2020年中考试卷
2020年河南物理中考试卷+答案+解析

72020年河南省普通高中招生考试(满分:70分考试时间:60分钟)一、填空题(本题共6小题,每空1分,共14分)1.我国宋代科学家沈括在《梦溪笔谈》中明确指出,指南针所指的方向“常微偏东,不全南也”。
人们把指南针指南的磁极叫极,地磁场的极在地理的南极附近。
2.如图1所示,将正在发声的音叉插入水中,会看到水花飞溅,这说明声音是由物体的产生的。
频率为256 Hz的A音叉和频率为440 Hz的B音叉中,(选填“A”或“B”)音叉声音的音调较高。
图13.公安交通管理部门要求驾驶员和乘客必须使用安全带,如图2所示。
汽车匀速行驶时,坐在座位上的乘客相对于汽车是的。
如果不系安全带,汽车一旦发生碰撞突然停止运动,乘客由于继续向前运动,就会与车身发生碰撞,对人身造成伤害。
行驶的汽车受到碰撞停止运动,说明力可以改变物体的。
图24.用毛皮摩擦过的橡胶棒由于得到电子而带电。
用这个橡胶棒接触验电器的金属球,如图3所示,验电器的两金属箔片由于带同种电荷互相而张开。
图35.在图4所示的电路中,电阻R0为6 Ω,电源电压不变。
把“6 V 3 W”的小灯泡接在AB间,CD间接电流表,闭合开关S,小灯泡正常发光,则电源电压为V,电流表的示数为A。
如果把这个小灯泡接在CD间,AB间接电压表,闭合开关S,若灯丝电阻与正常发光时相同,则电压表的示数为V。
图46.在通常情况下,许多物质的密度、沸点、凝固点、比热容等都是稳定不变的。
这些稳定不变的物理量既是物质的基本属性,也是自然界平衡与和谐的本质反映。
假如这些物理量发生改变,我们生产、生活中的许多现象就会发生变化。
请仿照示例,就任一物理量发生改变,提出一个相关的物理问题,并做出合理的猜想。
【示例】问题:如果水的密度变小,轮船的吃水深度将如何变化?猜想:轮船的吃水深度将增加。
问题:猜想:二、选择题(本题共8小题,每小题2分,共16分。
第7—12题每小题只有一个选项符合题目要求;第13—14题每小题有两个选项符合题目要求,全部选对得2分,选对但不全的得1分,有错选的得0分)7.“霜降”是中国传统的二十四节气之一,霜的形成属于()A.凝固B.液化C.凝华D.升华8.在图5所示的工具中,使用时属于费力杠杆的是()图59.随着科学技术的进步,我国在航天领域取得了举世瞩目的成就,对宇宙的探索在不断深入。
2020年天津市中考数学试卷(含解析)

2020年天津市中考数学试卷(考试时间:120分钟满分:120分)一、选择题(本大题共12小题,每小题3分,共36分)1.计算30+(﹣20)的结果等于()A.10 B.﹣10 C.50 D.﹣502.2sin45°的值等于()A.1 B.C.D.23.据2020年6月24日《天津日报》报道,6月23日下午,第四届世界智能大会在天津开幕.本届大会采取“云上”办会的全新模式呈现,40家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为58600000人.将58600000用科学记数法表示应为()A.0.586×108B.5.86×107C.58.6×106D.586×1054.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.5.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.估计的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间7.方程组的解是()A.B.C.D.8.如图,四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,6),点C在第一象限,则点C的坐标是()A.(6,3)B.(3,6)C.(0,6)D.(6,6)9.计算+的结果是()A.B.C.1 D.x+110.若点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x3<x1<x211.如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A.AC=DE B.BC=EF C.∠AEF=∠D D.AB⊥DF12.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x=.有下列结论:①abc>0;②关于x的方程ax2+bx+c=a有两个不等的实数根;③a<﹣.其中,正确结论的个数是()A.0 B.1 C.2 D.3二、填空题(本大题共6小题,每小题3分,共18分)13.计算x+7x﹣5x的结果等于.14.计算(+1)(﹣1)的结果等于.15.不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.将直线y=﹣2x向上平移1个单位长度,平移后直线的解析式为.17.如图,▱ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,G为DE的中点,连接CG.若AD=3,AB=CF=2,则CG的长为.18.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上,且AB=.(Ⅰ)线段AC的长等于.(Ⅱ)以BC为直径的半圆与边AC相交于点D,若P,Q分别为边AC,BC上的动点,当BP+PQ取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点P,Q,并简要说明点P,Q的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分)19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.(8分)农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位:cm)进行了测量.根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次抽取的麦苗的株数为,图①中m的值为;(Ⅱ)求统计的这组苗高数据的平均数、众数和中位数.21.(10分)在⊙O中,弦CD与直径AB相交于点P,∠ABC=63°.(Ⅰ)如图①,若∠APC=100°,求∠BAD和∠CDB的大小;(Ⅱ)如图②,若CD⊥AB,过点D作⊙O的切线,与AB的延长线相交于点E,求∠E的大小.22.(10分)如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC.测得BC=221m,∠ACB=45°,∠ABC=58°.根据测得的数据,求AB的长(结果取整数).参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.23.(10分)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm 与离开宿舍的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:2 5 20 23 30离开宿舍的时间/min0.2 0.7离宿舍的距离/km(Ⅱ)填空:①食堂到图书馆的距离为km;②小亮从食堂到图书馆的速度为km/min;③小亮从图书馆返回宿舍的速度为km/min;④当小亮离宿舍的距离为0.6km时,他离开宿舍的时间为min.(Ⅲ)当0≤x≤28时,请直接写出y关于x的函数解析式.24.(10分)将一个直角三角形纸片OAB放置在平面直角坐标系中,点O(0,0),点A(2,0),点B在第一象限,∠OAB=90°,∠B=30°,点P在边OB上(点P不与点O,B重合).(Ⅰ)如图①,当OP=1时,求点P的坐标;(Ⅱ)折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且OQ=OP,点O的对应点为O',设OP=t.①如图②,若折叠后△O'PQ与△OAB重叠部分为四边形,O'P,O'Q分别与边AB相交于点C,D,试用含有t 的式子表示O'D的长,并直接写出t的取值范围;②若折叠后△O'PQ与△OAB重叠部分的面积为S,当1≤1≤3时,求S的取值范围(直接写出结果即可).25.(10分)已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.(Ⅰ)当a=1,m=﹣3时,求该抛物线的顶点坐标;(Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线1平行于x轴,E是直线1上的动点,F是y轴上的动点,EF=2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;②取EF的中点N,当m为何值时,MN的最小值是?参考答案与试题解析一、选择题1.【解答】解:30+(﹣20)=+(30﹣20)=10.故选:A.2.【解答】解:2sin45°=2×=.故选:B.3.【解答】解:58600000=5.86×107,故选:B.4.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.5.【解答】解:从正面看有两列,左列底层一个小正方形,右列三个小正方形.故选:D.6.【解答】解:∵<<,∴4<<5,故选:B.7.【解答】解:,①+②得:3x=3,解得:x=1,把x=1代入①得:y=2,则方程组的解为.故选:A.8.【解答】解:∵四边形OBCD是正方形,∴OB=BC=CD=OD,∠CDO=∠CBO=90°,∵O,D两点的坐标分别是(0,0),(0,6),∴OD=6,∴OB=BC=CD=6,∴C(6,6).故选:D.9.【解答】解:原式==.故选:A.10.【解答】解:∵点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,∴﹣5=,即x1=﹣2,2=,即x2=5;5=,即x3=2,∵﹣2<2<5,∴x1<x3<x2;故选:C.11.【解答】解:由旋转可得,△ABC≌△DEC,∴AC=DC,故A选项错误,BC=EC,故B选项错误,∠AEF=∠DEC=∠B,故C选项错误,∠A=∠D,又∵∠ACB=90°,∴∠A+∠B=90°,∴∠D+∠B=90°,∴∠BFD=90°,即DF⊥AB,故D选项正确,故选:D.12.【解答】解:∵抛物线的对称轴为直线x=,而点(2,0)关于直线x=的对称点的坐标为(﹣1,0),∵c>1,∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=,∴﹣=,∴b=﹣a>0,∴abc<0,故①错误;∵抛物线开口向下,与x轴有两个交点,∴顶点在x轴的上方,∵a<0,∴抛物线与直线y=a有两个交点,∴关于x的方程ax2+bx+c=a有两个不等的实数根;故②正确;∵抛物线y=ax2+bx+c经过点(2,0),∴4a+2b+c=0,∵b=﹣a,∴4a﹣2a+c=0,即2a+c=0,∴﹣2a=c,∵c>1,∴﹣2a>1,∴a<﹣,故③正确,故选:C.二、填空题13.【解答】解:x+7x﹣5x=(1+7﹣5)x=3x.故答案为:3x.14.【解答】解:原式=()2﹣12=7﹣1=6.故答案是:6.15.【解答】解:∵袋子中装有8个小球,其中红球有3个,∴从袋子中随机取出1个球,则它是红球的概率是.故答案为:.16.【解答】解:将直线y=﹣2x向上平移1个单位,得到的直线的解析式为y=﹣2x+1.故答案为y=﹣2x+1.17.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,CD=AB,DC∥AB,∵AD=3,AB=CF=2,∴CD=2,BC=3,∴BF=BC+CF=5,∵△BEF是等边三角形,G为DE的中点,∴BF=BE=5,DG=EG,延长CG交BE于点H,∵DC∥AB,∴∠CDG=∠HEG,在△DCG和△EHG中,,∴△DCG≌△EHG(ASA),∴DC=EH,CG=HG,∵CD=2,BE=5,∴HE=2,BH=3,∵∠CBH=60°,BC=BH=3,∴△CBH是等边三角形,∴CH=BC=3,∴CG=CH=,故答案为:.18.【解答】解:(Ⅰ)线段AC的长等于=;(Ⅱ)如图,取格点M,N,连接MN,连接BD并延长,与MN相交于点B′,连接B′C,与半圆相交于点E,连接BE,与AC相交于点P,连接B′P并延长,与BC相交于点Q,则点P,Q即为所求.三、解答题19.【解答】解:(Ⅰ)解不等式①,得x≤1;(Ⅱ)解不等式②,得x≥﹣3;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣3≤x≤1.故答案为:x≤1,x≥﹣3,﹣3≤x≤1.20.【解答】解:(Ⅰ)本次抽取的麦苗有:2÷8%=25(株),m%=1﹣8%﹣12%﹣16%﹣40%=24%,故答案为:25,24;(Ⅱ)平均数是:==15.6,众数是16,中位数是16.21.【解答】解:(1)∵∠APC是△PBC的一个外角,∴∠C=∠APC﹣∠ABC=100°﹣63°=37°,由圆周角定理得:∠BAD=∠C=37°,∠ADC=∠B=63°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠CDB=∠ADB﹣∠ADC=90°﹣63°=27°;(2)连接OD,如图②所示:∵CD⊥AB,∴∠CPB=90°,∴∠PCB=90°﹣∠ABC=90°﹣63°=27°,∵DE是⊙O的切线,∴DE⊥OD,∴∠ODE=90°,∵∠BOD=2∠PCB=54°,∴∠E=90°﹣∠BOD=90°﹣54°=36°.22.【解答】解:如图,过点A作AD⊥BC,垂足为D,∵∠ACB=45°,∴AD=CD,设AB=x,在Rt△ADB中,AD=AB•sin58°≈0.85x,BD=AB•cos58°≈0.53x,又∵BC=221,即CD+BD=221,∴0.85x+0.53x=221,解得,x≈160,答:AB的长约为160m.23.【解答】解:(Ⅰ)由图象可得,在前7分钟的速度为0.7÷7=0.1(km/min),故当x=2时,离宿舍的距离为0.1×2=0.2(km),在7≤x≤23时,距离不变,都是0.7km,故当x=23时,离宿舍的距离为0.7km,在28≤x≤58时,距离不变,都是1km,故当x=30时,离宿舍的距离为1km,故答案为:0.2,0.7,1;(Ⅱ)由图象可得,①食堂到图书馆的距离为1﹣0.7=0.3(km),故答案为:0.3;②小亮从食堂到图书馆的速度为:0.3÷(28﹣23)=0.06(km/min),故答案为:0.06;③小亮从图书馆返回宿舍的速度为:1÷(68﹣58)=0.1(km/min),故答案为:0.1;④当0≤x≤7时,小亮离宿舍的距离为0.6km时,他离开宿舍的时间为0.6÷0.1=6(min),当58≤x≤68时,小亮离宿舍的距离为0.6km时,他离开宿舍的时间为(1﹣0.6)÷0.1+58=62(min),故答案为:6或62;(Ⅲ)由图象可得,当0≤x≤7时,y=0.1x;当7<x≤23时,y=0.7;当23<x≤28时,设y=kx+b,,得,即当23<x≤28时,y=0.06x﹣0.68;由上可得,当0≤x≤28时,y关于x的函数解析式是y=.24.【解答】解:(Ⅰ)如图①中,过点P作PH⊥OA于H.∵∠OAB=90°,∠B=30°,∴∠BOA=90°﹣30°=60°,∴∠OPH=90°﹣60°=30°,∵OP=1,∴OH=OP=,PH=OP•cos30°=,∴P(,).(Ⅱ)①如图②中,由折叠可知,△O′PQ≌△OPQ,∴OP=O′P,OQ=O′Q,∵OP=OQ=t,∴OP=OQ=O′P=O′Q,∴四边形OPO′Q是菱形,∴QO′∥OB,∴∠ADQ=∠B=30°,∵A(2,0),∴OA=2,QA=2﹣t,在Rt△AQD中,DQ=2QA=4﹣2t,∵O′D=O′Q﹣QD=3t﹣4,∴<t<2.②①当点O′落在AB上时,重叠部分是△PQO′,此时t=,S=×()2=,当<t≤2时,重叠部分是四边形PQDC,S=t2﹣(3t﹣4)2=﹣t2+3t﹣2,当x=﹣=时,S有最大值,最大值=,当t=1时,S=,当t=3时,S=××=,综上所述,≤S≤.25.【解答】解:(Ⅰ)当a=1,m=﹣3时,抛物线的解析式为y=x2+bx﹣3.∵抛物线经过点A(1,0),∴0=1+b﹣3,解得b=2,∴抛物线的解析式为y=x2+2x﹣3.∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线的顶点坐标为(﹣1,﹣4).(Ⅱ)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,∴0=a+b+m,0=am2+bm+m,即am+b+1=0.∴a=1,b=﹣m﹣1.∴抛物线的解析式为y=x2﹣(m+1)x+m.根据题意得,点C(0,m),点E(m+1,m),过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).在Rt△EAH中,EH=1﹣(m+1)=﹣m,HA=0﹣m=﹣m,∴AE==﹣m,∵AE=EF=2,∴﹣m=2,解得m=﹣2.此时,点E(﹣1,﹣2),点C(0,﹣2),有EC=1.∵点F在y轴上,∴在Rt△EFC中,CF==.∴点F的坐标为(0,﹣2﹣)或(0,﹣2+).②由N是EF的中点,得CN=EF=.根据题意,点N在以点C为圆心、为半径的圆上,由点M(m,0),点C(0,m),得MO=﹣m,CO=﹣m,∴在Rt△MCO中,MC==﹣m.当MC≥,即m≤﹣1时,满足条件的点N在线段MC上.MN的最小值为MC﹣NC=﹣m﹣=,解得m=﹣;当MC<,即﹣1<m<0时,满足条件的点N落在线段CM的延长线上,MN的最小值为NC﹣MC=﹣(﹣m)=,解得m=﹣.∴当m的值为﹣或﹣时,MN的最小值是。
2020年四川省绵阳中考数学试卷附答案解析版

数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前2020年四川省绵阳市中考试卷数 学一、选择题:本大题共12小题,每小题3分,共36分.每小题只有一个选项符合题目要求.1.3-的相反数是( )A .3-B .13-CD .32.如下图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有( )A .2条B .4条C .6条D .8条3.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G 手机全球总发货量突破690万台.将690万用科学记数法表示为 ( )A .70.6910⨯B .56910⨯C .56.910⨯D .66.910⨯ 4.下列四个图形中,不能作为正方体的展开图的是( )ABC D5.a 的取值范围是( )A .1a ≥B .1a ≤C .0a ≥D .1a ≤-6.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为( )A .160钱B .155钱C .150钱D .145钱7.如下图,在四边形ABCD 中,°==90A C DF BC ABC ∠∠,∥,∠的平分线BE 交DF于点G GH DF ⊥,,点E 恰好为DH 的中点,若=3=2AE CD ,,则=GH ( )A .1B .2C .3D .48.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为( )A .23B .12C .13D .16 9.在螳螂的示意图中,AB DE ABC ∥,△是等腰三角形,°°12472ABC CDE ∠=∠=,,则ACD ∠=( )A .16°B .28°C .44°D .45°10.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km ”,乙对甲说:“我用你所花的时间,只能行驶80km ”.从他们的交谈中可以判断,乙驾车的时长为 ( )A .1.2小时B .1.6小时C .1.8小时D .2小时11.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )A.B.C.D .7米-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第3页(共6页) 数学试卷 第4页(共6页)12.如下图,在四边形ABCD 中,°902AD BC ABC AB AD ∠===∥,,,将ABC △绕点C 顺时针方向旋转后得A B C ''△,当A B ''恰好经过点D 时,B CD '△为等腰三角形,若2BB '=,则AA '=( )AB.CD二、填空题:本大题共6小题,每小题4分,共24分.将答案填写在答题卡相应的横线上.13.因式分解:334x y xy -=________.14.平面直角坐标系中,将点()12A -,先向左平移2个单位,再向上平移1个单位后得到的点1A 的坐标为________. 15.若多项式()2221m nxyn x y -+-+是关于x y ,的三次多项式,则mn ==________.16.我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是________万元.(利润=销售额-种植成本)17.如下图,四边形ABCD 中,°604AB CDABC AD BC CD ∠====∥,,,点M 是四边形ABCD 内的一个动点,满足°90AMD ∠=,则点M 到直线BC 的距离的最小值为________.18.若不等式5722x x +-->的解都能使不等式()621m x m -+<成立,则实数m 的取值范围是________.三、解答题:本大题共7小题,共计90分.解答应写出文字说明、证明过程或演算步骤.19.(1°3⎛+ ⎝⎭. (2)先化简,再求值:2312222x x x x x ++⎛⎫++÷⎪--⎝⎭,其中1x . 20.4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动. 甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x (单位:元)表示标价总额,y (单位:元)表示应支付金额,分别就两家书店的优惠方式,求y 关于x 的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?21.为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A B 、两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,(1)根据表中数据,求A 加工厂的10个鸡腿质量的中位数、众数、平均数; (2)估计B 加工厂这100个鸡腿中,质量为75克的鸡腿有多少个? (3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?22.如下图,ABC △内接于O ⊙,点D 在O ⊙外,°90ADC ∠=,BD 交O ⊙于点E ,交AC 于点F ,68EAC DCE CEB DCA CD AD ∠=∠∠=∠==,,,.(1)求证:AB CD ∥; (2)求证:CD 是O ⊙的切线; (3)求tan ACB ∠的值.数学试卷 第5页(共6页) 数学试卷 第6页(共6页)23.如下图,在平面直角坐标系xOy 中,一次函数的图象与反比例函数()0ky k x=<的图象在第二象限交于()()32A m B n -,,,两点. (1)当1m =时,求一次函数的解析式;(2)若点E 在x 轴上,满足°90AEB ∠=,且2AE m =-,求反比例函数的解析式.24.如下图,抛物线过点()01A ,和C ,顶点为D ,直线AC 与抛物线的对称轴BD 的交点为)B,平行于y 轴的直线EF 与抛物线交于点E ,与直线AC 交于点F ,点FBDEF 为平行四边形. (1)求点F 的坐标及抛物线的解析式;(2)若点P 为抛物线上的动点,且在直线AC 上方,当PAB △面积最大时,求点P 的坐标及PAB △面积的最大值;(3)在抛物线的对称轴上取一点Q ,同时在抛物线上取一点R ,使以AC 为一边且以A C Q R ,,,为顶点的四边形为平行四边形,求点Q 和点R 的坐标.25.如下图,在矩形ABCD 中,对角线相交于点O ,M ⊙为BCD △的内切圆,切点分别为46N P Q DN BN ==,,,,. (1)求BC CD ,;(2)点H 从点A 出发,沿线段AD 向点D 以每秒3个单位长度的速度运动,当点H 运动到点D 时停止,过点H 作HI BD ∥交AC 于点I ,设运动时间为t 秒.①将AHI △沿AC 翻折得AH I '△,是否存在时刻t ,使点H '恰好落在边BC 上?若存在,求t 的值;若不存在,请说明理由;②若点F 为线段CD 上的动点,当OFH △为正三角形时,求t 的值.-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________2020年四川省绵阳市中考试卷数学答案解析一、 1.【答案】D【解析】根据一个数的相反数就是在这个数前面添上“-”号,求解即可. 解:3-的相反数是3, 故选:D . 2.【答案】B【解析】根据轴对称的性质即可画出对称轴进而可得此图形的对称轴的条数. 解:如图,因为以正方形的边长为直径,在正方形内画半圆得到的图形, 所以此图形的对称轴有4条. 故选:B . 3.【答案】D【解析】绝对值大于10的数用科学记数法表示一般形式为10n a n ⨯,为整数位数减1. 解:66906900000 6.910==⨯万. 故选:D . 4.【答案】D【解析】根据正方体的展开图的11种不同情况进行判断即可.解:正方体展开图的11种情况可分为“141--型”6种,“231--型”3种,“222--型”1种,“33-型”1种,因此选项D 符合题意, 故选:D . 5.【答案】A【解析】直接利用二次根式有意义的条件分析得出答案.10a -≥, 解得:1a ≥. 故选:A . 6.【答案】C【解析】设共有x 人合伙买羊,羊价为y 钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x y ,的二元一次方程组,解之即可得出结论. 解:设共有x 人合伙买羊,羊价为y 钱,依题意,得:54573x y x y +=⎧⎨+=⎩,解得:21150x y =⎧⎨=⎩.故选:C . 7.【答案】B【解析】过E 作EM BC ⊥,交FD 于点H ,可得EH GD ⊥,得到EH 与GH 平行,再由E 为HD 中点,得到2HG EH =,同时得到四边形HMCD 为矩形,再由角平分线定理得到AE ME =,进而求出EH 的长,得到HG 的长.解:过E 作EM BC ⊥,交FD 于点H ,DF BC ∵∥,EH DF ⊥∴, EH HG ∴∥,EH ED HG HD=∴, E ∵为HD 中点,12ED HD =∴, 12EH HG =∴,即2HG EH =, °90DHM HMC C ∠=∠=∠=∴,∴四边形HMCD 为矩形, 2HM DC ==∴,BE ∵平分ABC EA AB EM BC ∠⊥⊥,,, 3EM AE ==∴,321EH EM HM =-=-=∴,则22HG EH ==. 故选:B .8.【答案】A【解析】根据题意画出树状图得出所有等可能的情况数,找出恰有一个篮子为空的情况数,然后根据概率公式即可得出答案.解:三个不同的篮子分别用A B C 、、表示,根据题意画图如下:共有9种等可能的情况数,其中恰有一个篮子为空的有6种, 则恰有一个篮子为空的概率为62=93. 故选:A . 9.【答案】C【解析】延长ED ,交AC 于F ,根据等腰三角形的性质得出°28A ACB ∠=∠=,根据平行线的性质得出°28CFD A ∠=∠=,由三角形外角的性质即可求得ACD ∠的度数. 解:延长ED ,交AC 于F ,ABC ∵△是等腰三角形,°124ABC ∠=, °28A ACB ∠=∠=∴, AB DE ∵∥, °28CFD A ∠=∠=∴,°72CDE CFD ACD ∠=∠+∠=∵,°°°722844ACD ∠=-=∴,故选:C .10.【答案】C【解析】设乙驾车时长为x 小时,则乙驾车时长为()3x -小时,根据两人对话可知:甲的速度为180km/h x,乙的速度为80km/h 3x-,根据“各匀速行驶一半路程”列出方程求解即可. 解:设乙驾车时长为x 小时,则乙驾车时长为()3x -小时, 根据两人对话可知:甲的速度为180km/h x ,乙的速度为80km/h 3x-, 根据题意得:()1803803x x x-=-, 解得:1 1.8x =或29x =,经检验:1 1.8x =或29x =是原方程的解,29x =不合题意,舍去,故选:C . 11.【答案】B【解析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A 的小孔所在抛物线的解析式,将10x =-代入可求解.解:如下图,建立如图所示的平面直角坐标系,由题意可得3414102MN EF BC DO ====,,,,设大孔所在抛物线解析式为232y ax =+,10BC =∵,∴点()50B -,, ()23052a =⨯-+∴, 350a =-∴, ∴大孔所在抛物线解析式为233502y x =-+, 设点()0A b ,,则设顶点为A 的小孔所在抛物线的解析式为()2y m x b =-,14EF =∵,∴点E 的横坐标为7-,∴点E 坐标为36725⎫⎛-- ⎪⎝⎭,, ()23625m x b -=-∴,12x b x b ==∴,, 4MN =∴,4b b ⎫⎛-=⎪ ⎪⎝⎭925m =-∴, ∴顶点为A 的小孔所在抛物线的解析式为()2925y x b =--, ∵大孔水面宽度为20米,∴当10x =-时,92y =-,()299225x b -=--∴,12x b x b ==∴,,∴单个小孔的水面宽度b b ⎫⎫⎛⎛=-= ⎪ ⎪⎝⎝⎭⎭(米),故选:B . 12.【答案】A【解析】过D 作DE BC ⊥于E ,则°90DEC DEB ∠=∠=,根据矩形的想知道的2BE AD ==,DE AB ==°90DB C ABC B C BC A C AC A CA B CB '''''∠=∠===∠=∠,,,,推出B CD '△为等腰直角三角形,得到CD C '=,设BCBC x '==,则2CD CE x ==-,,根据勾股定理即可得到结论. 解:过D 作DE BC ⊥于E , 则°90DEC DEB ∠=∠=,°90AD BC ABC ∠=∵∥,, °90DAB ABC ∠=∠=∴,∴四边形ABED 是矩形,2BE AD DE AB ====∴,,∵将ABC △绕点C 顺时针方向旋转后得A B C ''△,°90DB C ABC B C BC A C AC A CA B CB '''''∠=∠===∠=∠∴,,,,A CAB CB ''∴△∽△,A A ACB B BC'='∴, B CD '∵为等腰三角形, B CD '∴△为等腰直角三角形,CD C '=∴,设B C BC x '==,则2CD CE x ==-,,222CD CE DE =+∵, )()(2222x =-+∴,4x =∴(负值舍去), 4BC =∴,AC ==∴24A A '=∴,A A '=∴故选:A .二、13.【答案】()()22xy x y x y +-【解析】先提取公因式xy ,再对余下的多项式利用平方差公式继续分解. 解:334x y xy -,()224xy x y =-, ()()22xy x y x y =+-.故答案为:()()22xy x y x y +-. 14.【答案】()3,3-【解析】根据在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)即可得结论.解:∵将点()12A -,先向左平移2个单位,横坐标2-, 再向上平移1个单位纵坐标1+,∴平移后得到的点1A 的坐标为:()3,3-.故答案为:()3,3-. 15.【答案】0或8【解析】直接利用多项式的次数确定方法得出答案. 解:∵多项式()2221m nxyn x y -+-+是关于x y ,的三次多项式,()2013n m n -=+-=∴,, 22n m n =-=∴,,2m n -=∴或2n m -=, 4m =∴或0m =,0mn =∴或8.故答案为:0或8.16.【答案】125【解析】设甲种火龙果种植x 亩,乙种火龙果种植()100x -亩,此项目获得利润w ,根据题意列出不等式求出x 的范围,然后根据题意列出w 与x 的函数关系即可求出答案.解:设甲种火龙果种植x 亩,乙种火龙果种植()100x -亩,此项目获得利润w ,甲、乙两种火龙果每亩利润为1.1万元,1.4万元,由题意可知:()()0.9 1.1100980.9 1.1100100x x x x +-⎧⎪⎨+-⎪⎩≥≤, 解得:5060x ≤≤,此项目获得利润()1.1 1.41001400.3w x x x =+-=-,当50x =时,w 的最大值为14015125-=万元.17.【答案】2【解析】取AD 的中点O ,连接OM ,过点M 作ME BC ⊥交BC 的延长线于E ,点点O 作OF BC ⊥于F ,交CD 于G ,则OM ME OF +≥.求出OM OF ,即可解决问题.解:取AD 的中点O ,连接OM ,过点M 作ME BC ⊥交BC 的延长线于E ,点点O 作OF BC ⊥于F ,交CD 于G ,则OM ME OF +≥.°904AMD AD OA OD ∠===∵,,,122OM AD ==∴, AB CD ∵∥,°60GCF B ∠=∠=∴,°30DGO CGE ∠=∠=∴,AD BC =∵,°60DAB B ∠=∠=∴,°120ADC BCD ∠=∠=∴,°30DOG DGO ∠==∠∴,2DG DO ==∴,4CD =∵,2CG =∴,OG GF OF ===∴2ME OF OM -=∴≥,∴当O M E ,,共线时,ME 的值最小,最小值为2.18.【答案】2366m ≤≤ 【解析】解不等式5722x x +-->得4x ->,据此知4x ->都能使不等式()621m x m -+<成立,再分60m -=和60m -≠两种情况分别求解. 解:解不等式5722x x +-->得4x ->, 4x -∵>都能使不等式()621m x m -+<成立,①当60m -=,即6m =时,则4x ->都能使013x <恒成立;②当60m -≠,则不等式()621m x m -+<的解要改变方向,60m -∴<,即6m <,∴不等式()621m x m -+<的解集为216m x m +->, 4x -∵>都能使216m x m +->成立, 2146m m +--∴≥, 42421m m -++∴≤,236m ∴≥, 综上所述,m 的取值范围是2366m ≤≤. 故答案为:2366m ≤≤. 【考点】解一元一次不等式三、19.【答案】解:(1)原式1312=321=-0=;(2)原式()22143222x x x x x +⎛⎫-=+÷ ⎪---⎝⎭ ()()()211221x x x x x +--=-+11x x -=+,当1x =时,原式==1=【解析】(1)先去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.具体解题过程可参考答案.【考点】分式的化简求值,零指数幂,分母有理化,二次根式的混合运算,特殊角的三角函数值20.【答案】解:(1)甲书店:0.8y x =,乙书店:1000.640100x x y x x ⎧=⎨+⎩,≤,>. (2)令0.80.640x x =+,解得:200x =,当200x <时,选择甲书店更省钱,当200x =,甲乙书店所需费用相同,当200x >,选择乙书店更省钱.【解析】(1)根据题意给出的等量关系即可求出答案.(2)先求出两书店所需费用相同时的书本数量,从而可判断哪家书店省钱.具体解题过程可参考答案.【考点】一元一次不等式的应用,一次函数的应用21.【答案】解:(1)把这些数从小到大排列,最中间的数是第5和第6个数的平均数, 则中位数是7575752+=(克); 因为75出现了4次,出现的次数最多,所以众数是75克; 平均数是:()1747575757377787276757510+++++++++=(克); (2)根据题意得:31003010⨯=(个), 答:质量为75克的鸡腿有30个;(3)选B 加工厂的鸡腿.A B ∵、平均值一样,B 的方差比A 的方差小,B 更稳定,∴选B 加工厂的鸡腿.【解析】(1)根据中位数、众数和平均数的计算公式分别进行解答即可;(2)用总数乘以质量为75克的鸡腿所占的百分比即可;(3)根据方差的定义,方差越小数据越稳定即可得出答案.具体解题过程可参考答案.【考点】用样本估计总体,算术平均数,中位数,众数,方差22.【答案】(1)证明:BAC CEB CEB DCA ∠=∠∠=∠∵,,BAC DCA ∠=∠∴,AB CD ∴∥;(2)证明:连接EO 并延长交O ⊙于G ,连接CG ,如图1所示:则EG 为O ⊙的直径,°90ECG ∠=∴,OC OG =∵,OCG EGC ∠=∠∴,EAC EGC EAC DCE ∠=∠∠=∠∵,,DCE EGC OCG ∠=∠=∠∴,°90OCG OCE ECG ∠+∠∠=∵=,°90DCE OCE ∠+∠=∴,即°90DCO ∠=,OC ∵是O ⊙的半径,CD ∴是O ⊙的切线;(3)解:在ADC Rt △中,由勾股定理得:10AC ==,63cos 105CD ACD AC ∠===∴, CD ∵是O ⊙的切线,AB CD ∥,ABC ACD CAB ∠=∠=∠∴,3102cos 210125BC AC AB BC ABC ===∠=⨯⨯=∴,, 过点B 作BG AC ⊥于C ,如图2所示:设=GC x ,则10AG x =-,由勾股定理得:22222AB AG BG BC GC -==-,即:()2222121010x x --=-, 解得:145x =, 145GC =∴,485BG =∴, 48245tan 1475BG ACB GC ∠===∴.【解析】(1)由圆周角定理与已知得BAC DCA ∠=∠,即可得出结论;(2)连接EO 并延长交O ⊙于G ,连接CG ,则EG 为O ⊙的直径,°90ECG ∠=,证明D CE E G C O C∠=∠=∠,得出°90DCE OCE ∠+∠=,即可得出结论; (3)由三角函数定义求出3cos 5ACD ∠=,证出ABC ACD CAB ∠=∠=∠,求出1012BC AC AB ===,,过点B 作BG AC ⊥于C ,设GC x =,则10AG x =-,由勾股定理得出方程,解方程得145GC =,由勾股定理求出485BG =,由三角函数定义即可得答案. 具体解题过程可参考答案.【考点】圆23.【答案】解:(1)当1m =时,点()31A -,,∵点A 在反比例函数k y x=的图象上, 313k =-⨯=-∴, ∴反比例函数的解析式为3y x=-; ∵点()2B n ,在反比例函数3y x=-图象上, 23n =-∴,32n =-∴, 设直线AB 的解析式为y ax b =+,则31322a b a b -+=⎧⎪⎨-+=⎪⎩, 233a b ⎧=⎪⎨⎪=⎩∴,∴直线AB 的解析式为233y x =+; (2)如图,过点A 作AM x ⊥轴于M ,过点B 作BN x ⊥轴于N ,过点A 作AF BN ⊥于F ,交BE 于G , 则四边形AMNF 是矩形,FN AM AF MN ==∴,,()()32A m B n -∵,,,,2BF m =-∴,2AE m =-∵,BF AE =∴,在AEG △和BFG △中,°90AGE BGF AEG BFG AE BF ∠=∠⎧⎪∠=∠=⎨⎪=⎩(对顶角相等),()AEG BFG AAS ∴△≌Rt △,AG BG EG FG ==∴,,BE BG EG AG FG AF =+=+=∴,∵点()()32A m B n -,,,在反比例函数k y x=的图象上, 32k m n =-=∴, 23m n =-∴, ()222333BF BN FN BN AM m n MN n n =-=-=-=+=--=+∴,, 3BE AF n ==+∴,°°9090AEM MAE AEM BEN ∠+∠=∠+=∵,,MAE NEB ∠=∠∴,°90AME ENB ∠=∠=∵,AME ENB ∴△∽△,22223333n ME AE m BN BE n n +-====++∴, 2433ME BN ==∴, 在AME Rt △中,2AM m AE m ==-,,根据勾股定理得,222AM ME AE +=,()222423m m ⎫⎛+=- ⎪⎝⎭∴, 59m =∴, 533k m =-=-∴, ∴反比例函数的解析式为53y x=-.【解析】(1)将点A 坐标代入反比例函数解析式中求出k ,进而得出点B 坐标,最后用待定系数法求出直线AB 的解析式;(2)先判断出B F A E =,进而得出()A E G B F G A A S △≌Rt △,得出A G B G E G F G ==,,即B E B G E G A G F G A =+=+=,再求出23m n =-,进而得出2233BF n MN n =+=+,,即3B E A F n ==+,再判断出AME ENB △∽△,得出23ME AE BN BE ==,得出2433ME BN ==,最后用勾股定理求出m ,即可得出结论.具体解题过程可参考答案.【考点】反比例函数24.【答案】解:(1)设抛物线的解析式为()20y ax bx c a =++≠,())01A B ∵,,, 设直线AB 的解析式为y kx m =+,01m m +==⎪⎩∴,解得1k m ⎧=⎪⎨⎪=⎩,∴直线AB的解析式为1y =+, ∵点FF ∴点纵坐标为113=-, F ∴点的坐标为13⎫-⎪⎭, 又∵点A 在抛物线上,1c =∴,对称轴为:2b x a=-=b =-∴,∴解析式化为:21y ax =-+, ∵四边形DBFE 为平行四边形. BD EF =∴,161318133a a a ⎫⎛-+=-+-- ⎪⎝⎭∴, 解得1a =-,∴抛物线的解析式为21y x =-++;(2)设()21P n n -++,,作PP x '⊥轴交AC 于点P ',则1P n ⎫⎛'+⎪ ⎪⎝⎭,,2PP n '=-+∴,2217222ABP S OB PP n n '==-+=⎝△ ∴当n =ABP △4712P ⎫⎪⎭,. (3)211y y x ⎧=+⎪⎨⎪=-++⎩∵, 0x =∴或x = 43C ⎫-⎪⎭∴, 设)Q , ①当AQ 为对角线时,73R m ⎛⎫+ ⎪⎝⎭∴, R ∵在抛物线(24y x =-+上,2744m ⎛+=-+ ⎝∴, 解得443m =-, 443733Q R ⎫⎛⎫--⎪ ⎪⎭⎝⎭∴,; ②当AR 为对角线时,73R m ⎫-⎪⎭∴, R ∵在抛物线(24y x =-+上,2743m -=-+∴, 解得10m =-, )37103Q R ⎫--⎪⎭∴,.综上所述,443733Q R ⎫⎛⎫--⎪ ⎪⎭⎝⎭,;或)37103Q R ⎫--⎪⎭,.【解析】(1)由待定系数法求出直线AB 的解析式为1y =+,求出F 点的坐标,由平行四边形的性质得出161318133a a a ⎫⎛-+=-+-- ⎪⎝⎭,求出a 的值,则可得出答案;(2)设()21P n n -++,,作PP x '⊥轴交AC 于点P ',则1P n ⎫⎛'+⎪ ⎪⎝⎭,,得出2PP n '=-,由二次函数的性质可得出答案;(3)联立直线AC 和抛物线解析式求出43C ⎫-⎪⎭,设)Q m ,分两种情况:①当AQ 为对角线时,②当AR 为对角线时,分别求出点Q 和R 的坐标即可.具体解题过程可参考答案.【考点】二次函数25.【答案】解:(1)M ∵⊙为BCD △的内切圆,切点分别为46N P Q DN BN ==,,,,, 6410BP BN DQ DN CP CQ BD BN DN ======+=∴,,,,设CP CQ a ==,则64BC a CD a =+=+,,∵四边形ABCD 是矩形,°90BCD ∠=∴,222BC CD BD +=∴,即()()2226410a a +++=,解得:2a =,628426BC CD =+==+=∴,;(2)①存在时刻2512t s =,使点H '恰好落在边BC 上;理由如下: 如图1所示:由折叠的性质得:3AH I AHI AH AH t ''∠=∠==,, ∵四边形ABCD 是矩形,°1189022AD BC AD BC BCD OA OC AC OB OD BD AC BD ==∠======∴,∥,,,,,105AC BD OA OD =====∴,,ADO OAD ∠=∠∴,HI BD ∵∥,AHI ADO ∠=∠∴,AH I AHI ADO OAD ACH ''∠=∠=∠=∠=∠∴,AIH AH C ''∴△∽△,AH AI AC AH '='∴, 2AH AI AC '⨯∴=,HI BD ∵∥,AIH AOD ∴△∽△,AI AH AO AD=∴,即358AI t =, 解得:158AI t =, ()2153108t t =⨯∴, 解得:2512t =, 即存在时刻2512t s =,使点H '恰好落在边BC 上; ②作PH OH ⊥于H ,交OF 的延长线于P ,作OM AD ⊥于M PN AD ⊥,于N ,如图2所示: 则°90OM CD PN OMH HNP OM ∠=∠=∥∥,,是ACD △的中位线,132OM CD ==∴, OFH ∵△是等边三角形,°60OF FH OHF HOF =∠=∠=∴,,°30FHP HPO ∠=∠=∴,FH FP OF HP ===∴,,DF ∴是梯形OMNP 的中位线,4DN DM ==∴,°90MHO MOH MHO NHP ∠+∠=∠+∠=∵,MOH NHP ∠=∠∴,OMH HNP ∴△∽△,OM OH HN HP ==∴,HN ==∴4DH HN DN =-=∴,12AH AD DH =-=-∴43AH t ==∴,即当OFH △为正三角形时,t 的值为(4s .【解析】(1)由切线长定理得出6410BP BN DQ DN CP CQ BD BN DN ======+=,,,,设CP CQ a==,由勾股定理得出222BC CD BD +=,得出方程,解方程即可; (2)①由折叠的性质得3AH I AHI AH AH t ''∠=∠==,,证明AIH AH C ''△∽△,则2A H A I A C '=⨯,证A IH A O D △∽△,求出158AI t =,得出()2153108t t =⨯,解方程即可; ②作PH OH ⊥于H ,交OF 的延长线于P ,作OM AD ⊥于M PN AD ⊥,于N ,证出FH FP OF ==,4HP DN DM ===,,证明O M H A △∽△,求出HN ==,则34D H H N N =--,得出12AH AD DH =-=-.具体解题过程可参考答案.【考点】圆。
河南省2020年中考物理试题(含答案与解析)

【答案】 (1). 静止 (2). 惯性 (3). 运动状态 【解析】 【详解】[1]汽车匀速行驶时,坐在座位上的乘客和汽车之间没有发生位置的改变,以汽车 为参照物,乘客是静止的。 [2]当汽车突然发生碰撞而停止运动时,由于阻力作用,车身停止运动,而驾驶员和前排乘 客由于惯性还要保持原来的运动状态向前运动,在车内与车身撞击,严重时可能把挡风玻璃 撞碎而向前飞出车外,所以驾驶员和前排乘客必须使用安全带。 [3]力的作用效果有两个:一是使物体发生形变,二是改变物体的运动状态。行驶的汽车受 到碰撞停止运动,说明力可以改变物体的运动状态。 4.用毛皮摩擦过的橡胶棒由于得到电子而带______电。用这个橡胶棒接触验电器的金属球, 如图所示,验电器的两金属箱片由于带同种电荷互相______而张开。
5 / 21
点,并根据描出的 6 个数据点画出定值电阻的 I-U 图像______;
④ 分析画出的 I-U 图像可得出结论:在电阻一定时,______; ⑤ 为了使结论具有普遍性,还应进行的操作是:______; (2)接着他们在原有 5Ω 定值电阻的基础上,又准备了阻值为 10Ω、15Ω、20Ω 的三个定值 电阻,以探究电压一定时电流与电阻的关系。为了控制电压不变,每次更换定值电阻后需要 调节滑动变阻器,使定值电阻两端的电压达到相同的值。这个电压控制在多少合适呢?实验 小组的同学分别提出了 0.5V、1V 和 2V 三个电压值,为使实验顺利进行,大家进行了分析与 讨论,你认为应选这三个电压值中的______V。 五、综合应用题 20.河南素有“中原粮仓”之称。随着农业机械化水平的提高,收割机已成为我省收割小麦 的主要工具。 (1)收割过程中,空气中弥漫着成熟的麦香味,这是由于分子在不停地做______。收割机的 四冲程柴油发动机工作时,内能转化为机械能的是______; (2)为了防止对耕地过分压实影响秋作物的播种,收割机对耕地的压强一般不超过 80kPa。 已知空载收割机的质量为 1000kg,轮胎与耕地的总接触面积始终为 0.2m2,则收割机粗粮仓 中的小麦不能超过多少千克______?(g 取 10N/kg) (3)若收割机的收割宽度为 2m,如图所示。正常收割时前进的速度为 1m/s,则每小时收割小 麦多少亩______?(1m2=0.0015 亩,不考虑收割机调头及卸粮时间) (4)为了交通安全,禁止在公路上晒粮,请用摩擦力的知识解释在公路上晒粮的危害______。
2020年四川省成都市中考语文试卷(含答案和解析)

2020年四川省成都市中考语文试卷一、基础知识(每小题3分,共12分)1.(3分)下面加点字注音有误的一项是()A.校.对(jiào)别墅.(shù)仙露琼.浆(qióng)B.萌.发(méng)嘹.亮(liáo)抑扬顿挫.(cuò)C.鲜妍.(yán)哺.乳(fǔ)一气呵.成(hē)D.菜畦.(qí)思慕.(mù)惟妙惟肖.(xiào)2.(3分)下列语句中书写正确的一项是()A.但是当冬天来临的时候,雨已经化了妆,它经常会变成美丽的雪花,飘然莅临人间。
B.在人类的生活中,恐惧是工作和休息的天敌,面对它,人类学会用勇气来争锋相对。
C.我沉浸在烦密的花朵的光辉中,别的暂时都不存在,有的只是精神的宁静和喜悦。
D.“他哥哥来啦?”奥楚蔑洛夫问,整个脸上洋溢着含笑的温晴,“哎呀,我还不知道呢!”3.(3分)下列语句中加点的成语使用有误的一项是()A.成都医务人员面对疫情毫不退缩,始终奋战在抗疫第一线,他们是当之无愧....的英雄。
B.清幽宁静的青城山是远近闻名的避暑胜地,炎炎夏日一到,八方游客就会接踵而至....。
C.川流不息....的锦江,古老而现代,它承载着成都的历史记忆,见证了蓉城的飞速发展。
D.地铁6号线尚未开通就已家喻户晓....,其科学而极具个性的设计引来无数关注的目光。
4.(3分)下列语句中没有语病的一项是()A.民生问题是今年“两会”的热点,受到了大家的高度关注,随时留心对此的新闻报道。
B.成渝两地联合举办的“爱成都•迎大运”绿道跑步活动,吸引了约一万左右市民参加。
C.成都在做好疫情防控的前提下,鼓励开展夜间消费活动,以此推动经济的增长和复苏。
D.惊闻成都文化名人流沙河先生离世,人们通过线上线下的多种方式寄托对先生的哀思。
二、文言文阅读(每小题12分,共12分)5.(12分)阅读下面两篇文章,完成下列各题。
2020年河北中考试卷

2020年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在平面内作已知直线m 的垂线,可作垂线的条数有( )A. 0条B. 1条C. 2条D. 无数条【详解】在同一平面内,画已知直线的垂线,可以画无数条;故选:D . 2.墨迹覆盖了等式“3x 2x x =(0x ≠)”中的运算符号,则覆盖的是( )A. +B. -C. ×D. ÷【详解】∵3x 2x x =(0x ≠),32x x x ÷=,∴覆盖的是:÷.故选:D . 3.对于①3(13)x xy x y -=-,②2(3)(1)23x x x x +-=+-,从左到右的变形,表述正确的是( ) A. 都是因式分解B. 都是乘法运算C. ①是因式分解,②是乘法运算D. ①是乘法运算,②是因式分解【详解】①左边多项式,右边整式乘积形式,属于因式分解; ②左边整式乘积,右边多项式,属于整式乘法;故答案选C .4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是( )A. 仅主视图不同B. 仅俯视图不同C. 仅左视图不同D. 主视图、左视图和俯视图都相同 选D . 5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a 元/千克,发现这四个单价的中位数恰好也是众数,则a =( )A. 9B. 8C. 7D. 6【详解】解:由条形统计图可知,前三次的中位数是8∵第四次又买的苹果单价是a 元/千克,这四个单价的中位数恰好也是众数∴a=8.故答案为B . 6.如图1,已知ABC ∠,用尺规作它的角平分线. 如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ; 第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ; 第三步:画射线BP .射线BP 即为所求. 下列正确的是( )A. a ,b 均无限制B. 0a >,12b DE >的长 C. a 有最小限制,b 无限制D. 0a ≥,12b DE <的长【详解】第一步:以B 为圆心,适当长为半径画弧,分别交射线BA ,BC 于点D ,E ; ∴0a >;第二步:分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在ABC ∠内部交于点P ; ∴12b DE >的长; 第三步:画射线BP .射线BP 即为所求.综上,答案为:0a >;12b DE >的长,故选:B . 7.若a b ≠,则下列分式化简正确的是( )A.22a ab b+=+ B. 22a a b b -=-C. 22a a b b=D. 1212aab b =【详解】∵a ≠b ,∴22a a b b +≠+,选项A 错误;22a ab b-≠-,选项B 错误; 22a a b b ≠,选项C 错误;1212a ab b =,选项D 正确; 故选:D .8.在如图所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A. 四边形NPMQB. 四边形NPMRC. 四边形NHMQD. 四边形NHMR【详解】解:如图所示,四边形ABCD 的位似图形是四边形NPMQ .故选:A9.若()()229111181012k--=⨯⨯,则k =( )A. 12B. 10C. 8D. 6【详解】原等式()()229111181012k--=⨯⨯变形得:()()229111181012k --=⨯⨯()()()()919111111181012-+-+=⨯⨯810101281012⨯⨯⨯=⨯⨯10=.故选:B .10.如图,将ABC ∆绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的CDA ∆与ABC ∆构成平行四边形,并推理如下:点A ,C 分别转到了点C ,A 处,而点B 转到了点D 处. ∵CB AD =,∴四边形ABCD 是平行四边形.小明为保证嘉淇的推理更严谨,想在方框中“∵CB AD =,”和“∴四边形……”之间作补充.下列正确的是( )A. 嘉淇推理严谨,不必补充B. 应补充:且AB CD =,C. 应补充:且//AB CDD. 应补充:且OA OC =,【详解】根据旋转的性质得: CB=AD ,AB=CD ,∴四边形ABDC 是平行四边形;故应补充“AB=CD ”,故选:B . 11.若k 为正整数,则()kk kk k k ++⋅⋅⋅+=个( )A. 2k kB. 21k k +C. 2k kD. 2k k +【详解】()kk kk k k ++⋅⋅⋅+=个()()2k k k k k ⋅==2k k,故选A . 12.如图,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错.误.的是( )A. 从点P 向北偏西45°走3km 到达lB. 公路l 的走向是南偏西45°C. 公路l 的走向是北偏东45°D. 从点P 向北走3km 后,再向西走3km 到达l 【详解】解:如图所示,过P 点作AB 的垂线PH ,选项A :∵BP=AP=6km ,且∠BPA=90°,∴△PAB 为等腰直角三角形,∠PAB=∠PBA=45°, 又PH ⊥AB ,∴△PAH 为等腰直角三角形, ∴PH=2322=PA ,故选项A 错误; 选项B :站在公路上向西南方向看,公路l 的走向是南偏西45°,故选项B 正确; 选项C :站在公路上向东北方向看,公路l 的走向是北偏东45°,故选项C 正确; 选项D :从点P 向北走3km 后到达BP 中点E ,此时EH 为△PEH 的中位线,故EH=12AP=3,故再向西走3km 到达l ,故选项D 正确.故选:A .【点睛】本题考查了方位角问题及等腰直角三角形、中位线等相关知识点,方向角一般以观测者的位置为中心,所以观测者不同,方向就正好相反,但角度不变.13.已知光速为300000千米秒,光经过t 秒(110t ≤≤)传播的距离用科学记数法表示为10n a ⨯千米,则n 可能为( ) A. 5B. 6C. 5或6D. 5或6或7【详解】解:当t=1时,传播的距离为300000千米,写成科学记数法为:5310⨯千米,当t=10时,传播的距离为3000000千米,写成科学记数法为:6310⨯千米,∴n 的值为5或6,故选:C . 14.有一题目:“已知;点O 为ABC ∆的外心,130BOC ∠=︒,求A ∠.”嘉嘉的解答为:画ABC ∆以及它的外接圆O ,连接OB ,OC ,如图.由2130BOC A ∠=∠=︒,得65A ∠=︒.而淇淇说:“嘉嘉考虑的不周全,A ∠还应有另一个不同的值.”,下列判断正确的是( )A. 淇淇说的对,且A ∠的另一个值是115°B. 淇淇说的不对,A ∠就得65°C. 嘉嘉求的结果不对,A ∠应得50°D. 两人都不对,A ∠应有3个不同值 【详解】解:如图所示:∵∠BOC=130°,∴∠A=65°,∠A 还应有另一个不同的值∠A′与∠A 互补.故∠A′=180°−65°=115°. 故选:A .15.现要在抛物线(4)y x x =-上找点(,)P a b ,针对b 的不同取值,所找点P 的个数,三人的说法如下, 甲:若5b =,则点P 的个数为0;乙:若4b =,则点P 的个数为1;丙:若3b =,则点P 的个数为1. 下列判断正确的是( )A. 乙错,丙对B. 甲和乙都错C. 乙对,丙错D. 甲错,丙对【详解】当b =5时,令x (4-x )=5,整理得:x 2-4x +5=0,△=(-4)2-4×5=-6<0,因此点P 的个数为0,甲的说法正确;当b =4时,令x (4-x )=4,整理得:x 2-4x+4=0,△=(-4)2-4×4=0,因此点P 有1个,乙的说法正确; 当b =3时,令x (4-x )=3,整理得:x 2-4x +3=0,△=(-4)2-4×3=4>0,因此点P 有2个,丙的说法不正确; 故选:C .16.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是( )A. 1,4,5B. 2,3,5C. 3,4,5D. 2,2,4【详解】解:根据题意,设三个正方形的边长分别为a 、b 、c ,由勾股定理,得222+=a b c , A 、∵1+4=5,则两直角边分别为:1和2,则面积为:112=12⨯⨯; B 、∵2+3=5,则两直角边分别为:2和3,则面积为:1623=22⨯⨯; C 、∵3+4≠5,则不符合题意;D 、∵2+2=4,则两直角边分别为:2和2,则面积为:12212⨯⨯=;∵612>,故选:B . 二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.已知:182222a b -=-=,则ab =_________. 【详解】∵18232222-=-=∴a=3,b=2∴ab =6故答案为:6.18.正六边形的一个内角是正n 边形一个外角的4倍,则n =_________.解:由多边形的外角和定理可知,正六边形的外角为:360°÷6=60°,故正六边形的内角为180°-60°=120°, 又正六边形的一个内角是正n 边形一个外角的4倍,∴正n 边形的外角为30°, ∴正n 边形的边数为:360°÷30°=12.故答案为:12.19.如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作m T (m 为1~8的整数).函数ky x=(0x <)的图象为曲线L .(1)若L 过点1T ,则k =_________;(2)若L 过点4T ,则它必定还过另一点m T ,则m =_________;(3)若曲线L 使得18~T T 这些点分布在它的两侧,每侧各4个点,则k 的整数值有_________个. 【详解】解:(1)由图像可知T 1(-16,1) 又∵.函数ky x=(0x <)的图象经过T 1 ∴116k=-,即k=-16; (2)由图像可知T 1(-16,1)、T 2(-14,2)、T 3(-12,3)、T 4(-10,4)、T 5(-8,5)、T 6(-6,6)、T 7(-4,7)、T 8(-2,8),∵L 过点4T ∴k=-10×4=40观察T 1~T 8,发现T 5符合题意,即m=5; (3)∵T 1~T 8的横纵坐标积分别为:-16,-28,-36,-40,-40,-36,-28,-16 ∴要使这8个点为于L 的两侧,k 必须满足-36<k <-28∴k 可取-29、-30、-31、-32、-33、-34、-35共7个整数值.故答案为:(1)-16;(2)5;(3)7.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.已知两个有理数:-9和5.(1)计算:(9)52-+; (2)若再添一个负整数m ,且-9,5与m 这三个数的平均数仍小于m ,求m 的值.【详解】(1)(9)52-+=422-=-; (2)依题意得(9)53m-++<m ,解得m >-2∴负整数m =-1.【点睛】此题主要考查有理数、不等式及平均数,解题的关键是熟知有理数、不等式的运算法则. 21.有一电脑程序:每按一次按键,屏幕的A 区就会自动加上2a ,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和-16,如图.如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由. 【详解】解:(1)A 区显示结果为:22225+a +a =25+2a , B 区显示结果为:163a 3a=166a ﹣--﹣-;(2)初始状态按4次后A 显示为:2222225+a +a +a a 254a +=+ B 显示为:163a 3a 3a 3a=1612a ﹣----﹣-∴A+B=225+4a +(-1612a)-=24a 12a+9- =2(2a 3)-∵2(2a 3)0≥-恒成立,∴和不能为负数.22.如图,点O 为AB 中点,分别延长OA 到点C ,OB 到点D ,使OC OD =.以点O 为圆心,分别以OA ,OC 为半径在CD 上方作两个半圆.点P 为小半圆上任一点(不与点A ,B 重合),连接OP 并延长交大半圆于点E ,连接AE ,CP .(1)①求证:AOE POC ∆∆≌;②写出∠1,∠2和C ∠三者间的数量关系,并说明理由.(2)若22OC OA ==,当C ∠最大时,直接..指出CP 与小半圆的位置关系,并求此时EOD S 扇形 (答案保留π).【详解】(1)①在△AOE 和△POC 中=AO POAOE POC OE OC =⎧⎪⎨⎪=⎩∠∠,∴△AOE ≌△POC ;②∠2=∠C+∠1,理由如下:由(1)得△AOE ≌△POC ,∴∠1=∠OPC ,根据三角形外角的性质可得∠2=∠C+∠OPC ,∴∠2=∠C+∠1; (2)在P 点的运动过程中,只有CP 与小圆相切时∠C 有最大值, ∴当C ∠最大时,可知此时CP 与小半圆相切,由此可得CP ⊥OP ,又∵222OC OA OP ===,∴可得在Rt △POC 中,∠C=30°,∠POC=60°,∴∠EOD=180°-∠POC=120°,∴S 扇EOD =2120360R π⨯⨯=43π.23.用承重指数W 衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W 与木板厚度x (厘米)的平方成正比,当3x =时,3W =. (1)求W 与x 的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x (厘米),Q W W =-厚薄.①求Q 与x 的函数关系式; ②x 为何值时,Q 是W 薄的3倍? 【注:(1)及(2)中的①不必写x 的取值范围】 【详解】(1)设W=kx 2, ∵3x =时,3W =∴3=9k ∴k=13 ∴W 与x 的函数关系式为213W x =; (2)①∵薄板的厚度为xcm ,木板的厚度为6cm ∴厚板的厚度为(6-x )cm , ∴Q=2211(6)41233x x x ⨯=-+-- ∴Q 与x 的函数关系式为124Q x =-;②∵Q 是W 薄的3倍 ∴-4x+12=3×213x解得x1=2,x2=-6(不符题意,舍去) 经检验,x=2是原方程的解, ∴x=2时,Q 是W 薄的3倍.24.表格中的两组对应值满足一次函数y kx b =+,现画出了它的图象为直线l ,如图.而某同学为观察k ,b 对图象的影响,将上面函数中的k 与b 交换位置后得另一个一次函数,设其图象为直线l '.x-1 0 y-21(1)求直线l 的解析式;(2)请在图上画出..直线l '(不要求列表计算),并求直线l '被直线l 和y 轴所截线段的长; (3)设直线y a =与直线l ,l '及y 轴有三个不同的交点,且其中两点关于第三点对称,直接..写出a 的值. 【详解】(1)依题意把(-1,-2)和(0,1)代入y kx b =+, 得21k bb -=-+⎧⎨=⎩,解得31k b =⎧⎨=⎩,∴直线l 的解析式为31yx ,(2)依题意可得直线l '的解析式为3yx ,作函数图像如下:令x=0,得y=3,故B (0,3),令313y x y x =+⎧⎨=+⎩,解得14x y =⎧⎨=⎩,∴A (1,4),∴直线l '被直线l 和y 轴所截线段的长AB=22(10)(43)2-+-=;(3)①当对称点在直线l 上时,令31a x ,解得x=13a -, 令3a x =+,解得x=3a -,∴2×13a -=a-3,解得a=7; ②当对称点在直线l '上时,则2×(a-3)=13a -,解得a=175;③当对称点在y 轴上时,则13a -+(3a -)=0,解得a=52;综上:a 的值为52或175或7.25.如图,甲、乙两人(看成点)分别在数轴-3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动. ①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位; ②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位; ③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P ;(2)从图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n 次,且他最终..停留的位置对应的数为m ,试用含n 的代数式表示m ,并求该位置距离原点O 最近时n 的值; (3)从图的位置开始,若进行了k 次移动游戏后,甲与乙的位置相距2个单位,直接..写出k 的值. 【详解】(1)题干中对应的三种情况的概率为: ①11111+=22222⨯⨯;②11111+=24244⨯⨯;③11111+=24244⨯⨯; 甲的位置停留在正半轴上的位置对应情况②,故P=14. (2)根据题意可知乙答了10次,答对了n 次,则打错了(10-n )次,根据题意可得,n 次答对,向西移动4n ,10-n 次答错,向东移了2(10-n ),∴m=5-4n+2(10-n )=25-6n ,∴当n=4时,距离原点最近.(3)起初,甲乙的距离是8,易知,当甲乙一对一错时,二者之间距离缩小2,当甲乙同时答对打错时,二者之间的距离缩小2,∴当加一位置相距2个单位时,共缩小了6个单位或10个单位,∴62=3÷或102=5÷,∴3k =或5k = 26.如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN -匀速移动,到达点N 时停止;而点Q 在AC 边上随P 移动,且始终保持APQ B ∠=∠.(1)当点P 在BC 上时,求点P 与点A 的最短距离;(2)若点P 在MB 上,且PQ 将ABC ∆面积分成上下4:5两部分时,求MP 的长;(3)设点P 移动的路程为x ,当03x ≤≤及39x ≤≤时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)在点P 处设计并安装一扫描器,按定角APQ ∠扫描APQ ∆区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若94AK =,请直接..写出点K 被扫描到的总时长. 【详解】(1)当点P 在BC 上时,PA ⊥BC 时PA 最小,∵AB=AC ,△ABC 为等腰三角形,∴PA min =tanC·2BC =34×4=3; (2)过A 点向BC 边作垂线,交BC 于点E ,S 上=S △APQ ,S 下=S 四边形BPQC ,∵APQ B ∠=∠,∴PQ ∥BC ,∴△APQ ∽△ABC ,∴AP AD PQ AB AC BC ==,∴2APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭, 当S S 上下=45时,24=9APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,∴23AP AB =,AE=2BC ·tan 3C =, 根据勾股定理可得AB=5,∴2253AP MP AB +==,解得MP=43; (3)当0≤x≤3时,P 在BM 上运动,P 到AC 的距离:d=PQ·sinC ,由(2)可知sinC=35, ∴d=35PQ ,∵AP=x+2,∴25AP x PQ AB BC +==,∴PQ=285x +⨯,∴d=23855x +⨯⨯=24482525x +, 当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,d=CP·sinC=35(11-x )=-35x+335, 综上()()24480325253333955x x d x x ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩; (4)AM=2<AQ=94,移动的速度=936=14,①从Q 平移到K ,耗时:92414-=1秒, ②P 在BC 上时,K 与Q 重合时,CQ=CK=5-94=114, ∵∠APQ+∠QPC=∠B+∠BAP ,APQ B ∠=∠∴∠QPC=∠BAP , 又∵∠B=∠C ,∴△ABP ∽△PCQ ,设BP=y ,CP=8-y ,AB BP PC CQ =,即51184y y =-,整理得y 2-8y=554-,(y-4)2=94,解得y 1=52,y 2=112,52÷14=10秒, 112÷14=22秒,∴点K 被扫描到的总时长36-(22-10)-1=23秒.。
2020年浙江省衢州市中考数学试题(含答案与解析)

浙江省衢州市2020年中考试卷数学一、选择题1.比0小1的数是()A. 0B. ﹣1C. 1D. ±12.下列几何体中,俯视图是圆的几何体是()A. B.C. D.3.计算(a2)3,正确结果是()A. a5B. a6C. a8D. a94.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是()A. 13B.14C.16D.185.要使二次根式3x-有意义,x的值可以是()A. 0B. 1C. 2D. 36.不等式组()324321x xx x⎧-≤-⎨>-⎩的解集在数轴上表示正确的是()A.B.C.D.7.某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A. 180(1﹣x)2=461B. 180(1+x)2=461C. 368(1﹣x)2=442D. 368(1+x)2=4428.过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()A. B.C. D.9.二次函数y=x2图象平移后经过点(2,0),则下列平移方法正确的是()A. 向左平移2个单位,向下平移2个单位B. 向左平移1个单位,向上平移2个单位C. 向右平移1个单位,向下平移1个单位D. 向右平移2个单位,向上平移1个单位10.如图,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB 的长度为( )A. 2B.21+ C.51+ D.43二、填空题11.一元一次方程2x +1=3的解是x =_____.12.定义a ※b =a (b +1),例如2※3=2×(3+1)=2×4=8.则(x ﹣1)※x 的结果为_____. 13.某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,则这组数据的中位数是_____.14.小慧用图1中的一副七巧板拼出如图2所示的“行礼图”,已知正方形ABCD 的边长为4dm ,则图2中h 的值为_____dm .15.如图,将一把矩形直尺ABCD 和一块含30°角的三角板EFG 摆放在平面直角坐标系中,AB 在x 轴上,点G 与点A 重合,点F 在AD 上,三角板的直角边EF 交BC 于点M ,反比例函数y =kx(x >0)的图象恰好经过点F ,M .若直尺的宽CD =3,三角板的斜边FG =83,则k =_____.16.图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O ,P 两点固定,连杆PA =PC =140cm ,AB =BC =CQ =QA =60cm ,OQ =50cm ,O ,P 两点间距与OQ 长度相等.当OQ 绕点O转动时,点A ,B ,C 的位置随之改变,点B 恰好在线段MN 上来回运动.当点B 运动至点M 或N 时,点A ,C 重合,点P ,Q ,A ,B 在同一直线上(如图3). (1)点P 到MN 的距离为_____cm .(2)当点P ,O ,A 在同一直线上时,点Q 到MN 的距离为_____cm .三、解答题17.计算:|﹣2|+(13)09 18.先化简,再求值:21211a a a a ÷-+-,其中a =3.19.如图,在5×5的网格中,△ABC 的三个顶点都在格点上. (1)在图1中画出一个以AB 为边的▱ABDE ,使顶点D ,E 在格点上. (2)在图2中画出一条恰好平分△ABC 周长的直线l (至少经过两个格点).20.某市在九年级“线上教学”结束后,为了解学生的视力情况,抽查了部分学生进行视力检测.根据检测结果,制成下面不完整的统计图表.被抽样的学生视力情况频数表组别视力段频数A 5.1≤x≤5.325B 4.8≤x≤5.0115C 4.4≤x≤4.7mD 4.0≤x≤4.352(1)求组别C的频数m的值.(2)求组别A的圆心角度数.(3)如果视力值4.8及以上属于“视力良好”,请估计该市25000名九年级学生达到“视力良好”的人数.根据上述图表信息,你对视力保护有什么建议?21.如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.22.2020年5月16日,“钱塘江诗路”航道全线开通,一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km /h ,游轮行驶的时间记为t (h ),两艘轮船距离杭州的路程s (km )关于t (h )的图象如图2所示(游轮在停靠前后的行驶速度不变). (1)写出图2中C 点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问: ①货轮出发后几小时追上游轮? ②游轮与货轮何时相距12km ?23.如图1,在平面直角坐标系中,△ABC 的顶点A ,C 分別是直线y =﹣83x +4与坐标轴的交点,点B 的坐标为(﹣2,0),点D 是边AC 上的一点,DE ⊥BC 于点E ,点F 在边AB 上,且D ,F 两点关于y 轴上的某点成中心对称,连结DF ,EF .设点D 的横坐标为m ,EF 2为l ,请探究:①线段EF 长度是否有最小值. ②△BEF 能否成直角三角形.小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题. (1)小明利用“几何画板”软件进行观察,测量,得到l 随m 变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l 与m 可能满足的函数类别.(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l 关于m的函数表达式及自变量的取值范围,并求出线段EF 长度的最小值.(3)小明通过观察,推理,发现△BEF 能成为直角三角形,请你求出当△BEF 为直角三角形时m 的值.24.【性质探究】如图,矩形ABCD 中,对角线AC ,BD 相交于点O ,AE 平分∠BAC ,交BC 于点E .作DF ⊥AE 于点H ,分别交AB ,AC 于点F ,G . (1)判断△AFG 的形状并说明理由. (2)求证:BF =2OG . 【迁移应用】(3)记△DGO 的面积为S 1,△DBF 的面积为S 2,当1213S S 时,求AD AB的值. 【拓展延伸】(4)若DF 交射线AB 于点F ,【性质探究】中的其余条件不变,连结EF ,当△BEF 的面积为矩形ABCD 面积的110时,请直接写出tan ∠BAE 的值.数学参考答案与解析一、选择题1.比0小1的数是( )A. 0B. ﹣1C. 1D. ±1【答案】B【解析】【分析】根据题意列式计算即可得出结果.【详解】解:0﹣1=﹣1,即比0小1的数是﹣1.故选:B.【点睛】本题主要考查了有理数的减法,理清题意,正确列出算式是解答本题的关键.2.下列几何体中,俯视图是圆的几何体是()A. B.C. D.【答案】A【解析】【分析】分别找出从图形的上面看所得到的图形即可.【详解】解:A、俯视图是圆,故此选项正确;B、俯视图是正方形,故此选项错误;C、俯视图是长方形,故此选项错误;D、俯视图是长方形,故此选项错误.故选:A.【点睛】本题考查了几何体的俯视图,掌握各立体图形的特点及俯视图的定义是解答此类题的关键.3.计算(a2)3,正确结果是()A. a5B. a6C. a8D. a9【答案】B【解析】由幂的乘方与积的乘方法则可知,(a2)3=a2×3=a6.故选B.4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是()A. 13B.14C.16D.18【答案】A【解析】【分析】直接利用“Ⅱ”所示区域所占圆周角除以360,进而得出答案.【详解】解:由扇形统计图可得,指针落在数字“Ⅱ”所示区域内的概率是:1201= 3603.故选:A.【点睛】此题主要考查了概率公式,正确理解概率的求法是解题关键.5.3x 有意义,x的值可以是()A. 0B. 1C. 2D. 3 【答案】D【解析】【分析】根据二次根式有意义的条件可得x-3≥0,再解即可.【详解】由题意得:x−3⩾0,解得:x⩾3,故选D.【点睛】此题考查二次根式有意义的条件,解题关键在于掌握其定义.6.不等式组()324321x xx x⎧-≤-⎨>-⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C【解析】【分析】分别解两个不等式,然后求它们的公共部分即可得到原不等式组的解集,再在数轴上表示出来即可求解.【详解】3(2)4 321?x xx x--⎧⎨>-⎩①②,由①得x≤1;由②得x>﹣1;故不等式组的解集为﹣1<x≤1,在数轴上表示出来为:.故选:C.【点睛】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.求不等式组的解集应遵循“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.7.某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A. 180(1﹣x)2=461B. 180(1+x)2=461C. 368(1﹣x)2=442D. 368(1+x)2=442【答案】B【解析】【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这个增长率为x,根据“2月份的180万只,4月份的利润将达到461万只”,即可得出方程.【详解】解:从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程:180(1+x)2=461,故选:B.【点睛】本题考查了一元二次方程的实际应用,理解题意是解题关键.8.过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()A. B.C. D.【答案】D【解析】【分析】根据平行线的判定方法一一判断即可.【详解】A、由作图可知,内错角相等两直线平行,本选项不符合题意.B、由作图可知,同位角相等两直线平行,本选项不符合题意.C、与作图可知,垂直于同一条直线的两条直线平行,本选项不符合题意,D、无法判断两直线平行,故选:D.【点睛】本题考查作图-复杂作图,平行线的判定等知识,解题的关键是读懂图象信息,属于中考常考题型.9.二次函数y=x2的图象平移后经过点(2,0),则下列平移方法正确的是()A. 向左平移2个单位,向下平移2个单位B. 向左平移1个单位,向上平移2个单位C. 向右平移1个单位,向下平移1个单位D. 向右平移2个单位,向上平移1个单位【答案】C【解析】【分析】求出平移后的抛物线的解析式,利用待定系数法解决问题即可.【详解】解:A、平移后的解析式为y=(x+2)2﹣2,当x=2时,y=14,本选项不符合题意.B、平移后的解析式为y=(x+1)2+2,当x=2时,y=11,本选项不符合题意.C、平移后的解析式为y=(x﹣1)2﹣1,当x=2时,y=0,函数图象经过(2,0),本选项符合题意.D、平移后的解析式为y=(x﹣2)2+1,当x=2时,y=1,本选项不符合题意.故选:C.【点睛】本题考查了二次函数的平移问题,掌握二次函数的平移特征是解题的关键.10.如图,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB的长度为()A. 2B. 21+C.51+D.43【答案】A【解析】【分析】先判断出∠ADE=45°,进而判断出AE=AD,利用勾股定理即可得出结论.【详解】解:由折叠补全图形如图所示,∵四边形ABCD是矩形,∴∠ADA'=∠B=∠C=∠A=90°,AD=BC=1,CD=AB,由第一次折叠得:∠DAE=∠A=90°,∠ADE=12∠ADC=45°,∴∠AED=∠ADE=45°,∴AE=AD=1,在Rt△ADE中,根据勾股定理得,DE=2AD=2,由第二次折叠可知,DC DE=∴2AB=故选:A.【点睛】本题考查了图形的折叠和勾股定理,搞清楚折叠中线段的数量关系是解决此类题的关键.二、填空题11.一元一次方程2x+1=3的解是x=_____.【答案】1【解析】【分析】将方程移项,然后再将系数化为1即可求得一元一次方程的解.【详解】解:将方程移项得,2x=2,系数化为1得,x=1.故答案为:1.【点睛】此题主要考查学生对解一元一次方程这一知识点的理解和掌握,此题比较简单,属于基础题12.定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x﹣1)※x的结果为_____.【答案】x2﹣1【解析】【分析】根据规定的运算,直接代值后再根据平方差公式计算即可.【详解】解:根据题意得:(x﹣1)※x=(x﹣1)(x+1)=x2﹣1.故答案为:x2﹣1.【点睛】本题考查了平方差公式,实数的运算,理解题目中的运算方法是解题关键.13.某班五个兴趣小组的人数分别为4,4,5,x,6,已知这组数据的平均数是5,则这组数据的中位数是_____.【答案】5【解析】【分析】先根据平均数的定义计算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】∵某班五个兴趣小组的人数分别为4,4,5,x,6,已知这组数据的平均数是5,∴x=5×5﹣4﹣4﹣5﹣6=6,∴这一组数从小到大排列为:4,4,5,6,6,∴这组数据的中位数是5.故答案为:5.【点睛】本题考查了平均数和中位数,弄清题意,熟练掌握和灵活运用相关知识是解题的关键.平均数为一组数据中所有数据之和再除以这组数据的个数;将一组数据按从小到大顺序排列,处于最中间位置的一个位置的一个数据,或是最中间两个数据的平均数称为中位数.14.小慧用图1中的一副七巧板拼出如图2所示的“行礼图”,已知正方形ABCD的边长为4dm,则图2中h的值为_____dm.【答案】42【解析】【分析】根据七巧板的特征,依次得到②④⑥⑦的高,再相加即可求解.【详解】解:∵正方形ABCD的边长为4dm,∴②的斜边上的高是2dm,④的高是1dm,⑥的斜边上的高是1dm,⑦的斜边上的高是2dm,∴图2中h的值为(4+2)dm.故答案为:(4+2).【点睛】本题主要考查正方形的性质,解题的关键是求出②④⑥⑦的高.15.如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC于点M,反比例函数y=kx(x>0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=83,则k=_____.【答案】403【解析】【分析】通过作辅助线,构造直角三角形,求出MN,FN,进而求出AN、MB,表示出点F、点M的坐标,利用反比例函数k的意义,确定点F的坐标,进而确定k的值即可.【详解】解:过点M作MN⊥AD,垂足为N,则MN=AD=3,在Rt△FMN中,∠MFN=30°,∴FN33∴AN=MB333设OA=x,则OB=x+3,∴F(x,3,M(x+3,3,∴3=(x+33,解得,x=5,∴F(5,3,∴k33故答案为:3【点睛】考查反比例函数的图象上点的坐标特征,把点的坐标代入函数关系式是常用的方法.16.图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O,P两点固定,连杆PA=PC=140cm,AB=BC=CQ=QA=60cm,OQ=50cm,O,P两点间距与OQ长度相等.当OQ绕点O 转动时,点A,B,C的位置随之改变,点B恰好在线段MN上来回运动.当点B运动至点M或N时,点A,C重合,点P,Q,A,B在同一直线上(如图3).(1)点P到MN的距离为_____cm.(2)当点P,O,A在同一直线上时,点Q到MN的距离为_____cm.【答案】 (1). 160 (2). 640 9【解析】【分析】(1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.解直角三角形求出PT即可.(2)如图4中,当O,P,A共线时,过Q作QH⊥PT于H.设HA=xcm.解直角三角形求出HT即可.【详解】解:(1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.由题意:OP=OQ=50cm,PQ=PA﹣AQ=14﹣=60=80(cm),PM=PA+BC=140+60=200(cm),PT⊥MN,∵OH⊥PQ,∴PH=HQ=40(cm),∵cos∠P=PHOP=PTPM,∵4050=200PT,∴PT=160(cm),∴点P到MN的距离为160cm,故答案为160.(2)如图4中,当O,P,A共线时,过Q作QH⊥PT于H.设HA=xcm.由题意AT=PT﹣PA=160﹣140=20(cm),OA=PA﹣OP=140﹣50=90(cm),OQ=50cm,AQ=60cm,∵QH⊥OA,∴QH2=AQ2﹣AH2=OQ2﹣OH2,∴602﹣x2=502﹣(90﹣x)2,解得x=4609,∴HT=AH+AT=6409(cm),∴点Q到MN的距离为6409cm.故答案为6409.【点睛】本题考查解直角三角形应用,等腰三角形的性质,菱形的性质等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.三、解答题17.计算:|﹣2|+(13)09【答案】1 【解析】【分析】直接利用零指数幂的性质以及特殊角的三角函数值、二次根式的性质分别化简得出答案.【详解】解:原式=2+1﹣3+2×12 =2+1﹣3+1 =1.【点睛】此题主要考查了特殊角的三角函数值,零指数幂,算术平方根,以及实数运算,正确化简各数是解题关键.18.先化简,再求值:21211a a a a ÷-+-,其中a =3. 【答案】1a a -,32【解析】【分析】直接利用分式的乘除运算法则化简进而代入数据求出答案.【详解】解:原式=2(1)a a -•(a ﹣1) =1a a -, 当a=3时, 原式=33=312-. 【点睛】此题主要考查了分式的化简求值,正确化简分式是解题关键.19.如图,在5×5网格中,△ABC 的三个顶点都在格点上.(1)在图1中画出一个以AB 为边▱ABDE ,使顶点D ,E 在格点上.(2)在图2中画出一条恰好平分△ABC 周长的直线l (至少经过两个格点).【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据平行四边形的定义画出图形即可(答案不唯一);(2)利用数形结合的思想解决问题即可.【详解】解:(1)如图平行四边形ABDE即为所求(点D的位置还有6种情形可取),;(2)如图,直线l即为所求.【点睛】本题考查了几何作图,平行四边形的定义,理解题意,按照要求作图是解题关键.20.某市在九年级“线上教学”结束后,为了解学生的视力情况,抽查了部分学生进行视力检测.根据检测结果,制成下面不完整的统计图表.被抽样的学生视力情况频数表组别视力段频数A 5.1≤x≤5.325B 4.8≤x≤5.0115C 4.4≤x≤4.7mD 4.0≤x≤4.352(1)求组别C的频数m的值.(2)求组别A的圆心角度数.(3)如果视力值4.8及以上属于“视力良好”,请估计该市25000名九年级学生达到“视力良好”的人数.根据上述图表信息,你对视力保护有什么建议?【答案】(1)308;(2)18°;(3)7000人,同学们应少玩电子产品,注意用眼保护【解析】【分析】(1)根据统计图中的数据,可以得到本次抽查的人数,从而可以得到m的值;(2)根据(1)中的结果和频数分布表,可以得到组别A的圆心角度数;(3)根据统计图中的数据,可以得到该市25000名九年级学生达到“视力良好”的人数,并提出合理化建议,建议答案不唯一,只要对保护眼睛好即可.【详解】解:(1)本次抽查的人数为:115÷23%=500,m=500×61.6%=308,即m的值是308;(2)组别A的圆心角度数是:360°×25500=18°,即组别A的圆心角度数是18°;(3)25000×25+115500=7000(人),答:该市25000名九年级学生达到“视力良好”的有7000人,建议是:同学们应少玩电子产品,注意用眼保护.【点睛】本题主要考查了统计图的应用,准确识图,从中找到有用的信息是解题的关键.21.如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.【答案】(1)见解析;(2)1.4【解析】【分析】(1)利用垂径定理以及圆周角定理解决问题即可;(2)证明△AEC∽△BCA,推出CE ACAC AB=,求出EC即可解决问题.【详解】(1)证明:∵AE=DE,OC是半径,∴AC CD=,∴∠CAD=∠CBA;(2)解:如图:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴CE AC AC AB=,∴6 610 CE=,∴CE=3.6,∵OC=12AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.【点睛】本题考查了垂径定理,圆周角定理,相似三角形的判定和性质,证明△AEC∽△BCA 是解题关键.22.2020年5月16日,“钱塘江诗路”航道全线开通,一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?②游轮与货轮何时相距12km?【答案】(1)从杭州出发前往衢州共用了23h.2h;(2)①货轮出发后8小时追上游轮;②21.6h 或22.4h时游轮与货轮何时相距12km【解析】【分析】(1)根据图中信息解答即可.(2)①求出B,C,D,E的坐标,利用待定系数法求解即可.(3)分两种情形分别构建方程求解即可.【详解】解:(1)C点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h.∴游轮在“七里扬帆”停靠的时长=23﹣(420÷20)=23﹣21=2(h).(2)①280÷20=14h,∴点A(14,280),点B(16,280),∵36÷60=0.6(h),23﹣0.6=22.4,∴点E(22.4,420),设BC的解析式为s=20t+b,把B(16,280)代入s=20t+b,可得b=﹣40,∴s=20t﹣40(16≤t≤23),同理由D(14,0),E(22,4,420)可得DE的解析式为s=50t﹣700(14≤t≤22.4),由题意:20t﹣40=50t﹣700,解得t=22,∵22﹣14=8(h),∴货轮出发后8小时追上游轮.②相遇之前相距12km 时,20t ﹣4﹣(50t ﹣700)=12,解得t=21.6.相遇之后相距12km 时,50t ﹣700﹣(20t ﹣40)=12,解得t=22.4,∴21.6h 或22.4h 时游轮与货轮何时相距12km .【点睛】本题考查一次函数的应用,解题的关键是读懂图象信息,熟练运用待定系数法解决问题,属于中考常考题型.23.如图1,在平面直角坐标系中,△ABC 的顶点A ,C 分別是直线y =﹣83x +4与坐标轴的交点,点B 的坐标为(﹣2,0),点D 是边AC 上的一点,DE ⊥BC 于点E ,点F 在边AB 上,且D ,F 两点关于y 轴上的某点成中心对称,连结DF ,EF .设点D 的横坐标为m ,EF 2为l ,请探究:①线段EF 长度是否有最小值.②△BEF 能否成为直角三角形.小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题. (1)小明利用“几何画板”软件进行观察,测量,得到l 随m 变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l 与m 可能满足的函数类别.(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l 关于m 的函数表达式及自变量的取值范围,并求出线段EF 长度的最小值.(3)小明通过观察,推理,发现△BEF 能成为直角三角形,请你求出当△BEF 为直角三角形时m 的值.【答案】(1)连线见解析,二次函数;(2)22(3)m =0或m =43【解析】【分析】(1)根据描点法画图即可;(2)过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,证明Rt△FGK≌Rt△DHK(AAS),由全等三角形的性质得出FG=DH,可求出F(﹣m,﹣2m+4),根据勾股定理得出l=EF2=8m2﹣16m+16=8(m﹣1)2+8,由二次函数的性质可得出答案;(3)分三种不同情况,根据直角三角形的性质得出m的方程,解方程求出m的值,则可求出答案.【详解】解:(1)用描点法画出图形如图1,由图象可知函数类别为二次函数.(2)如图2,过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,则∠FGK=∠DHK=90°,记FD交y轴于点K,∵D点与F点关于y轴上的K点成中心对称,∴KF=KD,∵∠FKG=∠DKH,∴Rt△FGK≌Rt△DHK(AAS),∴FG=DH,∵直线AC的解析式为y=﹣83x+4,∴x=0时,y=4,∴A(0,4),又∵B(﹣2,0),设直线AB的解析式为y=kx+b,∴204k bb⎧-+=⎨=⎩,解得24 kb,∴直线AB的解析式为y=2x+4,过点F作FR⊥x轴于点R,∵D点的橫坐标为m,∴F(﹣m,﹣2m+4),∴ER=2m,FR=﹣2m+4,∵EF2=FR2+ER2,∴l=EF2=8m2﹣16m+16=8(m﹣1)2+8,令﹣83x+4=0,得x=32,∴0≤m≤32.∴当m=1时,l的最小值为8,∴EF的最小值为.(3)①∠FBE为定角,不可能为直角.②∠BEF=90°时,E点与O点重合,D点与A点,F点重合,此时m=0.③如图3,∠BFE=90°时,有BF2+EF2=BE2.由(2)得EF2=8m2﹣16m+16,又∵BR=﹣m+2,FR=﹣2m+4,∴BF2=BR2+FR2=(﹣m+2)2+(﹣2m+4)2=5m2﹣20m+20,又∵BE2=(m+2)2,∴(5m2﹣20m+8)+(8m2﹣16m+16)2=(m+2)2,化简得,3m2﹣10m+8=0,解得m1=43,m2=2(不合题意,舍去),∴m=43.综合以上可得,当△BEF为直角三角形时,m=0或m=43.【点睛】本题考查了二次函数的综合应用,考查了描点法画函数图象,待定系数法,全等三角形的判定与性质,坐标与图形的性质,二次函数的性质,勾股定理,中心对称的性质,直角三角形的性质等知识.准确分析给出的条件,结合一次函数的图象进行求解,熟练掌握方程思想及分类讨论思想是解题的关键..24.【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE 于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当121 3S S 时,求ADAB的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的110时,请直接写出tan∠BAE的值.【答案】(1)等腰三角形,理由见解析;(2)见解析;(3)5;(4)5或105【解析】【分析】(1)如图1中,△AFG是等腰三角形,利用全等三角形的性质证明即可.(2)如图2中,过点O作OL∥AB交DF于L,则∠AFG=∠OLG.首先证明OG=OL,再证明BF=2OL 即可解决问题.(3)如图3中,过点D作DK⊥AC于K,则∠DKA=∠CDA=90°,利用相似三角形的性质解决问题即可.(4)设OG=a,AG=k.分两种情形:①如图4中,连接EF,当点F在线段AB上时,点G在OA上.②如图5中,当点F在AB的延长线上时,点G在线段OC上,连接EF.分别求解即可解决问题.【详解】(1)解:如图1中,△AFG是等腰三角形.理由:∵AE平分∠BAC,∴∠1=∠2,∵DF⊥AE,∴∠AHF=∠AHG=90°,∵AH=AH,∴△AHF ≌△AHG (ASA ),∴AF =AG ,∴△AFG 是等腰三角形.(2)证明:如图2中,过点O 作OL ∥AB 交DF 于L ,则∠AFG =∠OLG .∵AF =AG ,∴∠AFG =∠AGF ,∵∠AGF =∠OGL ,∴∠OGL =∠OLG ,∴OG =OL ,∵OL ∥AB ,∴△DLO ∽△DFB , ∴=OL DO BF BD, ∵四边形ABCD 是矩形,∴BD =2OD ,∴BF =2OL ,∴BF =2OG .(3)解:如图3中,过点D 作DK ⊥AC 于K ,则∠DKA =∠CDA =90°,∵∠DAK =∠CAD ,∴△ADK ∽△ACD , ∴=DK CD AD AC , ∵S 1=12•OG •DK ,S 2=12•BF •AD , 又∵BF =2OG ,121=3S S , ∴2==3DK CD AD AC,设CD =2x ,AC =3x ,则AD = 25x , ∴5==2AD AD AB CD . (4)解:设OG =a ,AG =k .①如图4中,连接EF ,当点F 在线段AB 上时,点G 在OA 上.∵AF =AG ,BF =2OG ,∴AF =AG =k ,BF =2a ,∴AB =k +2a ,AC =2(k +a ),∴AD 2=AC 2﹣CD 2=[2(k +a )]2﹣(k +2a )2=3k 2+4ka ,∵∠ABE =∠DAF =90°,∠BAE =∠ADF ,∴△ABE ∽△DAF , ∴=BE AE AB AD , ∴=2BE k k a AD+, ∴()2=k k a BE AD+, 由题意:()211022k k a a AD +⨯⨯⨯=AD •(k +2a ), ∴AD 2=10ka ,即10ka =3k 2+4ka ,∴k =2a ,∴AD = 25a ,∴BE = ()2k k a AD += 45a ,AB =4a , ∴tan ∠BAE = 55BE AB =. ②如图5中,当点F 在AB 的延长线上时,点G 在线段OC 上,连接EF .∵AF =AG ,BF =2OG ,∴AF =AG =k ,BF =2a ,∴AB =k ﹣2a ,AC =2(k ﹣a ),∴AD 2=AC 2﹣CD 2=[2(k ﹣a )]2﹣(k ﹣2a )2=3k 2﹣4ka ,∵∠ABE =∠DAF =90°,∠BAE =∠ADF ,∴△ABE ∽△DAF , ∴BE AE AB AD=, ∴2BE k k a AD=-, ∴ ()2k k a BE AD-=, 由题意:()211022k k a a AD -⨯⨯⨯=AD •(k ﹣2a ), ∴AD 2=10ka ,即10ka =3k 2﹣4ka ,∴k = 143a ,∴AD =3a ,∴()245k k a BE a AD -==,AB = 83a ,∴tan ∠BAE =BE AB =,综上所述,tan ∠BAE 的值为. 【点睛】本题是一道综合题,主要涉及到等腰三角形的判定及其性质、全等三角形的判定和性质、三角形中位线定理、相似三角形的判定及其性质、勾股定理的应用等知识点,解题的关键是综合运用所学到的相关知识。
2020年浙江省台州市中考数学试题(含答案与解析)

浙江省台州市2020年中考试卷数学一、选择题-的结果是()1.计算13- D. 4A. 2B. 2- C. 42.用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A. B. C. D.3.计算2a2•3a4的结果是()A. 5a6B. 5a8C. 6a6D. 6a84.10在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5.在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是()A. 中位数B. 众数C. 平均数D. 方差6.如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,-1)对应点的坐标为()A. (0,0)B. (1,2)C. (1,3)D. (3,1)7.如图,已知线段AB,分别以A,B为圆心,大于12AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A. AB平分∠CAD B. CD平分∠ACB C. AB⊥CD D. AB=CD 8.下是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A. 由②推出③,由③推出① B. 由①推出②,由②推出③C.由③推出①,由①推出② D. 由①推出③,由③推出②9.如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s )与运动时间t (单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A. B.C. D.10.把一张宽为1cm 的长方形纸片ABCD 折叠成如图所示的阴影图案,顶点A ,D 互相重合,中间空白部分是以E 为直角顶点,腰长为2cm 的等腰直角三角形,则纸片的长AD (单位:cm )为( )A. 732+B. 742+C. 832+D. 842+二、填空题11.因式分解:x 2﹣9=_____. 12.计算113x x-的结果是_____. 13.如图,等边三角形纸片ABC的边长为6,E ,F 是边BC 上的三等分点.分别过点E ,F 沿着平行于BA ,CA 方向各剪一刀,则剪下的△DEF 的周长是_____ .14.甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s 甲2与S 乙2,则s 甲2_____S 乙2.(填“>”、“=”、“<“中的一个)15.如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为_____________ .16.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为____________(用含a,b的代数式表示).三、解答题17.计算:382-18.解方程组:1,{37 x yx y-=+=.19.人字折叠梯完全打开后如图1所示,B,C是折叠梯的两个着地点,D是折叠梯最高级踏板的固定点.图2是它的示意图,AB=AC,BD=140cm,∠BAC=40°,求点D离地面的高度DE.(结果精确到0.1cm;参考数据sin70°≈0. 94,c os70°≈0.34,sin20°≈0.34,cos20°≈0.94)20.小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1-y2)与(y2-y3)的大小: y1-y2 y2-y3.21.如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.22.新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).参与度0.2~0.4 0.4~0.6 0.6~0.8 0.8~1 录播 4 16 12 8 直播 2 10 16 12 (1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?23.如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M.E是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF,(1)求证:△BEF直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM正存在点E,使得EF和AB互相平分,求m的值.人数方式24.用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:m),如果在离水面竖直距离为h(单校:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H—h).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高h cm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少? (2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离数学参考答案与解析一、选择题-的结果是()1.计算13- D. 4A. 2B. 2- C. 4【答案】B【解析】【分析】根据减法法则计算即可.【详解】1-3=1+(-3)=-2.故选B.【点睛】本题考查了有理数的减法运算,熟练掌握减去一个数等于加上这个数的相反数是解答本题的关键.2.用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A. B. C. D.【答案】A【解析】【分析】根据三视图的相关知识直接找出主视图即可.【详解】主视图即从图中箭头方向看,得出答案为A,故答案选:A.【点睛】此题考查立体图形的三视图,理解定义是关键.3.计算2a2•3a4的结果是()A. 5a6B. 5a8C. 6a6D. 6a8【答案】C【解析】【分析】直接利用单项式乘单项式运算法则计算得出答案. 【详解】解:2a 2•3a 4=6a 6. 故选:C .【点睛】本题考查了单项式与单项式的乘法,其运算法则为:数字与数字相乘,字母为同底数幂相乘,底数不变,指数相加,掌握运算法则是解题关键. 4.在( ) A. 2和3之间 B. 3和4之间C. 4和5之间D. 5和6之间 【答案】B 【解析】分析】根据被开方数的范围,确定出所求即可. 【详解】∵9<10<16, ∴3<4,3与4之间. 故选:B .【点睛】此题考查了估算无理数的大小,解题的关键是熟知无理数估算的方法. 5.在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是( ) A. 中位数 B. 众数C. 平均数D. 方差【答案】A 【解析】 【分析】根据中位数的定义即可判断. 【详解】∵小明成绩72分,超过班级半数同学的成绩,由此可得所用的统计量是中位数; 故选A .【点睛】此题主要考查中位数的意义,解题的关键是熟知中位数的定义.6.如图,把△ABC 先向右平移3个单位,再向上平移2个单位得到△DEF ,则顶点C (0,-1)对应点的坐标为()A. (0,0)B. (1,2)C. (1,3)D. (3,1)【答案】D【解析】【分析】先找到顶点C的对应点为F,再根据直角坐标系的特点即可得到坐标.【详解】∵顶点C的对应点为F,由图可得F的坐标为(3,1),故选D.【点睛】此题主要考查坐标与图形,解题的关键是熟知直角坐标系的特点.7.如图,已知线段AB,分别以A,B为圆心,大于12AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A. AB平分∠CADB. CD平分∠ACBC. AB⊥CDD. AB=CD 【答案】D【解析】【分析】根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案【详解】解:由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD,故选:D.【点睛】本题主要考查线段垂直平分线的尺规作图、菱形的判定方法等,解题的关键是掌握菱形的判定与性质.8.下是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A. 由②推出③,由③推出①B. 由①推出②,由②推出③C. 由③推出①,由①推出②D. 由①推出③,由③推出②【答案】A【解析】【分析】根据正方形和矩形的性质定理解题即可.【详解】根据正方形特点由②可以推理出③,再由矩形的性质根据③推出①,故选A.【点睛】此题考查正方形和矩形的性质定理,难度一般.9.如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t (单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A. B. C. D.【答案】C 【解析】 【分析】由图2知小球速度先是逐渐增大,后来逐渐减小,则随着时间的增加,小球刚开始路程增加较快,后来增加较慢,由此得出正处答案.【详解】由图2知小球速度不断变化,因此判定小球运动速度v 与运动时间t 之间的函数关系是()()11112222000v k t k v k t b k b ⎧=>⎪⎨=+⎪⎩,(1t 为前半程时间,2t 为后半程时间),∴前半程路程函数表达式为:2111y k t =,后半程路程为2222222=+=v k t t bt y ,∵2100,><k k ,即前半段图像开口向上,后半段开口向下 ∴C 项图像满足此关系式, 故答案为:C .【点睛】此题考查根据函数式判断函数图像的大致位置.10.把一张宽为1cm 的长方形纸片ABCD 折叠成如图所示的阴影图案,顶点A ,D 互相重合,中间空白部分是以E 为直角顶点,腰长为2cm 的等腰直角三角形,则纸片的长AD (单位:cm )为( )A. 732+B. 742+C. 832+D.82+【答案】D 【解析】 【分析】如图,过点M作MH⊥A'R于H,过点N作NJ⊥A'W于J.想办法求出AR,RM,MN,NW,WD 即可解决问题.【详解】解:如图,过点M作MH⊥A'R于H,过点N作NJ⊥A'W于J.由题意△EMN是等腰直角三角形,EM=EN=2,MN=2∵四边形EMHK是矩形,∴EK= A'K=MH=1,KH=EM=2,∵△RMH是等腰直角三角形,∴RH=MH=1,2,同法可证2,题意AR=R A'= A'W=WD=4,∴2+222+4=842+故答案为:D.【点睛】本题考查翻折变换,等腰直角三角形的判定和性质,矩形的性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形或特殊四边形解决问题.二、填空题11.因式分解:x2﹣9=_____.【答案】(x+3)(x﹣3)【解析】【分析】原式利用平方差公式分解即可.【详解】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).【点睛】本题考查因式分解,熟练掌握平方差公式是解题关键.12.计算113x x-结果是_____.【答案】2 3x【解析】【分析】先通分,再相加即可求得结果.【详解】解:1131333 x x x x -=-23x =,故答案为:23x.【点睛】此题考察分式的加法,先通分化为同分母分式再相加即可.13.如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是_____ .【答案】6【解析】【分析】先说明△DEF是等边三角形,再根据E,F是边BC上的三等分求出BC的长,最后求周长即可.【详解】解:∵等边三角形纸片ABC∴∠B=∠C=60°∵DE∥AB,DF∥AC∴∠DEF=∠DFE=60°∴△DEF是等边三角形∴DE=EF=DF∵E,F是边BC上的三等分点,BC=6∴EF=2∴DE=EF=DF=2∴△DEF= DE+EF+DF=6故答案为6.【点睛】本题考查了等边三角形的判定和性质、三等分点的意义,灵活应用等边三角形的性质是正确解答本题的关键.14.甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s甲2与S乙2,则s甲2_____S乙2.(填“>”、“=”、“<“中的一个)【答案】<【解析】【分析】利用折线统计图可判断乙同学的成绩波动较大,然后根据方差的意义可得到甲、乙的方差的大小.【详解】解:由折线统计图得乙同学的成绩波动较大,∴s甲2<S乙2.故答案为:<.【分析】本题考查了方差的意义,掌握知识点是解题关键.15.如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为_____________ .【答案】55°【解析】【分析】根据AD 是直径可得∠AED=90°,再根据BC 是⊙O 的切线可得∠ADC=90°,再根据直角的定义及角度等量替换关系即可得到∠C=∠ADE=55°. 【详解】∵AD 是直径, ∴∠AED=90°, ∴∠ADE+∠DAE=90° ∵BC 是⊙O 的切线, ∴∠ADC=90°, ∴∠C+∠DAE=90° ∴∠C=∠ADE=55°. 故答案为:55°.【点睛】此题主要考查圆内的角度求解,解题的关键是熟知切线的性质.16.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a ,小正方形地砖面积为依次连接四块大正方形地砖的中心得到正方形ABCD .则正方形ABCD 的面积为____________(用含a ,b 的代数式表示).【答案】+a b 【解析】 【分析】如图,连接AE 、AF ,先证明△GAE ≌△HAF ,由此可证得AEF GAHE S S =△四边形,进而同理可得,根据正方形ABCD 的面积等于四个相同四边形的面积之和及小正方形的面积即可求得答案. 【详解】解:如图,连接AE 、AF , ∵点A 为大正方形的中心, ∴AE =AF ,∠EAF =90°, ∴∠AEF =∠AFE =45°, ∵∠GEF =90°,∴∠AEG =∠GEF -∠AEF =45°, ∴∠AEG =∠AFE , ∵四边形ABCD 为正方形, ∴∠DAB =∠EAF =90°, ∴∠GAE =∠HAF , 在△GAE 与△HAF 中,GAE HAF AE AFAEG AFH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GAE ≌△HAF (ASA ), ∴GAE HAF S S =△△,∴GAE AEH HAF AEH S S S S +=+△△△△, 即AEF GAHE S S =△四边形, ∵11=44AEF S S a =△大正方形,∴11=44GAHE S S a =四边形大正方形,∴同理可得:1=44ABCD S a b ⨯+正方形,即=ABCD S a b +正方形, 故答案为:+a b .【点睛】本题考查了正方形的性质及全等三角形的判定及性质,熟练掌握正方形的性质并能作出正确的辅助线是解决本题的关键.三、解答题17.计算:3-【答案】3 【解析】 【分析】按照绝对值的概念、平方根的概念逐个求解,然后再用二次根式加减运算即可.【详解】解:原式=3=+故答案为:3.【点睛】本题考查了绝对值的概念、平方根的概念、二次根式的加减运算等,熟练掌握运算公式及法则是解决此类题的关键. 18.解方程组:1,{37x y x y -=+=.【答案】2,{ 1.x y ==【解析】试题分析:首先将两式相加得出关于x 的一元一次方程,求出x 的值,然后将x 的值代入第一个方程求出y 的值,从而得出方程组的解. 试题解析:1,{37.x y x y -=+=①②①+②得:4=8x ,所以=2x . 把=2x 代入①得:y=1. 所以,该方程组的解为2,{1.x y ==19.人字折叠梯完全打开后如图1所示,B ,C 是折叠梯的两个着地点,D 是折叠梯最高级踏板的固定点.图2是它的示意图,AB=AC ,BD=140cm ,∠BAC=40°,求点D 离地面的高度DE .(结果精确到0.1cm ;参考数据sin70°≈0. 94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)【答案】131.6cm【解析】【分析】过点A作AF⊥BC于点F,根据等腰三角形的三线合一性质得∠BAF的度数,进而得∠BDE的度数,再解直角三角形得结果.【详解】解:过点A作AF⊥BC于点F,则AF∥DE,∴∠BDE=∠BAF,∵AB=AC,∠BAC=40°,∴∠BDE=∠BAF=20°,∴DE=BD×cos20°≈140×0.94=131.6(cm)故点D离地面的高度DE约为131.6cm.【点睛】本题主要考查了解直角三角形,等腰三角形的性质,关键是构造直角三角形求得∠BDE的度数.20.小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y (单位:秒)与训练次数x (单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒. (1)求y 与x 之间的函数关系式;(2)当x 的值为6,8,10时,对应的函数值分别为y 1,y 2,y 3,比较(y 1-y 2)与(y 2-y 3)的大小: y 1-y 2 y 2-y 3.【答案】(1)1200(0)=>y x x;(2)> 【解析】 【分析】(1)设反比例函数解析式为k y x=,将点(3,400)代入求出k 即可,最后注意自变量的取值范围.(2) 分别将x 的值为6,8,10时,对应的函数值分别为y 1,y 2,y 3的值求出,然后再比较大小求解.【详解】解:(1) 设反比例函数解析式为(0)ky k x=≠ 将点(3,400)代入,即得34001200=⨯=k 故反比例函数的解析式为:1200(0)=>y x x. 故答案为:1200(0)=>y x x. (2)当x =6时,代入反比例函数中,解得11200006=2=y , 当x =8时,代入反比例函数中,解得21200508=1=y , 当x =10时,代入反比例函数中,解得312002010=1=y ,∴1220015050-=-=y y2315012030-=-=y y∴1223->-y y y y .故答案为:>.【点睛】本题考查了反比例函数的解析式求法、反比例函数的图像性质等,点在反比例函数上,则将点的坐标代入解析式中,得到等式进而求解.21.如图,已知AB =AC ,AD =AE ,BD 和CE 相交于点O .(1)求证:△ABD ≌△ACE ;(2)判断△BOC 的形状,并说明理由.【答案】(1)见解析;(2)等腰三角形,理由见解析.【解析】【分析】(1)由“SAS ”可证△ABD ≌△ACE ;(2)由全等三角形的性质可得∠ABD =∠ACE ,由等腰三角形的性质可得∠ABC =∠ACB ,可求∠OBC =∠OCB ,可得BO =CO ,即可得结论.【详解】证明:(1)∵AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE (SAS );(2)△BOC 是等腰三角形,理由如下:∵△ABD ≌△ACE ,∴∠ABD =∠ACE ,∵AB =AC ,∴∠ABC =∠ACB ,∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟记相关定理是解题关键.22.新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).(1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?【答案】(1)“直播”教学方式学生的参与度更高,理由见解析;(2)30%;(3)50人【解析】【分析】(1)根据表格数据得出两种教学方式参与度在0.6以上的人数,比较即可作出判断;(2)用表格中“直播”教学方式学生参与度在0.8以上的人数除以被调查的总人数即可估计对应概率;(3)先根据“录播”和“直播”的人数之比为1:3及该校学生总人数求出“直播”、“录播”人数,再分别乘以两种教学方式中参与度在0.4以下人数所占比例求出对应人数,再相加即可得出答案.【详解】解:(1)“直播”教学方式学生的参与度更高:理由:“直播”参与度在0.6以上的人数为28人,“录播”参与度在0.6以上的人数为20人,参与度在0.6以上的“直播”人数远多于“录播”人数,∴“直播”教学方式学生的参与度更高;(2)12÷40=0.3=30%,答:估计该学生的参与度在0.8及以上的概率是30%;(3)“录播”总学生数为800×113+=200(人),“直播”总学生数为800×313+=600(人),∴“录播”参与度在0.4以下的学生数为200×440=20(人),“直播”参与度在0.4以下的学生数为600×240=30(人),∴参与度在0.4以下的学生共有20+30=50(人).【点睛】本题考查了概率的计算,弄清题意,正确分析,确定计算方法是解题关键.23.如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M.E是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF,(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM正存在点E,使得EF和AB互相平分,求m的值.【答案】(1)见解析;(2)见解析;(3)23【解析】【分析】(1)想办法证明∠BEF=90°即可解决问题(也可以利用圆内接四边形的性质直接证明).(2)根据两角对应相等两三角形相似证明.(3)证明四边形AFBE是平行四边形,推出FJ=12BD=12m,EF=m,由△ABC∽△CBM,可得BM=26m,由△BEF∽△BCA,推出AC BCEF BE,由此构建方程求解即可.【详解】(1)证明:由折叠可知,∠ADB=∠ACB=90°∵∠EFB=∠EDB,∠EBF=∠EDF,∴∠EFB+∠EBF=∠EDB+∠EDF=∠ADB=90°,∴∠BEF=90°,∴△BEF是直角三角形.(2) 证明:∵BC=BD,∴∠BDC=∠BCD,∵∠EFB=∠EDB,∴∠EFB=∠BCD,∵AC=AD,BC=BD,∴AB⊥CD,∴∠AMC=90°,∵∠BCD+∠ACD=∠ACD+∠CAB=90°,∴∠BCD=∠CAB,∴∠BFE=∠CAB,∵∠ACB=∠FEB=90°,∴△BEF∽△BCA.(3) 设EF交AB于J.连接AE,如下图所示:∵EF 与AB 互相平分,∴四边形AFBE 是平行四边形,∴∠EFA=∠FEB=90°,即EF ⊥AD ,∵BD ⊥AD ,∴EF ∥BD ,∵AJ=JB ,∴AF=DF ,∴ FJ=1=22m BD ∴ EF=m ∵ △ABC ∽△CBM∴ BC:MB=AB:BC∴ BM=26m , ∵ △BEJ ∽△BME ,∴ BE:BM=BJ:BE∴2∵ △BEF ∽△BCA , ∴=AC BC EF BE2 36=2-m mm解得23m=(负根舍去).故答案为:2 3.【点睛】本题属于圆综合题,考查了圆周角定理,相似三角形的判定和性质平行四边形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.24.用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:m),如果在离水面竖直距离为h(单校:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H—h).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高h cm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少? (2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.【答案】(1)224(10)400s h=--+,当10h=时,max20s=;(2)a b=或20a b+=;(3)垫高的高度为16cm,小孔离水面的竖直距离为18cm【解析】【分析】(1)将s2=4h(20-h)写成顶点式,按照二次函数的性质得出s2的最大值,再求s2的算术平方根即可;(2)设存在a ,b ,使两孔射出水的射程相同,则4a(20-a)=4b(20-b),利用因式分解变形即可得出答案;(3)设垫高的高度为m ,写出此时s 2关于h 的函数关系式,根据二次函数的性质可得答案.【详解】解:(1)∵s 2=4h(H-h),∴当H=20时,s 2=4h(20-h)=-4(h-10)2+400,∴当h=10时,s 2有最大值400,∴当h=10时,s 有最大值20cm .∴当h 为何值时,射程s 有最大值,最大射程是20cm ;故答案为:最大射程是20cm.(2) ∵s 2=4h (20-h ),设存在a ,b ,使两孔射出水的射程相同,则有:4a (20-a )=4b (20-b ),∴20a -a 2=20b -b 2,∴a 2-b 2=20a -20b ,∴(a +b )(a -b )=20(a -b ),∴(a -b )(a +b -20)=0,∴a -b =0或a +b -20=0,∴a =b 或a +b =20.故答案为:a =b 或a +b =20.(3)设垫高的高度为m ,则222204(20)4()(20)2+=+-=--++m s h m h h m ∴当202+=m h 时,max 20=2016=++s m ∴16m =时,此时20182+==m h ∴垫高的高度为16cm ,小孔离水面的竖直距离为18cm .故答案为:垫高的高度为16cm ,小孔离水面的竖直距离为18cm.【点睛】本题考查了二次函数在实际问题中的应用,厘清题中的数量关系并明确二次函数的性质是解题的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年宁波市中考试卷
一、填空题(每小题3分,共36分)
1.计算:–5+6=_________。
2.9的算术平方根是_________。
3.分解因式:362-x =_________。
4.函数11-=x y 中,自变量x 的取值范围是_________。
5.方程0122=-+x x 根的判别式的值是_________。
6.如图,AB ∥DC ,AC 交BD 于点O .已知
53=CO AO ,BO =6,则DO=_________。
7.抛物线122--=x x y 的顶点坐标是_________。
8.1000件衬衫中有3件次品,从中任取1件是次品的概率为_________。
9.在角的内部到角的两边距离相等的点的轨迹是这个角的_________。
10.如图,从位于O 处的某海防哨所发现在它的北偏东600的方向,相
距600m 的A 处有一艘快艇正在向正南方向航行,经过若干时间快艇要
到达哨所东南方向的B 处,则A ,B 间的距离是_________m 。
11.如图,点B ,O ,O /,C ,D 在一条直线上,BC 是半圆O 的直径,
OD 是半圆O /的直径,两半圆相交于点A ,连结AB ,AO /,若∠BAO /=67.2O ,则∠AO /C =____度。
12.如图,圆内接四边形ABCD 的两条对角线交于点P 。
已知AB=BC ,CD=2
1BD =1,设AD=x ,用关于x
的代数式表示PA 与PC 的
积:PA ·PC =_________。
二、选择题(每小题3分,共24分)
13.sin300的值是 ()
(A )2
1(B )22(C )23(D )33 14.如图,在⊙O 中,∠BOC=1000,点A 在⊙O 上,则∠BAC
的度数是 ( )
(A )1000(B )800(C )600(D )500
15.如图,直线AB ,CD 被直线l 所截,若∠1=∠3≠900,则( )
(A )∠2=∠3(B )∠2=∠4 (C )∠1=∠4(D )∠3=∠4
16.一次函数12+-=x y 的图象过点 ( )
(A )(2,–3) (B )(1,0)(C )(–2,3)(D )(0,–1)
17.已知⊙O 1和⊙O 2的半径分别是3cm 和4cm ,如果圆心距O 1O 2=5cm ,那么⊙O 1与⊙O 2的位置关系是( )
(A )外离(B )外切(C )相交(D )内切
18.甲圆柱的底面直径和高线的长分别是乙圆柱的高线的长和底面直径,其侧面积分别为S 甲和S 乙,则它们的大小关系是( )
(A ) S 甲>S 乙(B )S 甲<S 乙 (C )S 甲=S 乙 (D )不能确定
19.把菱形ABCD 沿着对角线AC 的方向移动到菱形A /B /C /D /的位置,它们的重叠部分(图中阴影部分)的面积是菱形ABCD 的面积的21.若AC=2,则菱形移动的距离AA /是 ( )
(A )2
1(B )22(C )l (D )12- 20.二次函数c bx ax y ++=2的图象如图所示,则在下列各不等
式中,成立的个数是 ( )①0<abc ②
0<++c b a ③b c a >+④2
b c a -<。
(A )1(B )2(C )3(D )4
三、解答题(本题有9小题,共60分)
21.(本题4分)计算:()27
0212----π 22.(本题4分)化简:()⎪⎪⎭
⎫ ⎝⎛-+-x y x x xy 112。
23.(本题5分)如图,梯形ABCD 中,AD ∥BC ,AB=DC 。
求证:
AC=DB 。
24.(本题5分)如图,已知△ABC ,用直尺和圆规作△ABC 的外接圆。
(要求保留作图痕迹,不写作法)
25.(本题6分)解方程组:⎩⎨⎧=+=+-130
122y x y x 。
26.(本题6分)已知方程0322=-+k x x 的两个根分别是1x 和2x ,且满足
()()41121-=++x x ,求k 的值。
27.(本题7分)某商店为了促销G 牌空调机,2000年元旦那天购买该机可分两期付款,在购买时先付一笔款,余下部分及它的利息(年利率为5.6%)在2001年元旦付清。
该空调机售价每台8224元,若两次付款数相同,问每次应付款多少元?
28.(本题11分)甲、乙、丙、丁四名打字员承担一项打字任务。
若由这四人中的某一人单独完成全部打字任务,则甲需要24小时,乙需要20小时,丙需要16小时,丁需要12小时。
(1)如果甲、乙、丙、丁四人同时打字,那么需要多少时间完成?
(2)如果按甲、乙、丙、丁,甲、乙、丙、丁,……的次序轮流打字,每一轮中每人各打1小时,那么需要多少时间完成?
(3)能否把(2)题所说的甲、乙、丙、丁的次序作适当调整,其余都不变,使完成这项打字任务的时间至少提前半小时?(答题要求:如认为不能,需说明理由;如认为能,需至少说出一种轮流的次序,并求出相应能提前多少时间完成打字任务)
29.(本题12分)如图,过⊙O 外一点A 向⊙O 引割线AEB ,ADC , DF ∥BC ,交AB 于F 。
若CE 过圆心O ,D 是AC 中点。
(1)求证:DF 是⊙O 的切线;
(2)若FE ,FB 的长是方程()0022>=+-b b mx x 的两个根,
且△DEF 与△CBE 相似。
①试用m 的代数式表示b ; ②代数式7383+-b bm 的值达到最小时,求BC 的长。