现代分析测试技术论文
现代测试技术论文 -

现代测试技术论文 -X-射线单晶衍射法的原理及在测试技术中的应用-土木工程学院材料一班 080330110袁野摘要:X-射线衍射法的原理、优点及其在现代分析测试技术中的应用和重要意义。
关键词:XRD 布拉格方程物相分析点阵常数X射线衍射分析(X-ray diffraction,简称XRD),是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。
将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。
X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。
1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。
当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。
这就是X射线衍射的基本原理。
衍射线空间方位与晶体结构的关系可用布拉格方程表示:2dsinθ=nλ式中:λ是X射线的波长;θ是衍射角;d是结晶面间隔;n是整数。
波长λ可用已知的X射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。
将求出的衍射X射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。
从衍射X射线强度的比较,可进行定量分析。
X射线分析的新发展,X射线分析由于设备和技术的普及已逐步变成晶体研究和材料测试的常规方法。
例如在如下领域,X射线都有着及其广泛的应用。
物相分析:晶体的X射线衍射图像实质上是晶体微观结构的一种精细复杂的变换,每种晶体的结构与其X射线衍射图之间都有着一一对应的关系,其特征X射线衍射图谱不会因为它种物质混聚在一起而产生变化,这就是X射线衍射物相分析方法的依据。
现代光学测试技术

从测量镜返回光束的光频发生变化,其频移为
,该
光与返回光会合,形成“拍”,其拍频信号可表示为:
计算机先将拍频信号
与参考信号
理后,就得到所需的测量信息 .
进行相减处
设在动镜移动的时间 t 内,由 为 N ,则有:
引起的条纹亮暗变化次数
上式中
为在时间t内动镜移动的距离L,于是有:
单击此处添加大标题内容
第三章 散斑技术 散斑的形成及其性质 当一束激光射到物体的粗糙表面(例如铝板)上时,在铝板前面的空间将布满明暗相间的亮斑与暗斑;
一、双频激光外差干涉仪图
1 -141 示出双频激光外差干涉仪的光学系统。干涉仪的 光源为一双频 He-Ne 激光器,这种激光器是在全内腔单频 He-Ne 激光器上加上约 300 特拉斯的轴向磁场,由于塞曼 效应和频率牵引效应,使该激光器输出一束有两个不同频率的 左旋和右旋圆偏振光,它们频率
差 Δν约为 1.5MHz 。这两束光
1 -5 长度(间隔、高度、振幅)的激光干涉测量
一.
激光干涉测长的工作原理及特点
干涉测长仪器是用光波波长为基准来测量各种长度(如属测量干涉场上指定点上位相随时间而变化的干涉仪。
激光干涉测长仪与用其它准单色光源的干涉测长仪相比,具有下列的显著优点:
激光干涉测 长的工作原 理如图 1101 所示。
单击此处添加大标题内容
1 -6 激光外差干涉测长与测振 激光光波干涉比长仪以光波波长为基准来测量各种长度,具有很高的测量精度。这种仪器中, 由于动镜在测量时一般是从静止状态开始移动到一定的速度,因此干涉条纹的移动也是从静止 开始逐渐加速,为了对干涉条纹的移动数进行正确的计数,光电接收器后的前置放大器一般只 能用直流放大器,而不能用交流放大器,因此在测量时,一般对测量环境有较高的要求,一般 的干涉比长仪不能 用于车间现场进行精密测量。为了适应在车间现场实现干涉计量的需要,必 须使干涉仪不仅具有高的测量精度,而且还要具有克服车间现场中气流及灰雾引起的光电信号 直流漂移的性能,光外差干涉 技术是为解决车间现场测量问题而发展起来的。 这种技术的一个共同点是在干涉仪的参考光路中引入具有一定频率的副载波,干涉后被测信号 是通过这一副载波来传递,并被光电接收器接收,从而使光电接收器后面的前置放大器可以用 一交流放大器代替常规的直流放大器,以隔绝由于外界环境干扰引起的直流电平漂移,使仪器 能在车间现场环境下稳定工作。
现代分析仪器在药品检测中的应用

现代分析仪器在药品检测中的应用摘要:现代分析仪器在药品检测中的应用越来越广泛,为保证药品质量和安全性起到了重要作用。
本论文主要探讨了几种常见的现代分析仪器及其在药品检测中的应用,包括高效液相色谱仪(HPLC)、气相色谱质谱联用技术(GC-MS)、红外光谱仪(FT-IR)和紫外可见光谱仪(UV-Vis)等。
关键词:现代分析仪器;药品检测;应用引言随着药品的广泛应用和市场需求的增长,对药品质量和安全性的要求也越来越高。
传统的药品检测方法往往面临着复杂样本分析、低灵敏度和时间消耗等问题。
而现代分析仪器的出现和发展为药品检测带来了革命性的变化。
本论文将重点讨论几种常见的现代分析仪器及其在药品检测中的应用,以期为进一步提高药品质量和安全性提供技术支持。
1.现代分析仪器在药品检测中优势1.1高效准确现代分析仪器具备高分辨率和精度的特点,能够准确地分析和定量各种化合物成分。
例如,高效液相色谱仪(HPLC)和气相色谱仪(GC)能够对复杂样品进行快速和准确的分离和定量。
现代分析仪器能够检测非常微量的目标化合物,使得在药品制造过程中不合格的成分被及时发现和排除。
许多现代分析仪器具备快速分析的能力,可以实现高通量的样品处理和分析。
这使得药品制造商能够更快地获得检测结果,提高生产效率。
现代分析仪器可以适应不同类型的药品和检测需求。
无论是检测药物活性成分、污染物残留物还是药品稳定性,不同的分析仪器都可以应用于这些不同的领域。
1.2多功能性和多样性现代分析仪器具备多种功能,可以满足不同类型的药品检测需求。
例如,质谱仪(MS)可以用于鉴定和定量药物活性成分、分析药物代谢产物以及检测其他杂质或污染物等。
存在许多不同类型的分析仪器,涵盖了各种不同的技术和原理。
这使得药品制造商能够选择适合其特定需求的仪器。
例如,使用高效液相色谱仪(HPLC)可以对药物中的溶解度、纯度和活性成分进行分析;而红外光谱仪(IR)则可以对药品中的分子结构进行鉴定。
ICP-AES分析技术论文-

现代测试技术论文ICP-AES分析技术的发展及其应用学校:东华理工大学学院:地球科学学院姓名:专业:指导老师:零一贰年六月十五日ICP-AES分析技术的发展及其应用摘要:原子发射光谱(AES)分析法一直是材料领域中最为常用的元素分析手段。
人们在对发射光谱法光源深入研究的过程中,发现了利用等离子炬作发射光谱的激发光源,并采用AAS的溶液进样方式,发展起一类具有发射光谱多元素同时分析的特点又具有吸收光谱溶液进样的灵活性和稳定性的新型仪器。
把发射光谱分析技术推向一个崭新的发展阶段。
至今等离子体光源已经用于不同目的的光谱分析上其中以ICP光源的研究和应用最广泛、最深入,约占全部等离子光源研究和应用文献的80%以上。
虽然自三电极DCP和常压He-MIP出现以来,这两方面的研究和应用迅速增多,但仍远远不及ICP(Inductively Coupled Plasma)光源的普遍,特别是近20年来用电子计算机控制的ICP光谱仪器,已使ICPAES法成为既简便又具有多功能的测试手段,得到更为广泛的应用。
本文就近20年来ICP法的发展及其在冶金分析中的应用加以评述。
正文:1、ICP-AES的分析性能特点等离子体(Plasma)在近代物理学中是一个很普通的概念,是一种在一定程度上被电离(电离度大于011%)的气体其中电子和阳离子的浓度处于平衡状态,宏观上呈电中性的物质电感耦合等离子体(ICP)是由高频电流经感应线圈产生高频电磁场,使工作气体形成等离子体,并呈现火焰状放电(等离子体焰炬),达到10000K的高温,是一个具有良好的蒸发-原子化-激发-电离性能的光谱光源。
而且由于这种等离子体焰炬呈环状结构,有利于从等离子体中心通道进样并维持火焰的稳定;较低的载气流速(< 1L/ min)便可穿透ICP,使样品在中心通道停留时间达2~ 3ms,可完全蒸发、原子化;ICP环状结构的中心通道的高温,高于任何火焰或电弧火花的温度,是原子、离子的最佳激发温度,分析物在中心通道内被间接加热,对ICP放电性质影响小;ICP光源又是一种光薄的光源,自吸现象小,且系无电极放电,无电极沾污。
【2019年整理】现代分析测试技术论文

西安科技大学研究生考试试卷学号______ ________研究生姓名______ ________班级______ ________考试科目______ ________考试日期________ ______课程学时_______ _______开(闭)卷________ ______现代分析测试技术在煤热解催化剂制备中的应用摘要:现代分析测试技术在化工生产的研究中占据着重要的地位,本文主要讨论X射线荧光分析(XRF)、X射线衍射分析(XRD)、扫描电子显微镜(SEM)在制备煤热解催化剂中的应用。
关键词:XRF、XRD、SEM、煤热解催化剂、应用Abstract: the modern analysis determination technique in the study of chemical production occupies the important position, this article focuses on the application of X-ray fluorescence analysis (XRF), X-ray diffraction analysis (XRD) and scanning electron microscope (SEM) in the preparation of the coal pyrolysis catalyst.Key words:XRF, XRD, SEM, the coal pyrolysis catalyst, application1、引言现代分析测试技术是化学、物理等多种学科交叉发展、前沿性应用以及合而为一的综合性科学研究手段,主要研究物质组成、状态和结构,也是其它学科获取相关化学信息的科学研究手段与途径,因此想要获得准确有效的实验数据就必须能够正确的运用各种分析测试手段,对化工类学生更是如此。
本次论文主要对煤热解催化剂制备过程中用到的分析测试技术手段进行论述。
现代材料分析方法——四大分析方法的应用论文

四大分析方法及应用摘要:本文论述材料的X射线粉末衍射分析(XRD)、电子显微分析、能谱分析(XPS,UPS,AES)和热分析(TG,DTA, DSC)等测试原理、制样技术、影响因素、图谱解析以及它们在材料研究中的具体应用。
以一些常见的化合物为基质的各类复合或是掺杂的材料为例,来重点介绍XRD、电镜、热分析等在研究材料物相组成、结构特征、形貌等方面的应用。
关键词:TiO2,XRD,SEM,XPS,TG,DTA前言由于铝等一些金属和无机物的优良的性质,如铝的密度很小,仅为2.7 g/cm3,虽然它比较软,但可制成各种铝合金,如硬铝、超硬铝、防锈铝、铸铝等。
.铝的导电性仅次于银、铜,虽然它的导电率只有铜的2/3,但密度只有铜的1/3,所以输送同量的电,铝线的质量只有铜线的一半铝是热的良导体,它的导热能力比铁大3倍,工业上可用铝制造各种热交换器、散热材料和炊具等。
铝有较好的延展性(它的延展性仅次于金和银),在100 ℃~150 ℃时可制成薄于0.01 mm 的铝箔。
铝的表面因有致密的氧化物保护膜,不易受到腐蚀,常被用来制造化学反应器、医疗器械、冷冻装置、石油精炼装置、石油和天然气管道等。
铝热剂常用来熔炼难熔金属和焊接钢轨等。
铝还用做炼钢过程中的脱氧剂。
铝粉和石墨、二氧化钛(或其他高熔点金属的氧化物)按一定比率均匀混合后,涂在金属上,经高温煅烧而制成耐高温的金属陶瓷,它在火箭及导弹技术上有重要应用。
所以工业上应用非常广泛。
1 X射线衍射分析(XRD)1.1 X射线衍射仪仪器核心部件:光源---高压发生器与X 光管、精度测角仪、光学系统、探测器、控测,数据采集与数据处理软件、X射线衍射应用软件。
定性相分析(物相鉴定):目的:分析试样属何物质,那种晶体结构,并确定其化学式。
原理:任何结晶物质均具有特定结晶结构(结晶类型,晶胞大小及质点种类,数目分布)和组成元素。
一种物质有自已独特衍射谱与之对应,多相物质的衍射谱为各个物相行对谱的叠加。
色谱分析技术论文(2)

色谱分析技术论文(2)色谱分析技术论文篇二现代色谱技术在药物分析中的应用【摘要】色谱分析已成为当今分析化学领域应用最广泛的一种分析测试手段,应用范围涉及医药、环保、生命科学、石油化工等几乎所有基础和研究领域,常常需要面对各种复杂的基体以及低含量组分的分析。
由于对分析要求的日益增高和各种微量、高通龟色谱及光谱、电子计算机技术的发展,每种色谱联用均得到较大发展,通常,这些方法可以联合使用以期获得最佳分析结果。
本文将对较新出现的前处理方法的研究进展进行综述,并结合自己实验工作侧重于衍生技术和色谱联用技术。
【关键词】高效液相色谱;紫外衍生;荧光衍生;色谱联用技术1 衍生技术随着液相色谱技术的发展,要求使用通用型的高灵敏检测器,但迄今为止,高效液相色谱还没有一个足以同气相色谱相比拟的通用型检测器。
为了扩大高效液相色谱的适用范围,提高检测灵敏度和改善分离效果,采用化学衍生法是一个行之有效的途径。
化学衍生法是借助化学反应给样品化合物接上某个特定基团,从而改善样品混合物的检测性能和分离效果。
高效液相色谱的化学衍生法是指在一定条件下利用某种试剂(一般称作化学衍生试剂或标记试剂)与样品组分在色谱分离之前或分离之后发生化学反应,从而使得反应产物有利于色谱检测或分离。
简言之,化学衍生法主要有以下几个目的:(1)提高对样品的检测灵敏度;(2)改善样品混合物的分离度;(3)适合于进一步作结构鉴定,如质谱,红外或核磁共振等。
衍生主要分为紫外和荧光衍生,下面我们将介绍这两种衍生方法。
1.1 紫外衍生技术紫外衍生即加入发色团使正常形式下不能被检测的物质能够检测。
发色团应具有较大的摩尔吸收系数,使其吸收光谱能尽量提高检测灵敏度,使背景噪音变小。
一般情况下用于紫外衍生的试剂要有两个重要的官能团。
第一个用于控制试剂与被测物反应,第二个用于紫外检测,即发色团。
常用的紫外衍生试剂有4-溴甲基-7甲氧基香豆醛、对-(9-葸酰氧基)苯甲酰甲基溴化物、对-硝基苄基-N,N,-二异丙基异脲、3,5-二硝基苄基-N,N’-二异丙基异脲、溴化对-溴苯甲酰甲基、卜氨基萘(1.NA)、3,5-二硝基氯苄,4-二甲基胺偶氮苯-4-亚磺酰基、卜萘异氰酸酯、对-硝基苄基羟胺盐酸盐、3,5-二硝基苄基羟胺盐酸盐、N-琥铂酰亚胺基-对-硝基苯醋酸酯、N-琥铂酰亚胺基-3,5-二硝基苯醋酸酯等。
现代测试技术论文

凝胶色谱法基本原理及应用摘要:凝胶色谱法又叫凝胶色谱技术,是六十年代初发展起来的一种快速而又简单的分离分析技术,设备简单、操作方便,不需要有机溶剂,对高分子物质有很高的分离效果。
目前已经被生物化学、分子生物学、生物工程学、分子免疫学以及医学等有关领域广泛采用,不但应用于科学实验研究,而且已经大规模地用于工业生产。
本文就凝胶色谱做一个整体性的介绍。
关键词:凝胶色谱法、分析技术、原理、应用Abstract:gel chromatography, which is known as gel permeation technology, is a quick and simple separation and analytical techniques developed in the early 1960s. It has simple equipment and simplified operation, and also it doesn’t require organic solvents and has high polymer material separation effect. It has been not only widely used by biochemistry, molecular biology, bioengineering, molecular immunology and medicine, but also used on a large scale industrial production. This paper will give a holistic introduction about gel chromatography.Key words: gel chromatography, analytical techniques, theory, application1.凝胶色谱介绍凝胶色谱法又叫凝胶色谱技术,是六十年代初发展起来的一种快速而又简单的分离分析技术,由于设备简单、操作方便,不需要有机溶剂,对高分子物质有很高的分离效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西安科技大学研究生考试试卷学号______ ________研究生姓名______ ________班级______ ________考试科目______ ________考试日期________ ______课程学时_______ _______开(闭)卷________ ______现代分析测试技术在煤热解催化剂制备中的应用摘要:现代分析测试技术在化工生产的研究中占据着重要的地位,本文主要讨论X射线荧光分析(XRF)、X射线衍射分析(XRD)、扫描电子显微镜(SEM)在制备煤热解催化剂中的应用。
关键词:XRF、XRD、SEM、煤热解催化剂、应用Abstract: the modern analysis determination technique in the study of chemical production occupies the important position, this article focuses on the application of X-ray fluorescence analysis (XRF), X-ray diffraction analysis (XRD) and scanning electron microscope (SEM) in the preparation of the coal pyrolysis catalyst.Key words:XRF, XRD, SEM, the coal pyrolysis catalyst, application1、引言现代分析测试技术是化学、物理等多种学科交叉发展、前沿性应用以及合而为一的综合性科学研究手段,主要研究物质组成、状态和结构,也是其它学科获取相关化学信息的科学研究手段与途径,因此想要获得准确有效的实验数据就必须能够正确的运用各种分析测试手段,对化工类学生更是如此。
本次论文主要对煤热解催化剂制备过程中用到的分析测试技术手段进行论述。
在煤热解催化剂制备中用到的分析测试手段主要有X射线荧光分析、X射线衍射分析、扫描电子显微镜等。
2、组成及工作原理2.1 X射线荧光分析的组成及工作原理X射线荧光分析仪主要由激发、色散(波长和能量色散)、探测、记录和测量以及数据处理等部分组成。
由X射线管发射出来的原级X射线经过滤光片投射到样品上,样品随即产生荧光X射线,并和原级X射线在样品上的散射线一起,通过光阑、吸收器(可对任何波长的X射线按整数比限制进入初级准直器的 X射线量)和初级准直器(索勒狭缝),然后以平行光束投射到分析晶体上。
入射的荧光 X射线在分析晶体上按布喇格定律衍射,衍射线和晶体的散射线一起,通过次级准直器(索勒狭缝)进入探测器,在探测器中进行光电转换,所产生的电脉冲经过放大器和脉冲幅度分析器后,即可供测量和进行数据处理用。
对于不同波长的标识X射线,通过测角器以1:2的速度转动分析晶体和探测器,即可在不同的布喇格角位置上测得不同波长的X射线而作元素的定性分析。
X射线荧光分析法用于物质成分分析,具有若干独特的优点。
首先,与原级X射线发射光谱法比,不存在连续X射线光谱,以散射线为主构成的本底强度小,谱峰与本底的对比度和分析灵敏度显著提高,操作简便,适合于多种类型的固态和液态物质的测定,并易于实现分析过程的自动化。
样品在激发过程中不受破坏,强度测量的再现性好,以及便于进行无损分析等。
其次,与原子发射光谱法相比,除轻元素外,特征(标识)X射线光谱基本上不受化学键的影响,定量分析中的基体吸收和增强效应较易校正或克服,谱线简单,互相干扰比较少,且易校正或排除。
X 射线荧光分析法可用于冶金、地质、化工、机械、石油、建材等工业部门,以及物理、化学、生物、地学、环境科学、考古学等。
还可用于测定涂层和金属薄膜的厚度和组成以及动态分析等。
2.2 X射线衍射仪的组成及原理X射线衍射主要由X射线源、样品及样品位置取向的调整机构系统、X射线衍射信号检测系统和衍射图像处理系统组成。
当X射线沿某方向入射某一晶体的时候,晶体中每个原子的核外电子产生的相干波彼此发生干涉。
当每两个相邻波源在某一方向的光程差等于波长λ的整数倍时,它们的波峰与波峰将互相叠加而得到最大限度的加强,这种波的加强叫做衍射,相应的方向叫做衍射方向,在衍射方向前进的波叫做衍射波。
光程差为0的衍射叫零级衍射,光程差为λ的衍射叫一级衍射,光程差为nλ的衍射叫n级衍射。
n不同,衍射方向的也不同。
由于常用的X射线波长约在2.5A~0.5A之间,与晶体中的原子间距(1A)数量级相同,因此可以用晶体作为X射线的衍射光栅,这就使得用X射线衍射进行晶体结构分析成为可能。
X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点,所以X射线衍射技术在冶金、石油、岩石矿物、科研、航空航天、材料生产等领域被广泛应用。
2.3 扫描电子显微镜的组成及原理扫描电镜的基本结构可分为六大部分,电子光学系统、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统。
扫描电镜利用细聚电子束在样品表面逐点扫描,与样品相互作用产生各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像。
扫描电镜具有景深大、图像立体感强、放大倍数范围大且连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效工具。
扫描电镜所需的加速电压比透射电镜要低得多,一般约在1-30kV,实验时可根据被分析样品的性质适当地选择,最常用的加速电压约在20kV左右。
扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整。
放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。
扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。
扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。
3、煤热解催化剂制备中测试方法的应用煤的热解是将煤在惰性气氛下加热,制取半焦、煤气、焦油等产品。
与气化或液化过程相比,煤热解具有工艺过程简单,加工条件温和,投资少,生产成本低等优势。
鉴于煤热解的各种优势,其对于催化剂的要求也越来越高,本文就上述三种测试技术在煤热解催化剂制备中的应用进行介绍。
3.1 X射线荧光分析在煤热解催化剂制备中的应用制备煤热解催化剂要制备用于作为催化剂载体的焦炭,将煤样粉碎和筛选为直径为0.4-1.0mm。
将煤样放在空气干燥器里在110 °C下干燥2h。
将准备好的煤放入固定床反应器中置于氮气环境下在800 °C下热解3h,用于制备作为催化剂载体的焦炭。
用X射线荧光分析煤和焦炭的灰分组成进行定量分析和定性分析。
在定量分析中,经过定标器的信号脉冲(分析线强度),可以直接输入电子计算机,进行联机处理而读取分析元素的含量,也可从定标器上读取分析线的强度,然后进行脱机处理。
在定性分析中,经过脉冲幅度分析器的信号,可以直接输入计数率计,通过记录器笔录下来,进行定性或半定量分析。
在作近似定量分析时,也可以通过数据处理机进行。
下图为某煤和焦炭的灰分组成的分析图。
从上图中能清楚的看到样品中各个元素的含量值,可用于物质成分分析、常规分析和某些特殊分析。
分析范围包括原子序数Z≥3(锂)的所有元素,常规分析一般用于Z≥9(氟)的元素。
分析灵敏度随仪器条件、分析对象和待测元素而异,新型仪器的检出限一般可达10-5~10-6克/克;在比较有利的条件下,对许多元素也可以测到10-7~10-9克/克(或10-7~10-9克/厘米3),而采用质子激发的方法,其灵敏度更高,检出限有时可达10-12克/克(对Z>15的元素)。
至于常量元素的测定,X射线荧光分析法的迅速和准确,是许多其他仪器分析方法难与相比的。
3.2 X射线衍射分析在煤热解催化剂制备中的应用X射线衍射分析利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析。
将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。
X射线衍射法是目前测定晶体结构的重要手段,应用极其广泛。
催化剂制备完成后使用X射线衍射法研究催化剂的特征,用铜作为射线源,在电压为40kV、电流为30mA、扫描速度为0.42°/s、入射角2θ为10°−90°的条件下分析。
下图为某三种不同金属添加剂的催化剂的XRD图谱。
在XRD图谱中某物相的某衍射峰的衍射强度与物相在样品中的百分含量成正比,故衍射峰的积分强度直接反映了物相在化合物中的百分含量。
单个X射线衍射峰是由相互独立的、各自具有一定物理学意义的5个基本要素组成。
衍射峰位置P是布拉格衍射角的图形表示,衍射峰的半高宽度是scherrer粒度大小的反映,衍射峰的形态是粒度大小和晶格位错的综合反映,衍射峰的强度是物相对X射线吸收强弱和在混合物中含量多少的反映,不对称性是样品、仪器几何条件和衍射角度、而网散射综合作用的结果。
3.3 扫描电子显微镜在煤热解催化剂制备中的应用扫描电镜配备能谱仪,主要能分析材料表面微区的成分,分析方式有定点定性分析、定点定量分析、元素的线分布、元素的面分布。
场发射扫描电镜采用场致发射电子枪代替普通钨灯丝电子枪,可得到很高的二次电子像分辨率。
采用场发射电子枪需要很高的真空度,在高真空度下由于电子束的散射更小,其分辨率进一步得到提高。
同时,采用磁悬浮技术,噪音振动大为降低,灯丝寿命也有增加。
场发射扫描电镜的特点是二次电子像分辨率很高,如果采用低加速电压技术,在TV状态下背散射电子(BSE)成像良好,对于未喷涂非导电样品也可得到高倍像。
所以,场发射扫描电镜对半导体器件、精密陶瓷材料、氧化物材料等的发展起到很大作用。
催化剂制备完成后可使用扫描电子显微镜的能量色散系统分析催化剂的表面形态和元素组成。
下图为扫描电子显微镜观察得到的某三种催化剂的表面形态图。
4、结论综上所述,当前X射线荧光分析、X射线衍射分析、扫描电子显微镜等测试手段正趋于较为完善阶段,并取得了举世瞩目的进展,在化工领域得到了广泛应用,为化学工业的发展提供了必不可少的支持。
然而任何测试手段都不是完美无瑕的,例如对于X射线荧光分析,某些新发展起来的激发、色散和探测新技术还未能得到普遍的推广应用,仪器的自动化和计算机化水平尚待进一步提高。
尤其突出的是,在快速分析方面,至今实验室的制样自动化水平仍然是很低的,还不能适应全自动X射线荧光分析仪连续运转的要求。