试验室磁力搅拌器的工作原理

合集下载

磁力搅拌器利用了磁场和漩涡的原理

磁力搅拌器利用了磁场和漩涡的原理

磁力搅拌器利用了磁场和漩涡的原理,将沉入搅拌子的待搅拌液体之容器放置于磁力搅拌器的底座上,当磁力搅拌器通电后,底座附近产生一个旋转的磁场带动搅拌子成圆周循环运动,进而在容器液体内形成一个漩涡,从而达到搅拌液体的目的。

目前实验室中使用的搅拌器主要有两种:电动搅拌器与磁力搅拌器,其中,磁力搅拌器适用于粘稠度不大的液体或者固液混合物。

相比较于电动搅拌器,磁力驱动搅拌技术是我公司在磁力耦合器的基础上,经过技术革新,成功将其运用于化工搅拌反应釜转轴的驱动上它以静密封代替了动密封,彻底解决了机械密封和填料密封难以解决的密封失效和泄漏污染问题。

因而能实现高温、高压、高真空度、高转数下进行的各种易燃、易爆以及有毒介质的化学反应,特别适于制药、染料、精细化工以及微生物工程等行业进行试验和生产。

工作原理:磁力搅拌器的工作原理遵循磁的库仑定律,即两个相隔一定距离的磁体,由于磁场感应效应,它们不需要任何传统机械构件,通过磁体的耦合力,就能把功率从一个磁体传递到另外一个磁体,构成一个非接触传递扭矩机构。

工作时通过电机(或电机减速机)带动外部永久磁体进行转动,同时耦合驱动封闭在隔离套内的另一组永久磁体及转子作同步旋转,从而无接触、无摩擦地将外部动力传送到内部转子,并通过联轴器与下轴及搅拌桨联成一体,实现搅拌的目的。

磁力搅拌器内的压力是由耐压可靠且静止的隔离套来承受,隔离套与釜体构成一个封闭密封腔,使釜内介质处于完全封闭状态,因而可实现静密封、耐高压、无泄漏的目的。

磁力搅拌器的出现是对传统反应釜的搅拌机构的一次重大变革与创新:釜内的转轴不再与电机出轴直接联结传动,废除了传统搅拌轴必需的填料密封或机械轴封装置。

解决了长期令国内外专家困惑的反应釜轴封失效和泄漏问题。

由于取消了密封用压紧填料,可减少搅拌功率损耗约20%左右。

比传统搅拌转速提高2—6倍,缩短搅拌时间,强化反应过程,提高设备生产能力。

设备运转平稳,振动小,噪声低。

因此,磁力搅拌器更适合于各种极毒、易燃、易爆以及其它渗透力强的化工工艺过程;石油化工、有机合成制药、食品等工艺中。

磁力搅拌器萃取原理

磁力搅拌器萃取原理

磁力搅拌器萃取原理
磁力搅拌器萃取原理是在实验室分离和纯化生物大分子的重要方法之一。

在生物工程、医药和化学工业等领域都有广泛的应用。

下面我们来详细了解一下磁力搅拌器萃取原理。

磁力搅拌器的作用:
磁力搅拌器根据药物的溶解度、化学性质,来加入一些萃取剂,从而将目标物质从原始样品中萃取出来。

这样做的好处是可以提高化合物的纯度,减少多余杂质的影响。

磁力搅拌器的原理:
磁力搅拌器的萃取原理就是利用萃取剂的一些特殊性质,将目标物质从原始样品中分离出来。

其中,磁性是磁力搅拌器萃取原理的关键之一。

在磁力搅拌器中,有一个磁子,这个磁子可以通过电磁力影响磁力搅拌器中的大分子,从而改变其方向。

磁力搅拌器的使用步骤:
磁力搅拌器的使用步骤也是很简单的,下面将步骤罗列如下:
1. 确定所需提取化合物的物理性质和化学性质。

2. 根据化合物的性质选择适当的萃取剂。

3. 在原始样品中加入萃取剂,使化合物完全溶解。

4. 加入玻璃颗粒等助磁物质和磁力搅拌器中的磁子,开启磁力搅拌器并控制良好的搅拌速度。

5. 等待萃取剂与目标物质充分混合,并使化合物被萃取出来。

6. 利用离心的方法将上层的有机相取出,经过处理后可以得到更纯净的目标物质。

总的来说,磁力搅拌器萃取原理简单易懂,具有可靠性并且可以大幅提高分离的速度和效率,因此在实验室中广泛应用。

电磁搅拌 原理

电磁搅拌 原理

电磁搅拌原理
电磁搅拌是利用电磁力实现物料的搅拌和混合的一种技术。

其原理是在搅拌容器底部安装一个电磁搅拌器,搅拌器由电磁铁和搅拌器叶片组成。

当通电时,电磁搅拌器产生一个磁场,这个磁场会与搅拌容器底部的金属屏幕相互作用,金属屏幕也会产生磁场。

根据磁场的原理,同性相斥,异性相吸,当电磁搅拌器产生的磁场与金属屏幕的磁场相遇时,会产生一个排斥力,使得搅拌器叶片开始旋转。

通过改变电磁搅拌器的电流强度和方向,可以调节搅拌器叶片的转速和方向,从而实现物料的搅拌和混合。

电磁搅拌具有以下优点:
1. 无需机械传动装置,避免了因传动带来的振动和噪音;
2. 搅拌容器可以是密闭的,在高温、高压或有毒有害物质的环境下使用,提高了安全性;
3. 叶片转速和方向可调,可以根据需要进行控制,灵活性较高;
4. 可以实现微小流量的搅拌。

5. 可以进行反应过程的监测和控制。

电磁搅拌技术广泛应用于化工、制药、食品、环保等行业,能够有效地提高物料的混合效果,提高生产效率。

磁力搅拌器的工作原理

磁力搅拌器的工作原理

磁力搅拌器的工作原理磁力搅拌器(Magnetic Stirrer)是一种利用磁场来实现液体搅拌的常用实验仪器。

它通过一个旋转磁子和一个磁力驱动的承载磁铁,使液体瓶中的磁力悬浮导磁子沿旋转轴旋转,进而带动液体的旋转搅拌,实现液体的均匀混合。

磁力悬浮导磁子是一个特殊设计的磁体,在其内部有一个空心孔,并且磁子的表面具有特殊的形状,通常是圆柱形。

这种设计可以实现对液体中导磁体的精确悬浮。

磁子通常由稀土磁体材料如永磁铁氧体或钕铁硼制成,以产生足够强的磁场,使磁铁承载装置能够准确地控制其旋转运动。

磁铁承载装置通常由固定在磁搅拌器底座上的一个磁铁和一个旋转磁器组成。

磁铁承载装置通常使用电磁铁或永磁铁制成,以便产生强大的磁场。

通过改变电磁铁的电流或调整永磁铁的位置,可以精确地调节磁场的强度和方向,从而控制导磁子的旋转运动。

当磁铁承载装置被置于磁力搅拌器底座上时,磁力悬浮导磁子会被磁铁吸引并悬浮在容器液体中。

一旦打开磁力搅拌器的电源,磁铁承载装置中的磁场会引起磁子的旋转运动。

导磁子的旋转会通过涡流效应和磁滞损耗在容器液体中生成涡旋磁场,从而引起液体的旋转搅拌。

1.容器选择:容器必须是具有磁导性的材料,如玻璃。

同时,容器的形状也会影响搅拌效果。

2.液体选择:液体的粘度和浓度会影响磁悬浮导磁子旋转的速度和搅拌效果。

对于粘度较高的液体,需要选择高功率的磁力搅拌器。

3.磁力搅拌器的运行:在开始操作磁力搅拌器之前,应先将磁力悬浮导磁子放置在容器中,并确保磁力搅拌器底座和容器之间没有隔离物。

打开磁力搅拌器电源后,可以通过调节电磁铁电流或移动永磁铁的位置来控制导磁子的旋转速度和搅拌效果。

总之,磁力搅拌器利用磁场产生的旋转力矩来实现液体的搅拌效果。

通过改变磁场的强度和方向,可以精确地调节搅拌效果,使其适用于各种实验需求。

磁力搅拌器的工作原理是什么?

磁力搅拌器的工作原理是什么?

磁力搅拌器的工作原理是什么?磁力搅拌器是用于液体混合的实验室仪器,主要用于搅拌或同时加热搅拌低粘稠度的液体或固液混合物。

磁力搅拌器工作原理:利用磁性物质同性相斥的特性,通过不断变换基座的两端的极性来推动磁性搅拌子转动,通过磁性搅拌子的转动带动样本旋转,使样本均匀混合;通过底部温度控制板对样本加热,配合磁性搅拌子的旋转使样本均匀受热,达到指定的温度;通过加热功率调节,使升温速度可控,以适用更广阔的样本处理过程。

一般的磁力搅拌器具有搅拌和加热两个作用。

具体为:个作用,使反应物混合均匀,使温度均匀;第二个作用,加快反应速度,或者蒸发速度,缩短时间。

磁力搅拌器的特点:1.搅拌速度和加热温度均可连续调节(温度调节步距为1。

C),广泛适用于不同粘稠度溶剂的搅拌。

2.加热盘由铝合金制成,外部喷涂特氟龙材料,使其既有良好的导热效果,又具有较强的抗冷热、耐腐蚀性能。

3.加热盘底部采用双重融热装置,可充分提高效率,并避免热量传导至机壳。

4.整体成机壳和其上部的凸面设计可有效防止在搅拌过程中不慎溢出的溶液流入搅拌器内损坏电子器件。

磁力搅拌器注意事项:1、搅拌时发现搅拌子跳动或不搅拌时,请切断电源检查一下烧杯底是否平、位置是否正、同时请您测一下,现用的电压是在220V±10V之间,否则将会出现以上情况。

2、加热时间一般不宜过长,间歇使用延长寿命,不搅拌时不加热。

3、中速运转可连续工作8小时,高速运转可连续工作4小时,工作时防止剧烈震动。

4、用电:电源插座应采用三孔安全插座,必须妥善接地。

5、仪器应保持清洁干燥,严禁溶液流入机内,以免损坏机器,不工作时应切断电源。

标签:磁力搅拌器。

多点磁力搅拌器的工作原理

多点磁力搅拌器的工作原理

多点磁力搅拌器的工作原理多点磁力搅拌器是一种利用电磁感应原理实现的无接触旋转磁性搅拌器。

其工作原理是:通过外部电源产生高强度的电磁场,在加热互感线圈内产生高频电流,使得线圈内的铁磁材料(通常为Nd-Fe-B)磁化,形成强磁场。

然后,通过磁极的转动,磁性液体就可以被快速而均匀地搅拌。

在多点磁力搅拌器的工作中,通过磁力造成的旋转作用及液体之间的摩擦力而将悬浮在液体中的颗粒、细胞或分子混合均匀。

正是由于其高效磁力旋转的特性,它已被广泛应用于生物医学、化学、食品、环保等领域。

接下来,我们将分别从多点磁力搅拌器的结构和工作原理两个方面进行详细阐述。

多点磁力搅拌器的主要组成部分包括磁芯、磁极、互感线圈、控制电路和电源等。

下面将逐一介绍各个部分的作用。

1. 磁芯:多点磁力搅拌器的磁芯通常采用相对较高磁导率的硅钢片,其主要作用是固定互感线圈和增强磁场强度。

磁芯的形状因型号而异,从简单的圆柱形到复杂的多面体形状都有。

在磁芯的尖端、内侧放置了一组或多组磁极。

2. 磁极:多点磁力搅拌器中的磁极是一组半径小于磁芯外径的磁性强体,其作用是产生在液体中可塑形的磁场,从而引起磁场中的磁性液体或者微粒的旋转搅拌。

磁极一般采用Nd-Fe-B和Sm-Co等材料制成。

3. 互感线圈:多点磁力搅拌器的互感线圈分为1对、2对、3对等,可用在单点或多点搅拌器上。

当互感线圈中通以高频电流时,会在其内部形成交变磁场,这个磁场又会对磁极产生磁场,制造出相应的磁感应线。

在高速旋转磁场的作用下,磁性液体便会迅速搅动起来。

4. 控制电路:实现多点磁力搅拌器的高效率控制是这项技术的核心。

用于控制多点搅拌器的电子电路实际上是非常简单的,由多个开关式功率电压调制器组成,基本原理就是输入数字信号后,将其转化为控制信号输出到互感线圈。

5. 电源:多点磁力搅拌器所需的电源是一个稳定的高电压交流供电,其实反映了其高能效的原理。

多点磁力搅拌器通常以220V或110V的电压进行供电。

磁力搅拌原理

磁力搅拌原理

磁力搅拌原理是利用磁场对液体进行强制对流的一种新型混合设备。

它通过电机带动,使叶轮在径向做高速旋转,将待搅物投入其中并沿轴向推进或拉回,从而达成搅拌的目的。

磁力搅拌器的工作原理是:当两个相对静止的磁性体之间通有电流时,其中一个磁体的磁场必然要发生取向的变化而影响另一个的取向变化,从而产生一个转动的机械作用,这个机械作用以一定的频率、振幅及周期性往返运动的形式表现出来。

磁力搅拌器具有以下特点:
1. 磁力搅拌器可以将容器中的物质充分搅拌,使液体形成漩涡,从而实现均匀混合。

2. 磁力搅拌器可以控制温度,在搅拌的同时对液体进行加热或冷却,适用于需要控制温度的实验。

3. 磁力搅拌器可以快速混合,适用于需要快速混合的实验或生产过程。

4. 磁力搅拌器可以应用于不同尺寸的容器,可以根据需要选择不同大小的搅拌器。

需要注意的是,在使用磁力搅拌器时需要注意安全问题,避免过于强烈地搅拌液体或操作不当造成人身安全问题。

同时还需要根据具体的使用情况进行合理的操作和选择合适的搅拌器。

恒温磁力搅拌器原理

恒温磁力搅拌器原理

恒温磁力搅拌器原理
恒温磁力搅拌器是一种实验室常用设备,它通过磁力场和加热装置实现对液体的恒温搅拌。

其工作原理如下:
1. 磁力搅拌原理:恒温磁力搅拌器通过磁力驱动磁力子,使其在底部的磁力驱动器上旋转。

而在液体中放置一个磁子,通过磁力子的旋转将液体搅拌均匀。

2. 温度控制原理:恒温磁力搅拌器内置温度控制系统,通常采用外接温度传感器检测液体温度。

当液体温度低于设定温度时,加热装置会自动加热以提高液体温度;当温度高于设定温度时,加热装置会停止加热或降低加热功率,以维持恒温状态。

3. 磁力搅拌和恒温控制的协同工作:恒温磁力搅拌器将磁力搅拌和温度控制结合在一起。

当液体被加热至设定温度后,磁力搅拌器通过磁力驱动磁子进行搅拌,保证液体充分混合均匀。

同时,温度控制系统实时监测液体温度,保持其恒温状态,从而满足实验要求。

总的来说,恒温磁力搅拌器主要利用磁力搅拌技术和温度控制技术,通过恒温加热和磁力驱动搅拌的协同作用,实现对液体的恒温搅拌。

它在化学、生物、药学等实验研究中具有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验室磁力搅拌器的工作原理
搅拌器是化学实验中的一种常用设备,广泛应用于化工、医药、食品、涂料、油漆、环保、化妆品等领域。

传统化学反应溶液的搅拌多为手动操作,不仅耗费人力,还会造成反应溶液搅拌不均匀的现象,导致实验结果不准确。

磁力搅拌器能很好地解决这一问题。

磁力搅拌器不但操作简单,且可以按照操作人员意愿调整搅拌速度及搅拌方向,大大简化了操作过程,同时解决了对具有毒性或粘稠性反应溶液搅拌困难的难题。

利用磁性物质同性相斥的特性,通过不断变换基座的两端的极性来推动磁性搅拌仔转动。

主要作用:一般的磁力搅拌器具有搅拌,和加热两个作用,具体为:第一个作用,使反应物混合均匀,使温度均匀,第二是在一个密闭的容器中加热,需要防止暴沸,例如在蒸馏过程中,可以加入沸石,也可以用磁力搅拌器,第三个作用就是,加快反应速度,或者蒸发速度,缩短时间。

适用范围:数字式加热器带有一个闭路旋钮来监控与调节搅拌速度。

微处理器自动调节马达动力去适应水质、粘性溶液与半固体溶液。

相关文档
最新文档