad 65180150150ππ=⨯=ο ⑵ rad rad 245180213721373037'ππ=⨯=⎪⎭⎫⎝⎛=οο⑶ rad rad 8180212221223022'ππ-=⨯-=⎪⎭⎫ ⎝⎛-=-οο⑷ rad rad 47180315315ππ-=⨯-=-ο 练习:把下列各角的弧度数化为度数: ⑴rad 43π ⑵rad 5.3 ⑶rad 35π ⑷rad 49π- 解 因为 π rad =ο180,所以 ⑴rad 43π=43×ο180=ο135; ⑵ rad 5.3=οο55.20030.575.315.3=⨯≈⨯rad ;⑶rad 35π=35×ο180=ο300;⑷ rad 49π-=49-×ο180=ο405-.例4 (1)设o 750α=,用弧度制表示α,并指出它所在的象限;(2)设35βπ=,用角度制表示,并在~内找出与它有相同终边的所有角.导思:(1)角度与弧度应如何进行互化?(2)确定角为第几象限角的依据是什么?(3)怎样找终边相同的角?依据是什么?解析:(1),故在第一象限. (2),与它终边相同的角可表示为Z ),由,得,故或,即在~范围内与有相同终边的所有角是和.点评:角度与弧度进行互化,关键是对转化公式的理解和应用;判断一个角所在的象限,关键是在内找到与该角终边相同的角.βo 720-o025********66ππαππ=⨯==⨯+αo o 31803()10855πππ=⨯=o o 360180(k k ⋅+∈o 720-≤o o o360180<0k ⋅+332<1010k --≤2k =-1k =-o 720-o 0βo 612-o 252-[0,2]π练习:(1)设,用弧度制表示,并指出它所在的象限;(2)设,用角度制表示,并在~内找出与它有相同终边的所有角.解析:(1),故在第二象限. (2),故在~范围内与β有相同终边的角是o 60-.2.求弧长与扇形面积例5 已知一扇形中心角为α,所在圆半径为R .(1)若3πα=,10R =cm ,求扇形的弧长及该弧所在弓形的面积;(2)若扇形的周长为一定值(>0)C C ,当α为何值时,该扇形面积最大,并求此最大值.导思:(1)扇形的弧长公式是什么?(2)怎样由扇形面积来求弓形的面积?(3)如何用扇形的周长C 表示扇形面积?(4)怎样求最大值?能用二次函数来求吗?能用基本不等式来求吗?解析:(1)设弧长为l ,弓形面积为S 弓,则10(3l π=cm ), 故110110232S S S π∆=-=⨯⨯-⨯弓扇210sin 50(33ππ⨯=-cm 2). (2)解法一:由扇形周长2C R l =+,得2l C R =-,故211=(2)22S Rl R C R R =-=-扇221()2416C C RC R +=--+.当4C R =时,S 扇有最大值且最大值为216C .此时22Cl C R =-=,故422l C R Cα==⋅=.故当2α=时,该扇形有最大面积. 解法二:由扇形周长22C R l R R α=+=+,得2CR a=+,故211=22S R αα=⋅扇2()2C α=+, o570α=-α73βπ=βo720-o 0195(570)2218066ππαππ=⨯-=-=-⨯+αo o 71807()()42033πππ-=⨯-=-o 720-o 022221142442164C C C ααααα⋅=⋅++++≤当且仅当,即时,扇形面积最大为.点评:在应用扇形弧长和面积公式时,如果圆心角用角度表示,则应先化为弧度;注意不要把弓形面积与扇形面积相混淆.练习:设扇形的周长为cm ,面积为cm 2,则扇形的圆心角的弧度数是________.解:1(82)42S r r =-=,即2440r r -+=,解得2r =,故4l =,从而422l r α===.1、下列角中终边与330°相同的角是( )A .30°B .-30°C .630°D .-630° 答案:B2、-1120°角所在象限是 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:D3、把-1485°转化为α+k ·360°(0°≤α<360°, k ∈Z )的形式是 ( ) A .45°-4×360°B .-45°-4×360°C .-45°-5×360°D .315°-5×360° 答案:D4、写出-720°到720°之间与-1068°终边相同的角的集合___________________. 答案:{}οοοο372,12,348,708--5、终边在第二象限的角的集合可以表示为: ( ) A .{α∣90°<α<180°}B .{α∣90°+k ·180°<α<180°+k ·180°,k ∈Z }C .{α∣-270°+k ·180°<α<-180°+k ·180°,k ∈Z }D .{α∣-270°+k ·360°<α<-180°+k ·360°,k ∈Z } 答案:D6、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( ) A .B=A ∩C B .B ∪C=CC .A CD .A=B=C答案:B7、下列结论正确的是( )Α.三角形的内角必是一、二象限内的角 B .第一象限的角必是锐角 C .不相等的角终边一定不同D .=答案:D8、若是第四象限的角,则α-ο180是 .24α=2a =216C 84⊂{}Z k k ∈±⋅=,90360|οοαα{}Z k k ∈+⋅=,90180|οοαααA .第一象限的角B .第二象限的角C .第三象限的角D .第四象限的角答案:C9、与1991°终边相同的最小正角是_________,绝对值最小的角是_______________. 答案:与;10、若角α的终边为第二象限的角平分线,则α的集合为______________________.答案:__________________________________________________________________________________________________________________________________________________________________基础巩固一、选择题1.(2014·山东济南商河弘德中学)已知α=-3,则角α 的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限[答案] C[解析] 1rad =(180π)°,则α=-3rad =-(540π)°≈-171.9°,∴α是第三象限角.2.与-13π3终边相同的角的集合是( )A .⎩⎨⎧⎭⎬⎫-π3B .⎩⎨⎧⎭⎬⎫5π3C .⎩⎨⎧⎭⎬⎫α|α=2k π+π3,k ∈ZD .⎩⎨⎧⎭⎬⎫α|α=2k π+5π3,k ∈Z[答案] D[解析] 与-13π3终边相同的角α=2k π-13π3,k ∈Z ,ο191ο169-{}Z k k ∈+⋅=,135360|οοαα∴α=(2k -6)π+6π-13π3=(2k -6)π+5π3,(k ∈Z ).3.已知集合A ={α|2k π≤α≤(2k +1)π,k ∈Z },B ={α|-4≤α≤4},则A ∩B =( ) A .∅B .{α|0≤α≤π|C .{α|-4≤α≤4|D .{α|-4≤α≤-π或0≤α≤π} [答案] D[解析] k ≤-2或k ≥1时A ∩B =∅;k =-1时A ∩B =[-4,-π];k =0时,A ∩B =[0,π];故A ∩B =[-4,-π]∪[0,π].故选D.4.一条弧所对的圆心角是2rad ,它所对的弦长为2,则这条弧的长是( ) A .1sin1B .1sin2C .2sin1D .2sin2[答案] C[解析] 所在圆的半径为r =1sin1,弧长为2×1sin1=2sin1. 5.(2014·浙江象山中学高一月考)某扇形的面积为1cm 2,它的周长为4 cm ,那么该扇形的圆心角等于( )A .2°B .2C .4°D .4[答案] B[解析] 设扇形的半径为r ,弧长为l ,由题意得⎩⎪⎨⎪⎧2r +l =412lR =1,解得⎩⎪⎨⎪⎧r =1l =2.∴该扇形圆心角α=lr =2(rad),故选B.6.如图中,圆的半径为5,圆内阴影部分的面积是( )A .175π36B .125π18C .75π18D .34π9[答案] A[解析] 40°=40×π180=2π9,30°=30×π180=π6,∴S =12r 2·2π9+12r 2·π6=175π36.二、填空题7.若两个角的差是1°,它们的和是1弧度,则这两个角的弧度数分别是__________. [答案]180+π360、180-π360[解析] 设两角为α、β则⎩⎪⎨⎪⎧α-β=π180α+β=1,∴α=180+π360、β=180-π360.8.正n 边形的一个内角的弧度数等于__________. [答案](n -2)nπ [解析] ∵正n 边形的内角和为(n -2)π, ∴一个内角的弧度数是(n -2)πn .三、解答题9.已知α1=-570°、α2=750°,β1=3π5,β2=-7π3.(1)将α1、α2用弧度制表示出来,并指出它们各自所在象限;(2)将β1、β2用角度制表示出来,并在-720°~0°范围内找出与β1、β2有相同终边的角. [解析] (1)∵-570°=-570π180=-19π6=-4π+5π6,∴-570°与5π6终边相同,5π6在第二象限,∴α1在第二象限.∵750°=750π180=25π6=4π+π6,∴750°与π6终边相同,π6在第一象限,∴α2在第一象限.(2)∵β1=3π5=(35×180)°=108°,与其终边相同的角为108°+k ·360°,k ∈Z ,∴在-720°~0°范围内与β1有相同终边的角是-612°和-252°. 同理,β2=-420°且在-720°~0°范围内与β2有相同终边的角是-60°.能力提升一、选择题1.扇形的一条弦长等于半径,则这条弦所对的圆心角是 ____弧度.( ) A .π B .π2C .π3D .π4[答案] C[解析] ∵圆心角所对的弦长等于半径, ∴该圆心角所在的三角形为正三角形, ∴圆心角是π3弧度.2.在直角坐标系中,若角α与角β终边关于原点对称,则必有( ) A .α=-β B .α=-2k π±β(k ∈Z ) C .α=π+β D .α=2k π+π+β(k ∈Z ) [答案] D[解析] 将α旋转π的奇数倍得β.3.在半径为3cm 的圆中,60°的圆心角所对的弧的长度为( ) A .π3cmB .πcmC .3π2cmD .2π3cm[答案] B[解析] 由弧长公式得,l =|α|R =π3×3=π(cm).4.下列各组角中,终边相同的角是( )A .(2k +1)π与(4k ±1)π,k ∈ZB .k π2与k π+π2,k ∈ZC .k π+π6与2k π±π6,k ∈Z D .k π±π3与k π3,k ∈Z [答案] A [解析] 2k +1与4k ±1都表示的是奇数,故选A.二、填空题5.把-11π4写成θ+2k π(k ∈Z )的形式,使|θ|最小的θ的值是________. [答案] -3π4[解析] -11π4=-3π4-2π=5π4-4π, ∴使|θ|最小的θ的值是-3π4. 6.用弧度表示终边落在y 轴右侧的角的集合为________.[答案] {θ|-π2+2k π<θ<π2+2k π,k ∈Z } [解析] y 轴对应的角可用-π2,π2表示,所以y 轴右侧角的集合为{θ|-π2+2k π<θ<π2+2k π,k ∈Z }.三、解答题7.x 正半轴上一点A 绕原点依逆时针方向做匀速圆周运动,已知点A 每分钟转过θ角(0<θ≤π),经过2min 到达第三象限,经过14min 回到原来的位置,那么θ是多少弧度?[解析] 因为0<θ≤π,所以0<2θ≤2π.又因为2θ在第三象限,所以π<2θ<3π2. 因为14θ=2k π,k ∈Z ,所以2θ=2k π7,k ∈Z . 当k 分别取4、5时,2θ分别为8π7、10π7,它们都在⎝⎛⎭⎫π,3π2内. 因此θ=4π7rad 或θ=5π7rad. 8.设集合A ={α|α=32k π,k ∈Z },B ={β|β=53k π,|k |≤10,k ∈Z },求与A ∩B 的角终边相同的角的集合.[解析] 设α0∈A ∩B ,则α0∈A 且α0∈B ,所以α0=32k 1π,α0=53k 2π,所以32k 1π=53k 2π, 即k 1=109k 2. 因为|k 2|≤10,k 2∈Z ,且k 1∈Z ,所以k 1=0,±10.因此A ∩B ={0,-15π,15π},故与A ∩B 的角的终边相同的角的集合为{γ|γ=2k π或γ=(2k +1)π,k ∈Z }={γ|γ=n π,n ∈Z }.9.已知扇形AOB 的周长为8cm.(1)若这个扇形的面积为3cm 2,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的弧度数和弦长AB .[解析] (1)设扇形的圆心角为θ,扇形所在圆的半径为x (cm),依题意有⎩⎪⎨⎪⎧2x +xθ=812θ·x 2=3,解得θ=23或6, 即圆心角的大小为23弧度或6弧度. (2)由于扇形的圆心角θ=8-2x x, 于是扇形面积S =12x 2·8-2x x=4x -x 2=-(x -2)2+4. 故当x =2cm 时,S 取到最大值.此时圆心角θ=8-42=2(弧度),弦长AB =2·2sin1=4sin1(cm). 即扇形的面积取得最大值时圆心角为2弧度,弦长AB 为4sin1cm.备选题目:1(2015年1月·昌平期末·14)某蒸汽机上的飞轮直径为20cm ,每分钟按顺时针...方向旋转180转,则飞轮每秒钟...转过的弧度数是_________;轮周上的一点每秒钟...经过的弧长为_________.答案:6π- ,60cm π2(2015年1月·西城期末·1.已知,且sin 0<α,cos 0>α,则角α的取值范围是( ) (0,2π)α∈(A )π(0,)2(B )π(,π)2 (C ) (D ) 答案:D(A ) (B ) (C )(D ) 答案:C4(2015年1月·延庆期末·2.已知)2,0[πα∈,与角终边相同的角是(A )(B )32π (C )34π (D )35π 答案:D 5(2015年1月·延庆期末·3.若0sin >α ,且0cos <α ,则角α是A .第一象限角B .第二象限角C .第三象限角D .第四象限角 答案:B6(2015年1月·顺义期末·8.如图,现要在一块半径为圆心角为的扇形金属板上,剪出一个平行四边形,使点在弧上,点在上,点在上,记的面积为,则的最大值为C. 答案:D7(2015年1月·西城期末·13.若(,)22ππ∈-θ,且tan 1>θ,则θ的取值范围是_. 答案:(,)42ππ 8(2015年1月·延庆期末·16.已知是圆上两点,弧度,,则劣3π(π,)23π(,2π)22π34π35π37π33π-3π1m 3πAOB MNPQ P AB Q OA ,M N OB MNPQ Y S S 2223m 2B A ,O 2=∠AOB 2=OA O M N A B PQ弧AB长度是__ ____.答案:4。
“1”在三角函数中的灵活运用

、。… ,
…
~
以上是作者关于 … ’ 三角函数计算中的一点想 法, … ’ 1在 1 起着 很 神奇的作用 , “”的灵活运 用不仅能减少计算 量 ,而且使解题变 l 伯剧 ’ ~ 眦~ 一 ’。 Ⅲ一 一 卫
… … 一一
3o = CS ,然后根据 例1 cs - O 中解 法l 的思 想就 可以解题 。
参考文献 【】 丁孝林. l 高校优秀学生干部培养教育研 究. 新西部 ,20 ,1 07 2 f 李鹏飞,陈露. 2 1 高校学生干部培养探 究. 人教两。2 0. .7 080 0 4 【 李雪. 3 】 论高校学生干部 的角色定位 与认 知… 培 养学生干部的 “ 己与 宽人 ”意 识. 宁行政 学 院学报 ,20 ,0 律 辽 09 8 【 王 敏 丽 . 学生 干部 的 选拔 、 培养 与 管理初 探 . 4 】 高校 中国科 教创 新 导
解 2 ̄S 她 . SC iO 1 1
c0
C 而n ; O S 2t 2 tt a
… 1 。 .+
一 i 一 ■
:
cs 0 点评 : 以上两种方法的解题过程 ,我们不难看 出,用 1 s 2, 从 =ia n +
一+ " ( -) 丁 I' -' 1 4 4 3 3
2s n . O i C S
的 ,后 入 求 ;二思 : ln来 解 值 然 代 兰 等中 值 第 种路 用=4 求 。 t5 a’
解法1 t l =a 6" 4 ) n 0 丽n 5 =J - : a S t ( - 5 =t t 4 ・ n " n 0 " a6" a " , 1 - 3
作者简介
翟会会 ( 95 18 一),研究方向:体育教 育训练学。
必修4 数学 三角函数1

高中数学 必修4——三角函数1【知识归纳】1、象限角:第一象限角的集合为 第二象限 第三象限 第四象限2、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z3、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 4、定义:设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 5、三角函数在各象限的符号:一全二正弦,三切四余弦6、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .7、同角三角函数的基本关系:()221sin cos 1αα+= ()sin 2tan cos ααα=8、三角函数的诱导公式:(口诀:奇变偶不变,符号看象限.)9、函数sin y x =的图象上所有点向左(右)平移ϕ个单位长度,得到函数sin y x =+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标缩短(ω>1)(伸长ω<1)到原来的ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 10.函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ.11、正弦函数、余弦函数和正切函数的图象与性质:sin y x = cos y x =tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1- []1,1-R函 数 性 质最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z ⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴【类型题】1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A.B.C 的关系是( ) A .B=A ∩C B .B ∪C=C C .A C D .A=B=C 2.下列各组角中,终边相同的角是( ) A .π2k与)(2Z k k ∈+ππ B .)(3k3Z k k ∈±πππ与 C .ππ)14()12(±+k k与 )(Z k ∈ D .)(66Z k k k ∈±+ππππ与4. 已知)20(παα<<的正弦线与余弦线相等,且符号相同,那么α的值为( )A .ππ434或 B .ππ4745或 C .ππ454或 D .ππ474或 5. 已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为( )A .-2B .2C .1623D .-1623变:已知21tan -=x ,则1cos sin 3sin 2-+x x x = .6、已知34tan =x ,且x 在第三象限,则=x cos ( )A.54B. 54-C. 53D.53-8. 设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于( ) A .33B .-33 C .3 D .-39. 函数)4sin(π+=x y在下列哪个区间为增函数( )A .]4,43[ππ-B .]0,[π-C .]43,4[ππ-D .]2,2[ππ-10. 函数)42sin(log 21π+=x y的单调减区间为( )A .)(],4(Z k k k ∈-πππ B .)(]8,8(Z k k k ∈+-ππππC .)(]8,83(Z k k k ∈+-ππππD .)(]83,8(Z k k k ∈++ππππ11. 函数)252sin(π+=x y的图象的一条对称轴方程是( )A .2π-=xB .4π-=xC .8π=xD .π45=x13、要得到函数)32cos(2π+=x y 的图像。
任意角的三角函数1

第一章三角函数1.2.1任意角的三角函数(1)学习目的:1.掌握任意角的三角函数的定义;2.已知角α终边上一点,会求角α的各三角函数值;3.记住三角函数的定义域、值域,诱导公式(一).学习重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式。
公式一是本小节的另一个重点.学习难点:利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用他们的集合形式表示出来.课堂探究:一、复习引入:初中锐角的三角函数是如何定义的?在Rt △ABC 中,设A 对边为a ,B 对边为b ,C 对边为c ,锐角A 的正弦、余弦、正切依次为,,a b a sinA cosA tanA c c b===.角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。
二、讲解新课:1.三角函数定义 在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y ,它与原点的距离为(0)r r ==>,那么(1)比值y r叫做α的正弦,记作sin α,即sin y r α=; (2)比值x r 叫做α的余弦,记作cos α,即cos x r α=; (3)比值y x叫做α的正切,记作tan α,即tan y xα=;说明:①α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;②根据相似三角形的知识,对于确定的角α,三个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小;③当()2k k Z παπ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等于0,所以tan y xα=无意义;④除以上两种情况外,对于确定的值α,比值y r、x r、y x分别是一个确定的实数,所以正弦、余弦、正切是以角为自变量,一比值为函数值的函数,以上三种函数统称为三角函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数
以下公式供做题时参考
一、选择题
1、函数的递增区间是
2、(理科)的取值范围是
(文科)函数的最小正周期是
3、数是奇函数,则等于
4、(理科)若的值为
(文科)已知的值是
5、函数的图象向左平移个单位,再将图象上各点的横坐标压缩为原来的,那么所得图象的函数表达式为
6、已知的值是
7、函数的一个对称中心是
8、(理科)若的值是
B、C、0D、-1
(文科)已知,且的终边在第二或第四象限,则sin等于
9、函数的图象的一条对称轴的方程是
10、已知奇函数在[-1,0]上为单调递减函数,又为锐角三角形两内角,则
11、函数是
A、周期是2π的奇函数
B、周期是π的偶函数
C、周期是π的奇函数
D、周期是2π的偶函数
12、若
二、填空题
13、求值:= _______________。
14、是以5为周期的奇函数,=4,且=________。
15、给出下列命题:
= 1 * GB3 ①存在实数=1成立;
= 2 * GB3 ②存在实数成立;
= 3 * GB3 ③函数是偶函数;
= 4 * GB3 ④方程的图象的一条对称轴的方程。
= 5 * GB3 ⑤若是第一象限角,且,则。
其中正确的命题的序号是___________________(注:把你认为正确的命题的序号都填上)。
16、已知,则函数的值域是____________。
三、解答题(解答应写出文字说明、证明过程或演算步骤。
)
17、。
18、已知,求的值。
19、三角形ABC中,三个内角A、B、C的对边分别为,若,求角C的大小。
20、已知2tgA=3tgB,求证:tg(A-B)=。
21、设内有相异二实数解。
(= 1 *ROMAN I)求常数的取值范围;
(= 2 *ROMAN II)求的值。
22、设为锐角,且是否存在最大值与最小值?如果存在,请求出;如果不存在,请说明理由。
参考答案
一、选择题:1、A2、B3、D4、理科D,文科C5、C6、B7、D
8、C9、A10、D11、C12、C
二、填空题:13、14、-415、= 3 * GB3 ③、= 4 * GB3 ④16、[-1,3]
三、解答题:17、
18、由已知求出,进而可求,分母和差化积,即可得到原式=。
19、由=cosB,故B=600,A+C=1200。
于是sinA=sin(1200-C)=,又由正弦定理有:,从而可推出sinC=cosC,得C=450。
20、把tgA=tgB代入tg(A-B)中,切化弦,即可证出。
21、(Ⅰ)原方程化为,根据题意应有。
(= 2 * ROMAN II)由已知有:
移项,和差化积,即可得到。
22、可化得
无最小值,有最大值1,从而原函数有最小值,无最大值。