水中铅离子检测
水中铅和镉的测定

测定方法
一.阳极溶出伏安法测定水样中铅镉含量
1.实验原理(一)
溶出伏安法(Stripping voltammetry)包含电解富集和电解 溶出两个过程,其电流-电位曲线如图1所示。首先将工作 电极固定在产生极限电流的电位上进行电解,使被测物质富 集在电极上。经过一定时间的富集后,停止搅拌,再逐渐改 变工作电极电位,电位变化的方向应使电极反应与上述富集 过程电极反应相反。记录所得的电流-电位曲线,称为溶出 曲线,呈峰状,峰电流的大小与被测物质的浓度有关。电解 时工作电极作为阴极,溶出时作为阳极,称为阳极溶出伏安 法;反之,工作电极作为阳极进行富集,而作为阴极进行溶 出,称为阴极溶出伏安法。溶出伏安法具有很高的灵敏度, 对某些金属离子或有机物的检测可达10-10 ~ 10 -15 mol· L-1,因此,应用非常广泛。
采样器
自动采水器 多通道自动采水器
采样 采集河流、湖泊等表层水可用适当的 容器从上方直接采集,注意不能混 入浮于水面上的物质。 一定深度的水可用直立式或有机玻璃 采水器; 泉水、井水可在涌口处采集,有停滞 水的必须等新水更替后采集; 自来水或抽水设备的水应放水数分钟 后不规则采集。
采样注意事项
采样器的准备
• 采样器与水样接触部份材质应采用聚乙烯、 有机玻璃塑料或硬质玻璃。应先用洗涤剂除 去油污,自来水冲净,再用10%硝酸或盐 酸洗刷,自来水冲净后备用。
• 容器的准备:采用聚乙烯塑料或硬质玻璃容 器。装测金属类水样的容器,先用洗涤剂清 洗,自来水冲净,再用10%硝酸或盐酸浸 泡8小时 ,用自来水冲净,然后用蒸馏水 清洗干净。装测有机物水样的容器,先用洗 优涤剂清洗,再用自来水冲净,然后用蒸馏 水清洗干净。贴好标签备用。
原子吸收法测定水中的铅含量

原子吸收法测定水中的铅含量摘要:铅作为一种有害元素,对其在水中的含量进行测定具有必要性。
为此,本文采用了原子吸收法测定了实验室自来水、水房饮用水和矿泉水三种不同水样中的铅含量,对实验方面作了详细的介绍,并对实验结果作了深入的分析与讨论,可为相关的检测工作提供有益的参考与借鉴。
关键词:铅;原子吸收法;测定;影响引言铅是自然界分布广泛且具有毒性的一种元素,若水中含有大量此元素,不仅会对水环境造成严重的污染,更会对我们人体的健康造成很大的威胁。
因此,需要对水中的铅含量进行必要的测定。
而原子吸收法作为一种科学的试验方法,用在水中铅含量检测能够发挥有效作用,因此得到了广泛的应用。
基于此,本文就原子吸收法测定三种不同水样的铅含量进行了实验研究,实验结果令人满意,现介绍如下。
1 实验试剂与仪器1.1 实验试剂硝酸铅、硝酸、桶装矿泉水(市售)。
1.2 实验仪器原子吸收分光光度计;KH-250DE数控超声波震荡器;精密酸度计;离心沉淀器;电子天平;数显电热恒温鼓风干燥箱。
2 实验步骤2.1 实验试剂的配制(1)100mg/L标准铅溶液贮备液的配制精密称取在105℃下干燥至恒重的硝酸铅粉末0.1598g,加5ml硝酸和50ml水溶解后,转移到1000mL容量瓶中,加水稀释至刻度线,摇匀。
(2)5mg/L标准铅使用溶液的配制临用前,精密量取贮液25ml,转移到500ml容量瓶中,加水稀释至刻度,摇匀。
(3)15%的硝酸:精密移取25.00mL硝酸,转移到100mL的容量瓶中,加水稀释至刻度,摇匀。
(4)0.15mol/L氨水:移取1mL浓氨水,转移到100容量瓶中,用水稀释至刻度,摇匀。
2.2 活性炭吸附铅的最佳条件2.2.1 pH对活性炭吸附铅的影响准确移取6次5mg/L的标准铅使用液各50mL置于100mL的比色管中,用稀盐酸和氨水调节pH值,使其pH值分别为2.18、3.98、4.72、6.02、7.22和9.04。
原子荧光光谱法测定水中的铅

原子荧光光谱法测定水中的铅前言铅的毒性较强,具有积蓄性,长期饮用含铅的水容易引起人体慢性铅中毒,对人体的神经系统,消化系统和造血系统造成极大危害。
目前测定铅的方法很多,但大多由于方法不当,常常难以得到令人满意的检出水平。
氢化物原子荧光光谱法测定铅是近年来发展的一种较快的分析技术,该方法操作简单,灵敏度高,检出限低,基体干扰少,值得推广。
1 实验部分1.1 仪器及试剂1.1.1 仪器AFS-9800型多道原子荧光光度计,特制脉冲编码铅空心阴极灯。
1.1.2 试剂与配制盐酸。
2%的盐酸溶液。
铁氰化钾(10%):称取10.0g铁氰化钾溶于100ml纯水中,混匀。
硼氢化钾(2%):称取5.0g氢氧化钾溶于少量纯水中,加入10.0g硼氢化钾,混匀,用纯水定容至500ml,此溶液现用现配。
草酸(1%):称取1.0g草酸,溶于100ml纯水中,混匀。
硫氰酸钠(2%):称取2.0硫氰酸钠,溶于100ml纯水中,混匀。
铅标准储备溶液(1000μg/ml):由国家标准物质中心提供。
铅标准中间液(10.0μg/ml):吸取1.0ml铅储备液于100ml容量瓶中,用纯水定容。
铅标准使用液(0.1μg/ml):吸取1ml10.0μg/ml铅标准中间液到100ml容量瓶中,用纯水定容至刻度。
实验室用水均为去离子水,试剂均为优级纯。
1.2 分析步骤1.2.1 标准系列的配制取6只50ml容量瓶,依次加入标准使用液0ml、1.0ml、2.0ml、4.0ml、8.0ml、16.0ml用纯水稀释后加入2ml盐酸,1ml草酸,硫氰酸钠4ml,加入铁氰化钾溶液5ml用水定容,配制成浓度为:2.0ng/ml、4.0 ng/ml、8.0 ng/ml、16 .0ng/ml、32 .0ng/ml标准系列,放置30分钟后测定。
1.2.2 样品量取50ml水样于锥形瓶中,在电炉上加热至5ml左右取下冷却后加入5ml硝酸加热至近干,加入5ml盐酸三次以赶去硝酸,加2ml盐酸,1ml草酸,硫氰酸钠4ml,加入铁氰化钾溶液5ml,定容至50ml容量瓶中。
八大离子的检验方法

八大离子的检验方法离子是指在水溶液中存在的带电粒子,水溶液中的离子种类繁多,其中包括八大离子,即铵离子、铁离子、铬离子、钙离子、镁离子、铜离子、锌离子和铅离子。
这些离子的存在与否直接影响着水的质量,因此对于水的检验中,八大离子的检测是非常重要的。
本文将介绍八大离子的检验方法。
一、铵离子的检验方法铵离子是一种常见的离子,它的存在对于水的质量有很大的影响。
铵离子的检验方法主要有两种,一种是使用氯化钡溶液进行检验,另一种是使用红外光谱法进行检验。
使用氯化钡溶液进行检验的方法是将待检测的水样加入少量的氯化钡溶液中,如果出现白色沉淀,则说明水中存在铵离子。
这种方法简单易行,但是只能检测到铵离子的存在,不能确定铵离子的浓度。
红外光谱法是一种比较先进的检验方法,它可以通过检测水中铵离子的吸收峰来确定铵离子的存在和浓度。
这种方法需要使用专门的仪器进行检测,但是具有准确性高、灵敏度高等优点。
二、铁离子的检验方法铁离子是一种常见的离子,它的存在对于水的质量有很大的影响。
铁离子的检验方法主要有两种,一种是使用硫酸亚铁溶液进行检验,另一种是使用原子吸收光谱法进行检验。
使用硫酸亚铁溶液进行检验的方法是将待检测的水样加入少量的硫酸亚铁溶液中,如果出现深蓝色沉淀,则说明水中存在铁离子。
的浓度。
原子吸收光谱法是一种比较先进的检验方法,它可以通过检测水中铁离子的吸收峰来确定铁离子的存在和浓度。
这种方法需要使用专门的仪器进行检测,但是具有准确性高、灵敏度高等优点。
三、铬离子的检验方法铬离子是一种常见的离子,它的存在对于水的质量有很大的影响。
铬离子的检验方法主要有两种,一种是使用硫酸亚铁溶液进行检验,另一种是使用离子色谱法进行检验。
使用硫酸亚铁溶液进行检验的方法是将待检测的水样加入少量的硫酸亚铁溶液中,如果出现绿色沉淀,则说明水中存在铬离子。
这种方法简单易行,但是只能检测到铬离子的存在,不能确定铬离子的浓度。
离子色谱法是一种比较先进的检验方法,它可以通过检测水中铬离子的峰面积来确定铬离子的存在和浓度。
水中铅测定方法详解

水中铅测定方法详解导语:铅是一种广泛存在于环境中的有毒重金属,对人体健康有严重危害。
因此,准确测定水中铅的含量对于保护水环境和人体健康至关重要。
下面将详细介绍几种常用的水中铅测定方法。
一、原子吸收光谱法(AAS)原子吸收光谱法是一种常用的测定水中铅含量的方法。
该方法基于原子吸收光谱学原理,通过测定水样中铅原子对特定波长光的吸收来测定铅的含量。
1.提取样品:取一定量的水样,在酸性条件下加入络合剂(如硫代二氮根)进行络合提取。
经过一系列的操作(如振荡、离心、过滤等),将铅离子转移到有机溶剂中。
2.原子化:将有机溶剂中的铅离子转化为原子态。
这可以通过火焰、石墨炉或电感耦合等原子化方法实现。
3.吸收测定:使用特定波长的光源照射样品,并测量样品吸收的光信号。
通过与标准曲线进行比较,可以确定样品中铅的含量。
原子吸收光谱法具有灵敏度高、准确度高、测定范围广的优点,但仪器价格昂贵,操作较为复杂,需要专业技术人员进行操作和维护。
二、原子荧光法(AFS)原子荧光法是一种测定水中铅含量的高灵敏度和选择性的方法。
该方法基于样品中的铅原子在特定的激发条件下发射荧光信号,通过测量荧光强度来测定铅的含量。
1.提取样品:取一定量的水样,在酸性条件下加入络合剂提取铅。
然后进行离心、过滤等操作,得到含有铅的溶液。
2.增强荧光:将提取的溶液中的铅转化为易发射荧光的化合物。
这可以通过添加荧光增强剂(如硫代二氮根)来实现。
3.荧光测定:使用特定波长的激发光照射样品,测量荧光信号的强度。
通过与标准曲线进行比较,可以确定样品中铅的含量。
原子荧光法具有高灵敏度、选择性好和准确度高的优点,但仪器价格较贵,操作较为复杂,需要严格控制各种干扰因素。
三、电化学法电化学法是一种常用的测定水中铅含量的方法,具有灵敏度高、简单、成本低的特点。
下面以阳极溶出伏安法和阳极敏化阳极溶出伏安法为例进行详细介绍。
1.阳极溶出伏安法:将水样置于电化学池中,使用铅电极作为阳极,在特定电位下施加电压,并进行溶出和析出反应。
水中铅和镉的含量测定及处理方法

水中铅和镉的含量测定及处理方法引言:水作为人类生活和生产的重要资源,其质量直接关系到人类的健康和环境的保护。
铅和镉是水污染中常见的有害重金属,具有高度的毒性和累积性。
本文将介绍水中铅和镉的含量测定方法,以及对水中铅和镉进行处理的方法。
一、水中铅和镉的含量测定方法1.原子吸收分光光度法(AAS)原子吸收分光光度法是一种常见的用于金属元素测定的方法。
该方法基于金属元素对特定波长的电磁辐射的吸收特性。
具体操作步骤如下:(1)取水样品,使用合适的方法去除悬浮物和浮游物。
(2)将水样与相应的溶剂(如酸)酸化处理,以溶解金属元素。
(3)使用原子吸收分光光度计,选择合适的波长和光源,对处理后的样品进行测定。
(4)根据吸收光谱的强度,通过与标准品对比,确定水样中铅和镉的含量。
2.电感耦合等离子体质谱法(ICP-MS)电感耦合等离子体质谱法是一种高灵敏度、高分析能力的测定金属元素的方法。
其操作步骤与AAS类似,但采用的仪器是ICP-MS。
该方法的优点是能同时测定多种金属元素,且灵敏度和准确度高。
3.化学计量法化学计量法是一种基于化学反应,将样品中的金属离子与特定试剂发生定量反应,经计量后确定金属离子含量的方法。
常用的化学计量法包括硫化氢沉淀法、试剂法和络合滴定法等。
二、水中铅和镉的处理方法以下是常用的处理方法:1.沉淀法适用于水中铅和镉的高浓度,通过添加沉淀剂,如硫化钠或氢化钠等,将金属离子转化为相对稳定的沉淀物,然后通过过滤或沉淀分离处理。
2.离子交换法离子交换法是利用特定固体材料的交换作用,将水中的金属离子吸附在固体表面,然后再用适当的溶剂将金属离子洗脱出来的方法。
常用的离子交换材料有活性炭、树脂等。
3.膜处理法膜处理法是利用特殊的膜材料,通过逆渗透、超滤等机理将水中的金属离子分离和去除的方法。
逆渗透是指利用高压将水分子逆向推移,从而将溶质从水中分离出来。
4.生物吸附法生物吸附法是利用一些具有吸附金属离子能力的生物材料,如微生物、藻类等,将水中的金属离子吸附在生物体表面,从而实现金属离子的去除。
分光光度法测定水中铅的含量

HeChunxiao
(CollegeofChemistryandChemicalEngineering,LongdongUniversi,Qingyang 745000,China)
Abstract:Leadionsreactwithxylenolorangeundercertainconditionstogenerateredcomplex,whichisabsorbedat576nm. Basedonthis,anewmethodforthedeterminationofleadwasestablished.Inthisexperiment,thepHvalueofthebuffersystem, theconcentrationofbuffersolution、xylenolorangeandmaskingagent,thereactiontemperatureandtimewereoptimized.Thesame timeseveralionswereinvestigatedforinterference.Theresultsshowedthatundertheoptimalconditions,theconcentrationoflead ionsintherangeof0~3.2mg·L-1 wasinlinewithLambert- beer'slaw,andthelinearregressionequationwasA=0.2402c +0.0083,R2 =0.9964,andtheapparentmolarabsorptivityε=7.96×104 L·cm-1·mol-1.Thecontentofleadinwaterwas determinedbythismethodwithsatisfactoryresults. Keywords:spectrophotometry;lead;water
水质 铅的测定 双硫腙分光光度法

FHZHJSZ0008 水质铅的测定双硫腙分光光度法F-HZ-HJ-SZ-0008水质双硫腙分光光度法1 范围 本方法规定水样经酸消解处理后本方法适用于测定天然水和废水中微量铅铅浓度高于0.30mg/Ll.l 检出限试份体积为100mL×îµÍ¼ì³öŨ¶È¿É´ï0.010mg/LÓÃËÄÂÈ»¯Ì¼ÝÍÈ¡ÆäĦ¶ûÎü¹âϵÊýԼΪ 6.7 cmÇ軯ÎïµÄ»¹Ô-ÐÔ½éÖÊÖÐÝÍÈ¡µÄÂȷ»ìɫҺ´Ó¶øÇó³öǦµÄº¬Á¿3 试剂 本方法所用试剂除另有说明外所有试剂试验中应使用不含铅的蒸馏水或去离子水3.2 高氯酸(HClO4) 1.67g/mL3.3 硝酸(HNO3) 1.42g/mL1+4溶液3.3.2 硝酸溶液 取2mL硝酸(3.3)用水稀释到1000mL0.5mo1/L3.5 氨水(NH3ñ3.5.1 氨水溶液 取10mL氨水(3.5)用水稀释到100mL0.143mol/L3.6 柠檬酸盐将400g柠檬酸氢二铵[(NH4)2HC6H5O7]10g盐酸羟胺(NH2OH²¢Ï¡Ê͵½1000mL若此溶液含有微量铅直到有机层为纯绿色注因此称量和配制溶液时要特别谨慎小心避免沾污皮肤将5g无水亚硫酸钠(Na2SO3)溶解在100mL无铅去离子水中0.05mo1/L将40g碘化钾(KI)溶解在25mL去离子水中然后用水稀到1000mL 将0.1599g硝酸铅(纯度)溶解在约200mL水中或将0.1000g纯金属铅(纯度)溶解在20mL 1+1硝酸中3.10 铅标准工作溶液用水稀释到标线此溶液每毫升含2.00ìg铅称取100mg纯净双硫腙(C6H5NNCSNHNHC6H5)溶于1000mL氯仿(3.1)中此溶液每毫升含100ìg双硫腙可按下述步骤提纯用定量滤纸滤去不溶物每次用20mL氨水(3.5.2)提取五次合并水层然后用盐酸(3.4)中和含并氯仿层保存于冰箱内备用取一定量上述双硫腙氯仿溶液, 置50mL容量瓶中以氯仿稀释定容于606nm波长测量其吸光度104L/mol3.12 双硫腙工作溶液用氯仿稀释到标线3.13 双硫腙专用溶液此溶液不需要纯化4 仪器 所用玻璃仪器在使用前需用硝酸清洗4.1 分光光度计4.3 1505试样制备5.1 实验室样品按照国家标准的有关规定进行采集每1000mL水样立即加入2.0mL硝酸(3.3)加以酸化(pH约为1.5)5.2 试样除非证明试样的消化处理是不必要的否则要按下述二种情况进行预处理每100mL试样加入lmL硝酸(3.3)冷却后用快速滤纸过滤然后用硝酸(3.3.2)稀释到一定体积5.2.2 含悬浮物和有机物较多的地面水或废水1ìg)加入5mL 硝酸(3.3)ÉÔÀäÈ´ÑϽû½«¸ßÂÈËá¼Óµ½º¬Óл¹Ô-ÐÔÓлúÎïµÄÈÈÈÜÒºÖзñÔò»áÒýÆðÇ¿ÁÒ±¬Õ¨)Õô·¢ÖÁ½ü¸É(但勿蒸干)ÓÃÏõËá(3.3.2)温热溶解残渣用快速滤纸过滤滤液用硝酸(3.3.2)稀释定容每分析一批试样要平行操作两个空白试验铋在510nm和465nm 分别测量试份的吸光度从每个波长位置的试份吸光度中扣除同一波长位置空白试验的吸光度计算510nm 处吸光度校正值与465nm 处吸光度校正值的比值而对双硫腙铋盐为1.076如果分析试份时求得的比值明显小于2.08ÕâʱÐèÁíÈ¡100mL 试样(5.2)并按以下步骤处理加入5mL 亚硫酸纳溶液(3.7)以还原残留的碘在pH 计上将试样转入250mL 分液漏斗中每次用10mLÈ»ºóÓÃÂÈ·Â(3.1)萃取以除去双硫腙(绿色消失)6 操作步骤 6.l 测定6.1.1 显色萃取向试份(含铅量不超过30ìgÇ軯¼Ø»¹Ô-ÐÔÈÜÒº(3.6)¼ÓÈë10mL 双硫腙工作溶液(3.12)¾çÁÒÒ¡¶¯·ÖҺ©¶·30s 6.1.2 吸光度的测量在分液漏斗的茎管内塞入一小团无铅脱脂棉花弃去1~2mL 氯仿层后在510nm 测量萃取液的吸光度第一次采用本方法时应检验最大吸光度波长由测量所得吸光度扣除空白试验吸光度再从校准曲线上查出铅量6.2 空白试验按5.3和6.1的方法进行处理其他试剂用量均相同向一系列250mL 分液漏斗中0.505.0010.0015.00mL然后按6.l 所述步骤进行操作从上述测得吸光度扣除试剂空白(零浓度)的吸光度后这条线应为通过原点的直线特别当每次使用一批新试剂时要检查Vm c =式中ìg mL8 精密度和准确度对河水中含铅0.010mg/L进行测定时测定的相对标准偏差为4.8相对误差为15 9 参考文献GB7470-87。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氨基凹土修饰电极示差脉冲阳极溶出法测定铅离子1前言1.1 重金属污染若金属元素的原子密度超过每立方厘米五克,即可认为其是重金属。
如铜、铅、锌、镉、铁、锰等,均属于重金属,共有四十五种。
若水体排入的重金属物质,无法结合自净能力将其净化,而最终导致水体的性质、组成等发生改变,影响水体生物生长,并对人的健康、生活产生不良影响的,即属于水环境重金属污染。
在工业、农业快速发展的同时,许多污染物被排入河流,其中也包含重金属,最终导致水质恶化,也由此产生了一系列严重后果。
不论是在何种环境中,重金属污染物的降解都极为困难,并且能够积累在植物、动物体,并结合食物链不断富集,最终进入人体,对人体健康产生危害,这类污染物也是对人体产生最大危害的一种污染物。
1.2水环境中重金属的检测技术方法研究与发展重金属污染能够不断富集,并最终对动植物、人体以及环境产生一定负面影响,具备潜在的危险性,因此这也是一个不容忽视的问题。
工业污染是重金属污染的主要来源,企业的排放要达标,管理要严格,最为关键的是当前国家的管理机制尚未健全,仍需继续完善。
在水环境监测工作方面,重金属检测工作能够为此提供一定依据。
近年来,伴随着多种分析仪器的开发,重金属检测也逐步体现出准确性、灵敏度高等优势。
当前,对重金属进行检测的电化学方法主要有:伏安法、极谱法、电位分析法和电导分析法。
1.3 对铅离子的研究铅可通过皮肤、消化道、呼吸道进入体与多种器官亲和,对神经、血液、消化、心脑血管、泌尿等多个系统造成损害,严重影响体新代,堵塞金属离子代通道,造成低钙、低锌、低铁,且导致补充困难。
因此研究一种简单、准确和灵敏度高的铅测定方法具有重要意义。
目前铅的主要检测方法有:原子吸收光谱法,电感耦合等离子体原子发射光谱法,电感耦合等离子体质谱法,X射线荧光光谱法,分光光度法等。
化学修饰电极测定重金属离子的方法也有报道,如植酸钠或石墨烯修饰玻碳电极测定铅,多壁碳纳米管修饰电极测定镉等,但这些方法的线性围较窄,检出限较高。
凹土即凹凸棒粘土的简称,是一种稀有非金属矿产资源,它是一种层链状结构的含水富镁铝硅酸盐粘土矿物。
凹土的化学式为Mg5Si8O20(HO)2(OH2)4·4H2O,它的表面有可交换阳离子和活性羟基,同时拥有较大的表面积和较好的机械强度。
因此,原始的凹土可作为重金属离子的吸附剂,有研究表明用有机试剂(例如:氨丙基三乙氧基硅烷、3-巯基丙基三甲氧基硅烷)修饰凹土表面可以提高凹土的吸附能力和吸附选择性。
因此本文选取3-氨丙基三乙氧基硅烷(简称AEPTMS)来修饰电极。
2 实验部分2.1 粘土矿物、化学试剂和化学仪器精制凹凸棒粘土(粒径小于 2 微米,)——简称凹土,是一种稀有非金属矿产资源,它是一种层链状结构的含水富镁铝硅酸盐粘土矿物。
化学试剂:Pb(NO3)2(99%,分析纯),H2SO4(98%),Pb(NO3)2 (99%,分析纯),H2SO4(98%),HCl(36%),NaCl(99.5%),HNO3(63%),K3[Fe(CN)6],Ru(NH3)6Cl3,In(NO3)3.H2O(99.99%),Cd(NO3)2·4H2O(98%),Cu(NO3)2·xH2O(99.99%),T l NO3(99.9%),Hg(NO3)2·H2O(≥99.99%),乙醇,Al2O3,有机结合剂3-氨丙基三乙氧基硅烷(简称AEPTMS,用来修饰黏土表面),蒸馏水化学仪器:烘箱、磁力搅拌器、过滤装置、超声清洗仪2.2 用AEPTMS对精制的坡缕石粘土矿物进行表面修饰把2.0g的凹土溶解于15mL的甲苯,然后在氮气氛围下搅拌10分钟。
然后继续在氮气氛围下逐滴加入4mL的AEPTMS。
在磁力搅拌的条件下,让刚才的混合溶液回流3小时。
将混合物经过过滤,洗涤获得的产物,放在100℃下,干燥一晚上,即得到修饰后的凹土(称为Amino-AT,氨基凹土)2.3 工作电极的制备和电化学过程2.3.1 工作电极的制备电极抛光:依次用粒子大小为5μm、1μm、0.5μm的氧化铝对玻碳电极(GCE)进行抛光,把经过抛光的玻碳电极放在含有乙醇和水为1:1的溶液中进行超声处理10分钟,以除去电极上残留的氧化铝。
制备薄膜:将6μL的氨基凹土或者凹土溶液滴到玻碳电极表面上使其在电极表面集运散落,然后把电极放到50℃的烘箱里,10分钟后取出。
制得具有氨基凹土薄膜的电极(GCE/Amino-AT)和具有凹土薄膜的电极(GCE/AT)。
在电化学检测中作为工作电极。
2.3.2 电化学过程本实验采用示差脉冲阳极溶出法(ASDPV)的电化学检测方法,并以三电极系统来进行检测。
其中Ag/AgCl为参比电极(饱和KCl溶液),Pt为辅助电极,GCE/Amino-AT为工作电极。
实验在室温下进行,扫描速率为100mV/s。
3.3 应用凹土修饰电极检测Pb2+3.3.1 Pb2+在修饰电极上的电化学行为实验步骤:示差脉冲阳极溶出法(ASDPV)富集:把工作电极放于10-5mol/L的Pb2+溶液中富集3min,搅拌,pH=7,富集电位-0.9V到-1.1V。
溶出:溶出电位为-0.8V,溶出时间t=30s,pH=2的HCl溶液。
再分别以GCE/AT和GCE/Amino-AT为工作电极,Ag/AgCl为参比电极(饱和KCl溶液),Pt为辅助电极,并且实验在室温下进行,扫描速率为100mV/s,按上述条件测得如下的溶出伏安图。
实验结果:上图中的曲线a是以GCE/Amino-AT为工作电极的溶出伏安曲线,b是以GCE/AT为工作电极的溶出伏安曲线。
从上图可以清晰地看到在相同条件下,被氨基修饰过的凹土电极GCE/Amino-AT的阳极峰电流大约是没被氨基修饰的普通凹土电极GCE/AT的两倍。
因为被氨基修饰过的凹土中的氨基具有螯合的性能,它能够作为P b2+的载体,进而有效地促进电极反应的电子转移,所以GCE/Amino-AT在分析检测P b2+时具有更高的灵敏度。
3.3.2 溶出酸的种类的影响在电化学检测分析中,酸通常作为支持电解质。
但是它会影响生成的配合物的种类。
实验步骤:在pH=7,P b2+浓度为10-5mol/L条件下进行预电解3min,然后在相同的条件和pH下,再分别在HCl,H2SO4,HNO3,HClO4溶液中用示差脉冲阳极溶出法(ASDPV)进行电解。
实验结果:从图可以看出HCl的峰电流最强,这是因为Cl-与Pb2+形成的配合物比氨基与Pb2+形成的配合物更稳定,导致电信号明显增强,所以选择HCl为支持电解质。
3.3.3 富集酸度的影响实验步骤:用示差脉冲阳极溶出法(ASDPV ),以和GCE/Amino-AT 为工作电极,Ag/AgCl 为参比电极(饱和KCl 溶液),Pt 为辅助电极,并且实验在室温下进行,扫描速率为100mV/s 。
把工作电极放于10-5mol/L 的Pb 2+溶液中富集2min ,不断搅拌,富集电位-0.9V 到-1.1V ,改变盐酸的pH 值(pH=1~9)进行酸度的选择实验。
以富集的酸度为横坐标,峰电流为纵坐标,作出富集酸度与峰电流的关系图。
实验结果:当pH=1~3时,铅主要以Pb 2+的形式存在,电极反应很弱,说明富集在电极上的Pb 2+很少所以峰电流很小。
原因有二:一方面H +与Pb 2+在电极反应上存在竞争,另一方面,修饰电极上的氨基质子化阻碍Pb 2+在电极上的富集。
当pH=3~7时,随着pH 的增加,峰电流也从1μA增加到5μA,当pH=7时,峰电流达到最大值5μA。
当pH=7~9时,随着pH 的增加,峰电流E / V vs Ag/AgCl不断减小。
这是因为已经富集在电极上的在pH比较大的时候发生水解作用,生成 [Pb 4(OH) 4 ] 4+ , [Pb 3 (OH) 4 ] 2+ ,[Pb 3 (OH) 4 ] 2+ 和 [Pb 6 (OH) 8 ] 4+。
因此,富集的最佳酸度为pH=7。
3.3.4 溶出酸度的影响实验步骤:用示差脉冲阳极溶出法(ASDPV),以GCE/Amino-AT为工作电极,Ag/AgCl 为参比电极(饱和KCl溶液),Pt为辅助电极,并且实验在室温下进行,扫描速率为100mV/s。
把工作电极放于10-5mol/L的Pb2+溶液中富集30s,富集电位-0.8V,改变盐酸的pH值(pH=1~5,避免在碱性条件下,富集的Pb2+水解)进行酸度的选择实验。
以溶出的酸度为横坐标,峰电流为纵坐标,作出溶出酸度与峰电流的关系图。
实验结果:在pH=1时,峰电流最大,随着pH的增大,峰电流不断地减小;当pH=3~5时,峰电流几乎为0,这是因为H+的浓度越大,氨基与Pb2+形成的配合物的稳定性就越差,这样Pb2+越容易溶出。
因此,我们选择的最佳溶出条件是pH=1的HCl溶液。
3.3.5 富集电位与电解时间的影响溶出电位开始为-0.6V,最大变化围为-0.9V~-1.1V,溶出时间为40s,富集电位为-1V 3.3.6 富集时间的影响在富集时间为1到5min,电极反应是逐渐增加的,但是在5min后电极反应趋向稳定,因为这时在电极上富集和溶出达到动态平衡状态。
3.3.7 校准曲线和检出限实验步骤:在最佳实验条件下,采用示差脉冲阳极溶出法(ASDPV),以和GCE/Amino-AT 为工作电极,Ag/AgCl为参比电极(饱和KCl溶液),Pt为辅助电极,并且实验在室温下进行,扫描速率为100mV/s。
分别在一系列不同浓度的Pb2+标准溶液(浓度围为4×10-12M到4×10-11M)中进行预电解5min,然后在pH=1的盐酸溶液中溶出,得到溶出伏安曲线和校准曲线。
实验结果:峰电流随着Pb2+浓度的增加而增加,且峰电流与Pb2+浓度呈良好的线性关系。
当Pb2+浓度围为4×10-12M~4×10-11M时,其线性回归方程为Ip(A)=13902.55[Pb2+](M)-3.4×10-10,相关系数r=0.998,检出限为0.88×10-12M。
3.3.8干扰试验实验步骤:固定Pb2+浓度为10-11M,分别加入不同离子,控制相对误差±5%。
0.5倍(相对Pb2+浓度)的Cd2+、Hg2+、Cu2+、Co2+、Tl+、In3+;2倍的Cd2+、Hg2+、Cu2+、Co2+、Tl+、In3+;5倍的Cd2+、Hg2+、Cu2+、Co2+、Tl+、In3+;10倍的Cd2+、Hg2+、Cu2+、Co2+、Tl+、In3+;用示差脉冲阳极溶出法(ASDPV)测得各种离子的伏安曲线,并与在相同条件下,只有Pb2+的伏安曲线比较。