2019年数学中考试题(含答案)
2019年四川省成都市中考数学试题(含解析)

2019年四川省成都市初中毕业、升学考试数学(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内.1.(2019四川省成都市,1,3)比-3大5的数是(A)-15 (B)-8 (C)2 (D)8【答案】C【解析】列式子计算:-3+5=2,故选C【知识点】有理数加法2.(2019四川省成都市,2,3)如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是(A)(B)(C)(D)【答案】B【解析】从左面看,上层有1个,下层有2个,故选B.【知识点】三视图3.(2019四川省成都市,3,3)2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球约5500万光年,将数据5500万用科学记数法表示为(A)5500×104(B)55×106(C)5.5×107(D)5.5×108【答案】C【解析】用科学记数法可以把一个数表示a×10n的形式,其中1≤a<10,n的值可由小数点移动情况来决定,若原数大于1,n为正整数;若原数小于1,则n为负整数;小数点移动几位,n的绝对值就是几.【知识点】科学记数法4.(2019四川省成都市,4,3)在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为(A)(2,3)(B)(-6,3)(C)(-2,7)(D)(-2,-1)【答案】A【解析】点的坐标向右(左)平移a个单位,则点的横坐标加(减)a,本题中点向右平移了4个单位,故横坐标加4,纵坐标不变,选A.【知识点】点平移的坐标变化规律5.(2019四川省成都市,5,3)将等腰直角三角形纸片和矩形纸片按如图方式叠放在一起,若∠1=30°,则∠2的度数为(A)10°(B)15°(C)20°(D)30°【答案】B【解析】由平行线的性质可得∠1的内错角也为30°,再用45°减去30°即得∠2度数,故选B . 【知识点】平行线的性质;等腰直角三角形的性质6.(2019四川省成都市,6,3)下列计算正确的是 (A )5ab-3a=2b (B )(-3a 2b )2=6a 4b 2 (C )(a-1)2=a 2-1 (D )2a 2b ÷b=2a 2 【答案】D【解析】选项A 不是同类项,不能合并;选项B 中-3的平方不能是6;选项C 中完全平方公式用错;D 选项符合单项式除法法则,故选D.【知识点】幂的乘方;积的乘方;合并同类项;单项式除法法则7.(2019四川省成都市,7,3)分式方程1215=+--xx x 的解为 (A )x=-1 (B )x=1 (C )x=2 (D )x=-2【答案】A【解析】通过去分母在方程两边同时乘以x (x-1),将分式方程转化为一元一次方程,通过解一元一次方程求得分式方程的解,通过检验验证是否有解. 【知识点】解分式方程8.(2019四川省成都市,8,3)某校开展了主题为“青春·梦想”的艺术作品征集活动,从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是 (A )42件 (B )45件 (C )46件 (D )50件 【答案】C【思路分析】将所有数据按照从小到大(或从大到小)排列,位于最中间的数或者位于最中间的两个数的平均数即为所求中位数.【解题过程】将5个数据按照从小到大排列:42,45,46,50,50.位于最中间的数是46,故选C. 【知识点】中位数9.(2019四川省成都市,9,3)如图,正五边形ABCDE 内接于⊙O ,P 为DE 上的一点(点P 不与点D 重合),则∠CPD 的度数为(A )30° (B )36° (C )60° (D )72°【答案】B【思路分析】求圆周角的度数,可以考虑求所对弧对的圆心角的度数,利用一条弧所对的圆周角等于它所对的圆心角的一半求解.【解题过程】连接OC 、OD ,∵五边形ABCDE 是正五边形,∴∠COD=72°,∴∠CPD=36°,故选B. 【知识点】正多边形与圆;圆周角定理E DCBOAP10.(2019四川省成都市,10,3)如图,二函数y=ax 2+bx+c 的图象经过点A (1,0),B (5,0),下列说法正确的是(A )c <0 (B )b 2-4ac <0 (C )a-b+c <0 (D )图象的对称轴是直线x=3【答案】D【思路分析】根据二次函数图象的性质及特征点的坐标判断选项的正确性.【解题过程】根据图象,显然c >0,故A 错;抛物线与x 轴有两个交点,则Δ>0,故B 错;当x=-1时,函数值y >0,所以a-b+c >0,故C 错;A 、B 两点的纵坐标相同,其中点横坐标为3,故D 正确. 【知识点】二次函数图象的性质二、填空题:本大题共4小题,每小题3分,共12分.不需写出解答过程,请把最后结果填在题中横线上. 11.(2019四川省成都市,11,3)若m-1与-2互为相反数,则m 的值为_______. 【答案】1【解析】由两数互为相反数,其和为零列出方程:m+1-2=0,解m=1. 【知识点】相反数;一元一次方程应用 12.(2019四川省成都市,12,3)如图,在△ABC 中,AB=AC ,点D ,E 都在边BC 上,∠BAD=∠CAE ,若BD=9,则CE 点长为_________.B【答案】9【解析】∵AB=AC ,∴∠B=∠C ,∵∠BAD=∠CAE ,∴△ABD ≌△AEC ,∴CE=BD=9. 【知识点】等腰三角形的性质;全等三角形的判定和性质 13.(2019四川省成都市,13,3)已知一次函数y=(k-3)x+1的图象经过一、二、四象限,则k 的取值范围是_______. 【答案】k <3【解析】一次函数同时经过了二、四象限,所以k-3<0,解得k <3. 【知识点】一次函数图象的性质14.(2019四川省成都市,14,3)如图,ABCD 的对角线AC 与BD 相交于点O ,按以下步骤作图:①以点A 为圆心,以任意长为半径作弧,分别交AO ,AB 于点M ,N ;②以点O 为圆心,以AM 长为半径作弧,交OC 于点M ′;③以点M ′为圆心,以MN 长为半径作弧,在∠COB 内部交前面的弧于点N ′;④过点N ′作射线ON ′交BC 于点E.若AB=8,则线段OE 的长为________.A【答案】4【解析】根据尺规作图可以判定∠COE=∠CAB ,所以OE ∥AB ,可得OE 为△CAB 的中位线,从而得到OE 等于AB 的一半.【知识点】尺规作图;三角形中位线三、解答题(本大题共6小题,满分102分,解答应写出文字说明、证明过程或演算步骤) 15.(2019四川省成都市,15,12)(本小题满分12分,每题6分)(1)计算:(π-2)0-2cos30°-16+3-1. (2)解不等式组:⎪⎩⎪⎨⎧+--≤-②①(x x x x 21142554)23【思路分析】(1)利用零指数幂、特殊角三角函数值、二次根式化简、去绝对值等知识逐项求得各项结果,相加即可;(2)通过解不等式①和不等式②得到两个解集,求公共解集即可. 【解题过程】(1)原式=1-2×23-4+3-1=-4 (2)解不等式①得x ≥-1,解不等式②得x <2,故不等式组的解集为-1≤x <2. 【知识点】零指数幂;特殊角三角函数值;二次根式化简;绝对值;解不等式组16.(2019四川省成都市,16,6)(本小题满分6分)先化简,再求值:621234-12++-÷⎪⎭⎫ ⎝⎛+x x x x ,其中x=2+1.【思路分析】先利用分式的加减乘除运算法则将分式化简,再将x 值代入求解. 【解题过程】()()1213231)3(2)1(3433621234-1222-=-+⨯+-=+-÷⎪⎭⎫ ⎝⎛+-++=++-÷⎪⎭⎫ ⎝⎛+x x x x x x x x x x x x x x 当x=2+1时,原式=22=2【知识点】分式的加减;分式的乘除;二次根式化简 17.(2019四川省成都市,17,8)(本小题满分8分)随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择,某校计划为学生提供以下四类在线学习方式:在线阅读,在线听课,在线答题和在线讨论,为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图. 根据图中信息解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对“在线阅读”最感兴趣的学生人数.3642483024181260在线答题在线讨论在线阅读在线听课人数【思路分析】(1)由在线答题的人数占总人数的百分比及人数求出总人数,再求出在线听课的人数,补充完整条形统计图;(2)用在线讨论的人数除以总人数求出百分比,用这个百分比乘以360°得到圆心角度数;(3)求出在线阅读人数的百分比,乘以该校总人数即可. 【解题过程】(1)18÷20%=90;90-24-18-12=36,补全图如下:361218243642483024181260在线答题在线讨论在线阅读在线听课人数方式(2)360×9012=48° (3)2100×9024=560答:估计该校对“在线阅读”最感兴趣的学生人数大约有560人. 【知识点】条形统计图;扇形统计图;用样本估计总体18.(2019四川省成都市,18,8)(本小题满分8分)2019年成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力.如图,在一场马拉松比赛中,某人在大楼A 处测得起点拱门CD 的顶部C 的俯角为35°,底部D 的俯角为45°,如果A 处离地面的高度AB=20米,求起点拱门CD 的高度.(结果精确到1米:参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)【思路分析】过点C 作CE ⊥AB 于点E ,在Rt △ADB 中求出BD ,在Rt △ACE 中求AE ,用AB 减去AE 即可. 【解题过程】过点C 作CE ⊥AB 于点E ,在RtABD 中,BD=45tan AB=20,∴CE=20,在Rt △ACE 中,AE=CE · tan35°=20×0.70=14,∴CD=BE=20-14=6.答:拱门高6米.【知识点】解直角三角形的应用19.(2019四川省成都市,19,10)(本小题满分10分)如图,在平面直角坐标系xOy 中,一次函数y=21x+5和Ey=-2x 的图象相交于点A ,反比例函数y=xk的图象经过点A. (1)求反比例函数的表达式; (2)设一次函数y=21x+5点图象与反比例函数y=xk的图象的另一个交点为B ,连接OB ,求△ABO 的面积.x【思路分析】(1)先通过一次函数y=21x+5和y=-2x 的图象求出交点A 的坐标,将点A 坐标代入y=xk求出k 值;(2) 通过一次函数y=21x+5与反比例函数组成的方程组求出B 点坐标,进而求△OAB 的面积. 【解题过程】解:(1)解方程组⎪⎩⎪⎨⎧-=+=x y x y 2521得⎩⎨⎧=-=42y x ,∴点A (-2,4),将点A 坐标代入y=x k 得k=-8,故反比例函数解析式为y=x8-(2)解方程组⎪⎪⎩⎪⎪⎨⎧-=+=x y x y 8521得⎩⎨⎧==1y 8-x ,∴点B (-8,1),设直线AB 与x 轴交于点F ,与y 轴交于点G ,当x=0时,y=5,当y=0时,x=-10,故F (-10,0),G (0,5),∴S △FOG =21×5×10=25,S △FBO =21×1×10=5,S △AOG =21×2×5=5,∴S △AOB =25-5-5=15.x【知识点】一次函数;反比例函数20.(2019四川省成都市,20,10)(本小题满分10分)如图,AB 为⊙O 的直径,C ,D 为圆上的两点,OC ∥BD ,弦AD ,BC 相交于点E. (1)求证:=AC CD(2)若CE=1,EB=3,求⊙O 的半径;(3)在(2)的条件下,过点C 作⊙O 的切线,交BA 的延长线于点P ,过点P 作PQ ∥CB 交⊙O 于F ,Q 两点(点F 在线段PQ 上),求PQ 的长.BA【思路分析】(1)连接OD ,利用证明两条弧所对的圆心角相等证明弧等;(2)通过已知证明△CBA ∽△CAE 得比例式求CA ,再进一步利用勾股定理求解;(3)根据已知证明PC ∥AE ,得比例式求PA ,进而求PO ,再证△OHP ∽△ACB 列比例式求OH 、PH ,进而利用勾股定理求HQ ,得PQ.【解题过程】解:(1)连接OD ∵OC ∥BD , ∴∠OCB=∠DBC ∵OB=OC,∴∠OCB=∠OBC ∴∠OBC=∠DBC ∴∠AOC=∠COD ∴=AC CD(2)连接AC ,∵=AC CD ∴∠CBA=∠CAD ∵∠BCA=∠ACE ∴△CBA ∽△CAE ∴CA CBCE CA=∴CA 2=CE ·CB=CE ·(CE+EB )=1×(1+3)=4 ∴CA=2∵AB 为⊙O 的直径 ∴∠ACB=90°在Rt △ACB 中,由勾股定理,得2222=2+4=25CA CB +∴⊙O 5(3)如图,设AD 与CO 相交于点N. ∵AB 为⊙O 的直径, ∴∠ADB=90° ∵OC ∥BD ,∴∠ANO=∠ADB=90° ∵PC 为⊙O 的切线 ∴∠PCO=90° ∴∠ANO=∠PCO ∴PC ∥AE ∴1==3PA CE AB EB ∴PA=13AB=13×525∴25555 过点O 作OH ⊥PQ 于点H ,则∠OHP=90°=∠ACB∵PQ ∥CB∴∠BPQ=∠ABC ∴△OHP ∽△ACB ∴OP OH PHAB AC BC==∴OH=55253==325AC OP AB ⨯,PH 554103==325BC OP AB ⨯连接OQ在Rt △OHQ 中,由勾股定理,得HQ=()2222525-=5-=33OQ OH ⎛⎫ ⎪⎝⎭∴PQ=PH+HQ=10+253【知识点】圆中三组量关系;圆周角定理;切线的性质;相似三角形的判定和性质;勾股定理B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上) 21.(2019四川省成都市,21,4) 估算:7.37≈________(结果精确到1).【答案】6【解析】从被开方数看,值在6~7之间,而6.5的平方为42.25,故其值在6~6.5之间,四舍五入,故精确后为6.【知识点】算术平方根 22.(2019四川省成都市,22,4)已知x 1、x 2是关于x 的一元二次方程x 2+2x+k-1=0的两个实数根,且x 12+x 22-x 1x 2=13,则k 的值为________.【答案】-2【解题过程】利用根与系数关系可得x 1+x 2=-2,x 1·x 2=k-1,∴x 12+x 22-x 1x 2=(x 1+x 2)2-3x 1x 2=13,即(-2)2-3(k-1)=13,解得k=-2.【知识点】根与系数关系;解一元一次方程;配方 23.(2019四川省成都市,23,4)一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同,再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为75,则盒子中原有的白球的个数为_______.【答案】20【解题过程】设原来有白球x 个,根据题意列方程5+51057x x =++,解x=20 【知识点】概率的求法24.(2019四川省成都市,24,4)如图,在边长为1的菱形ABCD 中,∠ABC=60°,将△ABD 沿射线BD 的方向平移得到△A ′B ′D ′,分别连接A ′C ,A ′D ,B ′C ,则A ′C+B ′C 的最小值为________.D′A'D AB C B′【答案】3【解题过程】解:∵在边长为1的菱形ABCD 中,∠ABC =60°,∴AB =1,∠ABD =30°,∵将△ABD 沿射线BD 的方向平移得到△A 'B 'D ',∴A ′B ′=AB =1,∠A ′B ′D =30°,当B ′C ⊥A ′B ′时,A 'C +B 'C 的值最小,∵AB ∥A ′B ′,AB =A ′B ′,AB =CD ,AB ∥CD ,∴A ′B ′=CD ,A ′B ′∥CD ,∴四边形A ′B ′CD 是矩形,∠B ′A ′C =30°,∴B ′C =,A ′C =,∴A 'C +B 'C 的最小值为,故答案为:.D′A'D AB C B′F【知识点】菱形的性质;解直角三角形;矩形的性质25.(2019四川省成都市,25,4) 如图,在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点称为“整点”,已知点A 的坐标为(5,0),点B 在x 轴的上方,△OAB 的面积为215,则△OAB 的内部(不含边界)的整点的个数为____________.【答案】4或5或6【解题过程】解:设B (m ,n ),∵点A 的坐标为(5,0),∴OA =5,∵△OAB 的面积=5•n =, ∴n =3,结合图象可以找到其中的一种情况:(以一种为例)当2<m <3时,有6个整数点;当3<m <时,有5个整数点;当m =3时,有4个整数点;可知有6个或5个或4个整数点;故答案为4或5或6;【知识点】点的坐标二、解答题(本大题共三个小题,共30分,解答过程写在答题卡上)26.(2019四川省成都市,26,8)(本小题满分8分)随着5G 技术的发展,人们对各类5G 产品的使用充满期待,某公司计划在某地区销售一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化,设该产品在第x (x 为整数)个销售周期每台的销售价格为x 元,y 与x 之间的满足如图所示的一次函数关系.(1)求y 与x 之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用p=21x+21来描述,根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?【思路分析】(1)利用待定系数法求解即可;(2)设销售收入为w ,列出w 关于x 的函数关系式,利用二次函数顶点坐标公式求出最大销售收入时x 的值,再代入(1)中函数关系式求y 值即可.【解题过程】(1)设函数解析式为y=kx+b则700055000k b k b +=⎧⎨+=⎩解得5007500k b =-⎧⎨=⎩,∴函数关系式为y=-500x+7500 (2)设第x 个销售周期的销售收入为w ,则w=(-500x+7500)(21x+21)=-250x 2+3500x+3750 当x=7时,w 有最大值为4000答:第7个销售周期的销售收入最大,此时该产品每台的销售价格是4000元【知识点】一次函数;待定系数法;二次函数顶点坐标27.(2019四川省成都市,27,10)(本小题满分10分)如图1,在△ABC 中,AB=AC=20,tanB=43,点D 为BC 边上的动点(点D 不与点B 、C 重合),以D 为顶点作∠ADE=∠B ,射线DE 交AC 边于点E ,过点A 作AF ⊥AD 交射线DE 于点F ,连接CF.(1)求证:△ABD ∽△DCE ;(2)当DE ∥AB 时(如图2),求AE 的长;(3)点D 在BC 边上运动的过程中,是否存在某个位置,使得DF=CF ?若存在,求出此时BD 的长;若不存在,请说明理由.【思路分析】(1)利用一线三等角证明出∠BAD=∠CDE,再利用等腰三角形得到角等证明相似;(2)作AM⊥BC 于点M,解直角三角形求出BM,进而求得BC,易证∠BAD=∠ADE=∠EDC=∠B=∠ACB,从而得∴△ABD∽△CBA,通过比例式求BD,再利用平行线得比例式求AE长;(3)过点F作FH⊥BC于点H,过点A作AM⊥BC 于点M,AN⊥FH于点N,易得△AFN∽△ADM,从而利用AM、BM的值求得tanB的值,进而求得AN、CH,利用DF=CF条件求出CD,进而求BD长.【解题过程】解:(1)∵AB=AC∴∠B=∠ACB∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B∴∠BAD=∠CDE∴△ABD∽△DCE.(2)过点A作AM⊥BC于点M.在Rt△ABM中,设BM=4k,则AM=BM·tanB=4k·34=3k由勾股定理,得AB2=AM2+BM2∴202=(3k)2+(4k)2∴k=4∵AB=AC,AM⊥BC∴BC=2BM=2·4k=32∵DE∥AB∴∠BAD=∠ADE又∵∠ADE=∠B,∠B=∠ACB ∴∠BAD=∠ACB∵∠ABD=∠CBA∴△ABD∽△CBA∴AB DB CB AB=∴DB=222025322 ABCB==∵DE∥AB∴AE BD AC BC=∴AE=25202=32AC BDBC⨯=12516(3)点D 在BC 边上运动的过程中,存在某个位置,使得DF=CF.过点F 作FH ⊥BC 于点H ,过点A 作AM ⊥BC 于点M ,AN ⊥FH 于点N ,则∠NHM=∠AMH=∠ANH=90°.∴四边形AMHN 为矩形,∴∠MAN=90°,MH=AN ,∵AB=AC ,AM ⊥BC ,∴BM=CM=12BC=12×32=16 在Rt △ABM 中,由勾股定理,得AM=2222201612AB BM -=-= ∵AN ⊥FH ,AM ⊥BC∴∠ANF=90°=∠AMD∵∠DAF=90°=∠MAN∴∠NAF=∠MAD∴△AFN ∽△ADM∴3==tan =tan =4AN AF ADF B AM AD ∠∴AN=34AM=34×12=9 ∴CH=CM-MH=CM-AN=16-9=7当DF=CF 时,由点D 不与点C 重合,可知△DFC 为等腰三角形又∵FH ⊥DC∴CD=2CH=14∴BD=BC-CD=32-14=18所以,点D 在BC 边上运动的过程中,存在某个位置,使得DF=CF ,此时BD=18【知识点】相似三角形的判定和性质;解直角三角形;矩形的性质和判定;等腰三角形的性质28.(2019四川省成都市,28,12)(本小题满分12分)如图,抛物线y=ax 2+bx+c 经过点A (-2,5),与x 轴相交于B (-1,0),C (3,0)两点.(1)求抛物线的函数表达式;(2)点D 在抛物线的对称轴上,且位于x 轴的上方,将△BCD 沿直线BD 翻折得到△BC ′D ,若点C ′恰好落在抛物线的对称轴上,求点C ′和点D 的坐标;(3)设P 是抛物线上位于对称轴右侧的一点,点Q 在抛物线的对称轴上,当△CPQ 为等边三角形时,求直线BP 的函数表达式.【思路分析】(1)直接利用待定系数法求解;(2)设抛物线的轴对称性与x 轴交于点H ,可得BH=12BC=12BC ′,则利用三角函数易得∠ABC=60°,从而通过直角三角形和等腰三角形易得C ′和D 点坐标;(3)分类讨论:①当点P 在x 轴上方时,点Q 在x 轴上方,连接BQ ,C ′P ,利用(2)条件构造△BCQ ≌△C ′CP ,进而得到C ′P=CQ=CP ,从而得到BP 是CC ′垂直平分线,可得D 点在BP 上,利用B 、D 坐标求直线解析式;②当点P 在x 轴下方时,点Q 在x 轴下方同理可求.【解题过程】解:(1)由题意,得4250930a b c a b c a b c -+=⎧⎪-+=⎨⎪++=⎩解得123a b c =⎧⎪=-⎨⎪=-⎩∴抛物线的函数表达式为y=x 2-2x-3(2)∵抛物线与x 轴的交点为B (-1,0)、C (3,0)∴BC=4,抛物线的对称轴为直线x=1设抛物线的对称轴与x 轴交于点H ,则H 点的坐标为(1,0),BH=2由翻折得C ′B=CB=4在Rt △BHC ′中,由勾股定理,得C ′2222-=4-2=23C B BH ′∴点C ′的坐标为(3),tan ∠C ′BH=23=3C H BH ′∴∠C ′BH=60°由翻折得∠DBH=12∠C ′BH=30° 在Rt △BHD 中,DH=BH ·tan ∠DBH=2·tan30°=233∴点D的坐标为(1,233)(3)取(2)中的点C′,D,连接CC′∵BC′=BC,∠C′BC=60°,∴△C′CB为等边三角形分类讨论如下:①当点P在x轴上方时,点Q在x轴上方连接BQ,C′P,∵△PCQ,△C′CB为等边三角形∴CQ=CP,BC=C′C,∠PCQ=∠C′CB=60°∴∠BCQ=∠C′CP∴△BCQ≌△C′CP∴BQ=C′P∵点Q在抛物线的对称轴上,∴BQ=CQ∴C′P=CQ=CP又∵BC′=BC∴BP垂直平分CC′由翻折可知BD垂直平分CC′∴点D在直线BP上设直线BP的函数表达式为y=kx+b则0=-k+b23⎧解得3333kb⎧=⎪⎪⎨⎪=⎪⎩∴直线BP的函数表达式为33②当点P在x轴下方时,点Q在x轴下方∵△QCP,△C′CB为等边三角形∴CP = CQ,BC=C′C,∠C′CB=∠QCP=60°∴∠BCP=∠C′CQ∴△BCP≌△C′CQ∴∠CBP=∠CC′Q∵BC′=CC′,C′H⊥BC∴∠CC′Q=12∠CC′B=30°∴∠CBP=30°设BP与y轴相交于点E在Rt△BOE中,OE=OB·tan∠CBP=OB·tan30°=1×33=33∴点E的坐标为(0,-33)设直线BP的函数表达式为y=k′x+b′则0-+3-=3k bb=⎧⎪⎨⎪⎩′′解得3=-33=-3kb⎧⎪⎪⎨⎪⎪⎩′′∴直线BP的函数表达式为y=-33x-33综上所述,直线BP的函数表达式为y=33x+33或y=-33x-33【知识点】待定系数法;轴对称性;等边三角形的性质;全等三角形的判定和性质;解直角三角形。
山东省烟台市2019年中考真题数学试题(含解析)

一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.(3分)﹣8的立方根是()A.2 B.﹣2 C.±2 D.﹣22.(3分)下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图4.(3分)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为()A.B.C.D.无法确定5.(3分)某种计算机完成一次基本运算的时间约为1纳秒(ns),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为()A.1.5×10﹣9秒B.15×10﹣9秒C.1.5×10﹣8秒D.15×10﹣8秒6.(3分)当b+c=5时,关于x的一元二次方程3x2+bx﹣c=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定7.(3分)某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变8.(3分)已知∠AOB=60°,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N 为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则∠BOC 的度数为()A.15°B.45°C.15°或30°D.15°或45°9.(3分)南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A.128 B.256 C.512 D.102410.(3分)如图,面积为24的▱ABCD中,对角线BD平分∠ABC,过点D作DE⊥BD交BC的延长线于点E,DE=6,则sin∠DCE的值为()A.B.C.D.11.(3分)已知二次函数y=ax2+bx+c的y与x的部分对应值如表:下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(x2,3)是抛物线上两点,则x1<x2,其中正确的个数是()A.2 B.3 C.4 D.512.(3分)如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为()A.B.πC.πD.π二、填空题(本大题共6个小题,每小题3分,满分18分)13.(3分)|﹣6|×2﹣1﹣cos45°=.14.(3分)若关于x的分式方程﹣1=有增根,则m的值为.15.(3分)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A (﹣2,﹣1),B(﹣2,﹣3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,﹣1),B1(1,﹣5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为.16.(3分)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为.17.(3分)小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是.18.(3分)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O是△ABC的内切圆,则阴影部分面积为.三、解答题(本大题共7个小题,满分66分)19.(6分)先化简(x+3﹣)÷,再从0≤x≤4中选一个适合的整数代入求值.20.(8分)十八大以来,某校已举办五届校园艺术节,为了弘扬中华优秀传统文化,每届艺术节上都有一些班级表演“经典诵读”“民乐演奏”、“歌曲联唱”、“民族舞蹈”等节目.小颖对每届艺术节表演这些节目的班级数进行统计,并绘制了如图所示不完整的折线统计图和扇形统计图.(1)五届艺术节共有个班级表演这些节目,班数的中位数为,在扇形统计图中,第四届班级数的扇形圆心角的度数为;(2)补全折线统计图;(3)第六届艺术节,某班决定从这四项艺术形式中任选两项表演(“经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”分别用A,B,C,D表示),利用树状图或表格求出该班选择A和D两项的概率.21.(9分)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?22.(9分)如图,在矩形ABCD中,CD=2,AD=4,点P在BC上,将△ABP沿AP折叠,点B恰好落在对角线AC上的E点,O为AC上一点,⊙O经过点A,P(1)求证:BC是⊙O的切线;(2)在边CB上截取CF=CE,点F是线段BC的黄金分割点吗?请说明理由.23.(10分)如图所示,一种适用于笔记本电脑的铝合金支架,边OA,OB可绕点O开合,在OB边上有一固定点P,支柱PQ可绕点P转动,边OA上有六个卡孔,其中离点O最近的卡孔为M,离点O最远的卡孔为N.当支柱端点Q放入不同卡孔内,支架的倾斜角发生变化.将电脑放在支架上,电脑台面的角度可达到六档调节,这样更有利于工作和身体健康,现测得OP的长为12cm,OM为10cm,支柱PQ为8m.(1)当支柱的端点Q放在卡孔M处时,求∠AOB的度数;(2)当支柱的端点Q放在卡孔N处时,∠AOB=20.5°,若相邻两个卡孔的距离相同,求此间距.(结果精确到十分位)参考数据表24.(11分)【问题探究】(1)如图1,△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D,E在同一直线上,连接AD,BD.①请探究AD与BD之间的位置关系:;②若AC=BC=,DC=CE=,则线段AD的长为;【拓展延伸】(2)如图2,△ABC和△DEC均为直角三角形,∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角∠BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.25.(13分)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y=(x>0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F 的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?(请直接写出结果)2019年山东省烟台市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.【解答】解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选:B.2.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,也是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.3.【解答】解:将正方体①移走后,主视图不变,俯视图变化,左视图不变,故选:A.4.【解答】解:设正六边形边长为a,则灰色部分面积为3×=,白色区域面积为a×=,所以正六边形面积为a2,镖落在白色区域的概率P==,故选:B.5.【解答】解:所用时间=15×0.000 000 001=1.5×10﹣8.故选:C.6.【解答】解:∵b+c=5,∴c=5﹣b.△=b2﹣4×3×(﹣c)=b2+12c=b2﹣12b+60=(b﹣6)2+24.∵(b﹣6)2≥0,∴(b﹣6)2+24>0,∴△>0,∴关于x的一元二次方程3x2+bx﹣c=0有两个不相等的实数根.故选:A.7.【解答】解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.8.【解答】解:(1)以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,则OP为∠AOB的平分线,(2)两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则为作∠POB或∠POA的角平分线,则∠BOC=15°或45°,故选:D.9.【解答】解:由“杨辉三角”的规律可知,(a+b)9展开式中所有项的系数和为(1+1)9=29=512 故选:C.10.【解答】解:连接AC,过点D作DF⊥BE于点E,∵BD平分∠ABC,∴∠ABD=∠DBC,∵▱ABCD中,AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠ABD,∴AB=BC,∴四边形ABCD是菱形,∴AC⊥BD,OB=OD,∵DE⊥BD,∴OC∥ED,∵DE=6,∴OC=,∵▱ABCD的面积为24,∴,∴BD=8,∴==5,设CF=x,则BF=5+x,由BD2﹣BF2=DC2﹣CF2可得:82﹣(5+x)2=52﹣x2,解得x=,∴DF=,∴sin∠DCE=.故选:A.11.【解答】解:设抛物线解析式为y=ax(x﹣4),把(﹣1,5)代入得5=a×(﹣1)×(﹣1﹣4),解得a=1,∴抛物线解析式为y=x2﹣4x,所以①正确;抛物线的对称性为直线x=2,所以②正确;∵抛物线与x轴的交点坐标为(0,0),(4,0),∴当0<x<4时,y<0,所以③错误;抛物线与x轴的两个交点间的距离是4,所以④正确;若A(x1,2),B(x2,3)是抛物线上两点,则x2<x1<2或2<x1<x2,所以⑤错误.故选:B.12.【解答】解:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACD+∠BCE=90°,∵AD⊥DE,BE⊥DE,∴∠DAC+∠ACD=90°,∴∠DAC=∠ECB,∵∠ADC=∠CEB=90°,∴△ADC∽△CEB,∴=,即=,∵tan∠ABC==,∴∠ABC=30°,∴AB=2AC,∠AOC=60°,∵直线DE与⊙O相切于点C,∴∠ACD=∠ABC=30°,∴AC=2AD=2,∴AB=4,∴⊙O的半径为2,∴的长为:=π,故选:D.二、填空题(本大题共6个小题,每小题3分,满分18分)13.【解答】解:原式=6×﹣×=3﹣1=2.故答案为:2.14.【解答】.解:方程两边都乘(x﹣2),得3x﹣x+2=m+3∵原方程有增根,∴最简公分母(x﹣2)=0,解得x=2,当x=2时,m=3.故答案为3.15.【解答】解:如图,P点坐标为(﹣5,﹣1).故答案为(﹣5,﹣1).16.【解答】解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x+2≤ax+c的解为x≤1;故答案为x≤1;17.【解答】解:在折叠过程中角一直是轴对称的折叠,∠AOB=22.5°×2=45°;故答案为45°;18.【解答】解:连接OB,作OD⊥BC于D,如图,∵△ABC为等边三角形,∴AB=BC=AC=2,∠ABC=60°,∵⊙O是△ABC的内切圆,∴OH为⊙O的半径,∠OBH=30°,∵O点为等边三角形的外心,∴BH=CH=1,在Rt△OBH中,OH=BH=,∵S弓形AB=S扇形ACB﹣S△ABC,∴阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O=3S扇形ACB﹣2S△ABC﹣S⊙O=3×﹣2××22﹣π×()2=π﹣2.故答案为π﹣2.三、解答题(本大题共7个小题,满分66分)19.【解答】解:(x+3﹣)÷=(﹣)÷=•=,当x=1时,原式==.20.【解答】解:(1)第一届、第二届和第三届参加班级所占的百分比为1﹣22.5%﹣=45%,所以五届艺术节参加班级表演的总数为(5+7+6)÷45%=40(个);第四届参加班级数为40×22.5%=9(个),第五届参加班级数为40﹣18﹣9=13(个),所以班数的中位数为7(个)在扇形统计图中,第四届班级数的扇形圆心角的度数为360°×22.5%=81°;故答案为40,7,81°;(2)如图,(3)画树状图为:共有12种等可能的结果数,其中该班选择A和D两项的结果数为2,所以该班选择A和D两项的概率==.21.【解答】解:(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,依题意,得:,解得:.答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)设需调配36座客车m辆,22座客车n辆,依题意,得:36m+22n=218,∴n=.又∵m,n均为正整数,∴.答:需调配36座客车3辆,22座客车5辆.22.【解答】解:(1)连接OP,则∠PAO=∠APO,而△AEP是由△ABP沿AP折叠而得:故AE=AB=4,∠OAP=∠PAB,∴∠BAP=∠OPA,∴AB∥OP,∴∠OPC=90°,∴BC是⊙O的切线;(2)CF=CE=AC﹣AE=﹣4=2﹣2,=,故:点F是线段BC的黄金分割点.23.【解答】解:(1)如图,过点P作PH⊥OA于点H.设OH=x,则HM=10﹣x,由勾股定理得OP2﹣OH2=PH2,MP2﹣HM2=PH2,∴OP2﹣OH2=MP2﹣HM2,即122﹣x2=82﹣(10﹣x)2,解得x=9,即OH=9(cm),∴cos∠AOB===0.75,由表可知,∠AOB为41°;(2)过点P作PH⊥OA于点H.在Rt△OPH中,,OH=11.244(cm),,∴PH=4.2(cm),∴HN=(cm),∴ON=OH+HN=11.244+6.8=18.044(cm),∴MN=ON﹣OM=18.044﹣10=8.044(cm)∵电脑台面的角度可达到六档调节,相邻两个卡孔的距离相同,∴相邻两个卡孔的距离为8.044÷(6﹣1)≈1.6(cm)答:相邻两个卡孔的距离约为1.6cm.24.【解答】解:【问题探究】(1)∵△ABC和△DEC均为等腰直角三角形,∴AC=BC,CE=CD,∠ABC=∠DEC=45°=∠CDE∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,且AC=BC,CE=CD∴△ACD≌△BCE(SAS)∴∠ADC=∠BEC=45°∴∠ADE=∠ADC+∠CDE=90°∴AD⊥BD故答案为:AD⊥BD②如图,过点C作CF⊥AD于点F,∵∠ADC=45°,CF⊥AD,CD=∴DF=CF=1∴AF==3∴AD=AF+DF=4故答案为:4【拓展延伸】(2)若点D在BC右侧,如图,过点C作CF⊥AD于点F,∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.∴∠ACD=∠BCE,∴△ACD∽△BCE∴∠ADC=∠BEC,∵CD=,CE=1∴DE==2∵∠ADC=∠BEC,∠DCE=∠CFD=90°∴△DCE∽△CFD,∴即∴CF=,DF=∴AF==∴AD=DF+AF=3若点D在BC左侧,∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.∴∠ACD=∠BCE,∴△ACD∽△BCE∴∠ADC=∠BEC,∴∠CED=∠CDF∵CD=,CE=1∴DE==2∵∠CED=∠CDF,∠DCE=∠CFD=90°∴△DCE∽△CFD,∴即∴CF=,DF=∴AF==∴AD=AF﹣DF=225.【解答】解;(1)C(0,3)∵CD⊥y,∴D点纵坐标是3,∵D在y=上,∴D(2,3),将点A(﹣1,0)和D(2,3)代入y=ax2+bx+3,∴a=﹣1,b=2,∴y=﹣x2+2x+3;(2)M(1,4),B(3,0),作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;∴M'(﹣1,4),D'(2,﹣3),∴M'D'直线的解析式为y=﹣x+∴N(,0),F(0,);(3)设P(0,t),N(r,t),作△PBD的外接圆N,当⊙N与y轴相切时,∠BPD的度数最大;∴PN=ND,∴r=,∴t2﹣6t﹣4r+13=0,易求BD的中点为(,),直线BD的解析式为y=﹣3x+9,∴BD的中垂线解析式y=x+,N在中垂线上,∴t=r+,∴t2﹣18t+21=0,∴t=9+2或t=9﹣2,∵0<t<3,∴t=9﹣2,∴P(0,9﹣2);。
2019年数学中考试卷(含答案)

【参考答案】***试卷处理标记,请不要删除
24.某公司销售两种椅子,普通椅子价格是每把 180 元,实木椅子的价格是每把 400 元. (1)该公司在 2019 年第一月销售了两种椅子共 900 把,销售总金额达到了 272000 元,求两 种椅了各销售了多少把? (2)第二月正好赶上市里开展家俱展销活动,公司决定将普通椅子每把降 30 元后销售,实 木椅子每把降价 2a%(a>0)后销售,在展销活动的第一周,该公司的普通椅子销售量比上
22.4 月 18 日,一年一度的“风筝节”活动在市政广场举行 ,如图,广场上有一风筝 A,小 江抓着风筝线的一端站在 D 处,他从牵引端 E 测得风筝 A 的仰角为 67°,同一时刻小芸在 附近一座距地面 30 米高(BC=30 米)的居民楼顶 B 处测得风筝 A 的仰角是 45°,已知小江 与居民楼的距离 CD=40 米,牵引端距地面高度 DE=1.5 米,根据以上条件计算风筝距地
7.D
解析:D 【解析】 【分析】 【详解】
解:A 选项中,根据对顶角相等,得 1与 2 一定相等; B、C 项中无法确定 1与 2 是否相等;
D 选项中因为∠1=∠ACD,∠2>∠ACD,所以∠2>∠1. 故选:D
8.A
解析:A 【解析】
【分析】
【详解】
该班男生有
x
人,女生有
y
人.根据题意得:
x y 30 3x 2y 78
安徽省2019年中考数学真题试题(含解析)含答案

一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是正确的.1.(4分)在﹣2,﹣1,0,1这四个数中,最小的数是()A.﹣2 B.﹣1 C.0 D.12.(4分)计算a3•(﹣a)的结果是()A.a2 B.﹣a2C.a4D.﹣a43.(4分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.4.(4分)2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()A.1.61×109 B.1.61×1010 C.1.61×1011 D.1.61×10125.(4分)已知点A(1,﹣3)关于x轴的对称点A'在反比例函数y=的图象上,则实数k的值为()A.3 B.C.﹣3 D.﹣6.(4分)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A.60 B.50 C.40 D.157.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF ⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()A.3.6 B.4 C.4.8 D.58.(4分)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是()A.2019年B.2020年C.2021年D.2022年9.(4分)已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则()A.b>0,b2﹣ac≤0 B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0 D.b<0,b2﹣ac≥010.(4分)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A.0 B.4 C.6 D.8二、填空题(共4小题,每小题5分,满分20分)11.(5分)计算÷的结果是.12.(5分)命题“如果a+b=0,那么a,b互为相反数”的逆命题为.13.(5分)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为.14.(5分)在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x﹣a+1和y=x2﹣2ax的图象相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解方程:(x﹣1)2=4.16.(8分)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD.(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)四、(本大题共2小题,每小题8分,满分16分)17.(8分)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?18.(8分)观察以下等式:第1个等式:=+,第2个等式:=+,第3个等式:=+,第4个等式:=+,第5个等式:=+,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.五、(本大题共2小题,每小题10分,满分20分)19.(10分)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)20.(10分)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.六、(本题满分12分)21.(12分)为监控某条生产线上产品的质量,检测员每个相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的个数据按从小到大的顺序整理成如下表格:编号①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮尺寸8.72 8.88 8.92 8.93 8.94 8.96 8.97 8.98 a9.03 9.04 9.06 9.07 9.08 b(cm)按照生产标准,产品等次规定如下:尺寸(单位:cm)产品等次8.97≤x≤9.03 特等品8.95≤x≤9.05 优等品8.90≤x≤9.10 合格品x<8.90或x>9.10 非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9cm.(i)求a的值;(ii)将这些优等品分成两组,一组尺寸大于9cm,另一组尺寸不大于9cm,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.七、(本题满分12分)22.(12分)一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点(1)求k,a,c的值;(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.八、(本题满分14分)23.(14分)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△PAB∽△PBC;(2)求证:PA=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.2019年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是正确的.1.(4分)在﹣2,﹣1,0,1这四个数中,最小的数是()A.﹣2 B.﹣1 C.0 D.1【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2<﹣1<0<1,∴在﹣2,﹣1,0,1这四个数中,最小的数是﹣2.故选:A.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.(4分)计算a3•(﹣a)的结果是()A.a2 B.﹣a2C.a4D.﹣a4【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:a3•(﹣a)=﹣a3•a=﹣a4.故选:D.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.同底数幂相乘,底数不变,指数相加.3.(4分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:几何体的俯视图是:故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.4.(4分)2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()A.1.61×109 B.1.61×1010 C.1.61×1011 D.1.61×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:根据题意161亿用科学记数法表示为1.61×1010 .故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)已知点A(1,﹣3)关于x轴的对称点A'在反比例函数y=的图象上,则实数k的值为()A.3 B.C.﹣3 D.﹣【分析】先根据关于x轴对称的点的坐标特征确定A'的坐标为(1,3),然后把A′的坐标代入y=中即可得到k的值.【解答】解:点A(1,﹣3)关于x轴的对称点A'的坐标为(1,3),把A′(1,3)代入y=得k=1×3=3.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.6.(4分)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A.60 B.50 C.40 D.15【分析】根据中位数的定义求解可得.【解答】解:由条形图知,50个数据的中位数为第25、26个数据的平均数,即中位数为==40,故选:C.【点评】本题主要考查众数,熟练掌握众数的定义是解题的关键.7.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF ⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()A.3.6 B.4 C.4.8 D.5【分析】根据题意和三角形相似的判定和性质,可以求得CD的长,本题得以解决.【解答】解:作DH∥EG交AB于点H,则△AEG∽△ADH,∴,∵EF⊥AC,∠C=90°,∴∠EFA=∠C=90°,∴EF∥CD,∴△AEF∽△ADC,∴,∴,∵EG=EF,∴DH=CD,设DH=x,则CD=x,∵BC=12,AC=6,∴BD=12﹣x,∵EF⊥AC,EF⊥EG,DH∥EG,∴EG∥AC∥DH,∴△BDH∽△BCA,∴,即,解得,x=4,∴CD=4,故选:B.【点评】本题考查相似三角形的判定和性质,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.8.(4分)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是()A.2019年B.2020年C.2021年D.2022年【分析】根据题意分别求出2019年全年国内生产总值、2020年全年国内生产总值,得到答案.【解答】解:2019年全年国内生产总值为:90.3×(1+6.6%)=96.2598(万亿),2020年全年国内生产总值为:96.2598×(1+6.6%)≈102.6(万亿),∴国内生产总值首次突破100万亿的年份是2020年,故选:B.【点评】本题考查的是有理数的混合运算,掌握有理数的混合运算法则、正确列出算式是解题的关键.9.(4分)已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则()A.b>0,b2﹣ac≤0 B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0 D.b<0,b2﹣ac≥0【分析】根据a﹣2b+c=0,a+2b+c<0,可以得到b与a、c的关系,从而可以判断b的正负和b2﹣ac 的正负情况,本题得以解决.【解答】解:∵a﹣2b+c=0,a+2b+c<0,∴a+c=2b,b=,∴a+2b+c=(a+c)+2b=4b<0,∴b<0,∴b2﹣ac==﹣ac==≥0,即b<0,b2﹣ac≥0,故选:D.【点评】本题考查因式分解的应用、不等式的性质,解答本题的关键是明确题意,判断出b和b2﹣ac 的正负情况.10.(4分)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A.0 B.4 C.6 D.8【分析】作点F关于BC的对称点M,连接FM交BC于点N,连接EM,可得点N到点E和点F的距离之和最小,可求最小值,即可求解.【解答】解:如图,作点F关于BC的对称点M,连接FM交BC于点N,连接EM,∵点E,F将对角线AC三等分,且AC=12,∴EC=8,FC=4,∵点M与点F关于BC对称∴CF=CM=4,∠ACB=∠BCM=45°∴∠ACM=90°∴EM==4则在线段BC存在点N到点E和点F的距离之和最小为4<9∴在线段BC上点N的左右两边各有一个点P使PE+PF=9,同理在线段AB,AD,CD上都存在两个点使PE+PF=9.即共有8个点P满足PE+PF=9,故选:D.【点评】本题考查了正方形的性质,最短路径问题,在BC上找到点N使点N到点E和点F的距离之和最小是本题的关键.二、填空题(共4小题,每小题5分,满分20分)11.(5分)计算÷的结果是 3 .【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.【解答】解:.故答案为:3【点评】本题主要考查了二次根式的乘除法运算,熟练掌握二次根式的性质是解答本题的关键.12.(5分)命题“如果a+b=0,那么a,b互为相反数”的逆命题为如果a,b互为相反数,那么a+b =0 .【分析】根据互逆命题的定义写出逆命题即可.【解答】解:命题“如果a+b=0,那么a,b互为相反数”的逆命题为:如果a,b互为相反数,那么a+b=0;故答案为:如果a,b互为相反数,那么a+b=0.【点评】本题考查的是命题与定理、互逆命题,掌握逆命题的确定方法是解题的关键.13.(5分)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为.【分析】连接CO并延长交⊙O于E,连接BE,于是得到∠E=∠A=30°,∠EBC=90°,解直角三角形即可得到结论.【解答】解:连接CO并延长交⊙O于E,连接BE,则∠E=∠A=30°,∠EBC=90°,∵⊙O的半径为2,∴CE=4,∴BC=CE=2,∵CD⊥AB,∠CBA=45°,∴CD=BC=,故答案为:.【点评】本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.14.(5分)在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x﹣a+1和y=x2﹣2ax的图象相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是a>1或a<﹣1 .【分析】由y=x﹣a+1与x轴的交点为(1﹣a,0),可知当P,Q都在x轴的下方时,x直线l与x轴的交点要在(1﹣a,0)的左侧,即可求解;【解答】解:y=x﹣a+1与x轴的交点为(1﹣a,0),∵平移直线l,可以使P,Q都在x轴的下方,∴当x=1﹣a时,y=(1﹣a)2﹣2a(1﹣a)<0,∴a2﹣1>0,∴a>1或a<﹣1;故答案为a>1或a<﹣1;【点评】本题考查二次函数图象及性质,一次函数图象及性质;数形结合的分析问题,将问题转化为当x=1﹣a时,二次函数y<0是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解方程:(x﹣1)2=4.【分析】利用直接开平方法,方程两边直接开平方即可.【解答】解:两边直接开平方得:x﹣1=±2,∴x﹣1=2或x﹣1=﹣2,解得:x1=3,x2=﹣1.【点评】此题主要考查了直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a (x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.16.(8分)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD.(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)【分析】(1)直接利用平移的性质得出C,D点位置,进而得出答案;(2)直接利用菱形的判定方法进而得出答案.【解答】解:(1)如图所示:线段CD即为所求;(2)如图:菱形CDEF即为所求,答案不唯一.【点评】此题主要考查了菱形的判定以及平移变换,正确掌握菱形的判定方法是解题关键.四、(本大题共2小题,每小题8分,满分16分)17.(8分)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?【分析】设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米.根据“甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米”列出方程,然后求工作时间.【解答】解:设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米,由题意,得2x+(x+x﹣2)=26,解得x=7,所以乙工程队每天掘进5米,(天)答:甲乙两个工程队还需联合工作10天.【点评】此题主要考查了一元一次方程的应用,根据题意得出两队的工效,进而得出等量关系是解题关键.18.(8分)观察以下等式:第1个等式:=+,第2个等式:=+,第3个等式:=+,第4个等式:=+,第5个等式:=+,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【分析】(1)根据已知等式即可得;(2)根据已知等式得出规律,再利用分式的混合运算法则验证即可.【解答】解:(1)第6个等式为:,故答案为:;(2)证明:∵右边==左边.∴等式成立,故答案为:.【点评】本题主要考查数字的变化规律,解题的关键是根据已知等式得出的规律,并熟练加以运用.五、(本大题共2小题,每小题10分,满分20分)19.(10分)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)【分析】连接CO并延长,与AB交于点D,由CD与AB垂直,利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用锐角三角函数定义求出OA,进而求出OD,由CO+OD求出CD的长即可.【解答】解:连接CO并延长,与AB交于点D,∵CD⊥AB,∴AD=BD=AB=3(米),在Rt△AOD中,∠OAB=41.3°,∴cos41.3°=,即OA===4(米),tan41.3°=,即OD=AD•tan41.3°=3×0.88=2.64(米),则CD=CO+OD=4+2.64=6.64(米).【点评】此题考查了解直角三角形的应用,垂径定理,以及圆周角定理,熟练掌握各自的性质是解本题的关键.20.(10分)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.【分析】(1)根据ASA证明:△BCE≌△ADF;(2)根据点E在▱ABCD内部,可知:S△BEC+S△AED=S▱ABCD,可得结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ABC+∠BAD=180°,∵AF∥BE,∴∠EAB+∠BAF=180°,∴∠CBE=∠DAF,同理得∠BCE=∠ADF,在△BCE和△ADF中,∵,∴△BCE≌△ADF(ASA);(2)∵点E在▱ABCD内部,∴S△BEC+S△AED =S▱ABCD,由(1)知:△BCE≌△ADF,∴S△BCE=S△ADF,∴S四边形AEDF=S△ADF+S△AED=S△BEC+S△AED =S▱ABCD,∵▱ABCD的面积为S,四边形AEDF的面积为T,∴==2.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.六、(本题满分12分)21.(12分)为监控某条生产线上产品的质量,检测员每个相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的个数据按从小到大的顺序整理成如下表格:编号①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮8.72 8.88 8.92 8.93 8.94 8.96 8.97 8.98 a9.03 9.04 9.06 9.07 9.08 b尺寸(cm)按照生产标准,产品等次规定如下:尺寸(单位:cm)产品等次8.97≤x≤9.03 特等品8.95≤x≤9.05 优等品8.90≤x≤9.10 合格品x<8.90或x>9.10 非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9cm.(i)求a的值;(ii)将这些优等品分成两组,一组尺寸大于9cm,另一组尺寸不大于9cm,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.【分析】(1)由15×80%=12,不合格的有15﹣12=3个,给出的数据只有①②两个不合格可得答案;(2)(i)由可得答案;(ii)由特等品为⑦⑧⑨⑩,画树状图列出所有等可能结果,再根据概率公式求解可得.【解答】解:(1)不合格.因为15×80%=12,不合格的有15﹣12=3个,给出的数据只有①②两个不合格;(2)(i)优等品有⑥~⑪,中位数在⑧8.98,⑨a之间,∴,解得a=9.02(ii)大于9cm的有⑨⑩⑪,小于9cm的有⑥⑦⑧,其中特等品为⑦⑧⑨⑩画树状图为:共有九种等可能的情况,其中抽到两种产品都是特等品的情况有4种.∴抽到两种产品都是特等品的概率P=.【点评】本题考查的是利用树状图求概率.用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分12分)22.(12分)一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点(1)求k,a,c的值;(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.【分析】(1)由交点为(1,2),代入y=kx+4,可求得k,由y=ax2+c可知,二次函数的顶点在y 轴上,即x=0,则可求得顶点的坐标,从而可求c值,最后可求a的值(2)由(1)得二次函数解析式为y=﹣2x2+4,令y=m,得2x2+m﹣4=0,可求x的值,再利用根与系数的关系式,即可求解.【解答】解:(1)由题意得,k+4=﹣2,解得k=﹣2,又∵二次函数顶点为(0,4),∴c=4把(1,2)带入二次函数表达式得a+c=2,解得a=﹣2(2)由(1)得二次函数解析式为y=﹣2x2+4,令y=m,得2x2+m﹣4=0∴,设B,C两点的坐标分别为(x1,m)(x2,m),则,∴W=OA2+BC2=∴当m=1时,W取得最小值7【点评】此题主要考查二次函数的性质及一次函数与二次函数图象的交点问题,此类问题,通常转化为一元二次方程,再利用根的判别式,根与系数的关系进行解答即可.八、(本题满分14分)23.(14分)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△PAB∽△PBC;(2)求证:PA=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.【分析】(1)利用等式的性质判断出∠PBC=∠PAB,即可得出结论;(2)由(1)的结论得出,进而得出,即可得出结论;(3)先判断出Rt△AEP∽Rt△CDP,得出,即h3=2h2,再由△PAB∽△PBC,判断出,即可得出结论.【解答】解:(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC又∠APB=135°,∴∠PAB+∠PBA=45°∴∠PBC=∠PAB又∵∠APB=∠BPC=135°,∴△PAB∽△PBC(2)∵△PAB∽△PBC∴在Rt△ABC中,AB=AC,∴∴∴PA=2PC(3)如图,过点P作PD⊥BC,PE⊥AC交BC、AC于点D,E,∴PF=h1,PD=h2,PE=h3,∵∠CPB+∠APB=135°+135°=270°∴∠APC=90°,∴∠EAP+∠ACP=90°,又∵∠ACB=∠ACP+∠PCD=90°∴∠EAP=∠PCD,∴Rt△AEP∽Rt△CDP,∴,即,∴h3=2h2∵△PAB∽△PBC,∴,∴∴.即:h12=h2•h3.【点评】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠EAP=∠PCD是解本题的关键.。
2019年山东省济南市中考数学试卷及答案解析

2019年山东省济南市中考数学试卷及答案解析一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-7的相反数是()A.7B.-7C.D.1 7【答案】A【解析】【详解】根据概念,(-7的相反数)+(-7)=0,则-7的相反数是7.故选A.2.以下给出的几何体中,主视图是矩形,俯视图是圆的是()A. B. C. D.【答案】D【解析】【分析】根据几何体的正面看得到的图形,可得答案.【详解】A、主视图是圆,俯视图是圆,故A不符合题意;B、主视图是矩形,俯视图是矩形,故B不符合题意;C、主视图是三角形,俯视图是圆,故C不符合题意;D、主视图是个矩形,俯视图是圆,故D符合题意;故选D.【点睛】本题考查了简单几何体的三视图,熟记简单几何的三视图是解题关键.3.2019年1月3日,“嫦娥四号”探测器成功着陆在月球背面东经177.6度、南纬45.5度附近,实现了人类首次在月球背面软着陆.数字177.6用科学记数法表示为()A.0.1776×103B.1.776×102C.1.776×103D.17.76×102【答案】B【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,据此判断即可.【详解】解:177.6=1.776×102.故选B .【点睛】本题考查用科学记数法表示较大的数,一般形式为a×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.4.如图,//DE BC ,BE 平分ABC ∠,若170=︒∠,则CBE ∠的度数为()A.20︒B.35︒C.55︒D.70︒【答案】B【解析】【分析】根据平行线的性质可得170ABC ∠=∠=︒,再根据角平分线的定义可得答案.【详解】解:∵//DE BC∴170ABC ∠=∠=︒∵BE 平分ABC∠∴1352CBE ABC ∠=∠=︒故选B .【点睛】此题主要考查了平行线的性质,以及角平分线的定义,关键是掌握两直线平行,内错角相等.5.实数,a b 在数轴上的对应点的位置如图所示,下列关系式不成立的是()A.55a b ->-B.66a b >C.a b ->-D.0a b ->【答案】C【解析】【分析】根据数轴判断出,a b 的正负情况以及绝对值的大小,然后解答即可.【详解】由图可知,0b a <<,且b a <,∴55a b ->-,66a b >,a b -<-,0a b ->,∴关系式不成立的是选项C .故选C .【点睛】本题考查了实数与数轴,实数的大小比较,利用了两个负数相比较,绝度值大的反而小.6.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A.赵爽弦图B.笛卡尔心形线C.科克曲线D.斐波那契螺旋线【答案】C【解析】【分析】根据把一个图形绕某一点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】A .不是轴对称图形,是中心对称图形,故此选项错误;B .是轴对称图形,不是中心对称图形,故此选项错误;C .是轴对称图形,是中心对称图形,故此选项正确;D .不是轴对称图形,不是中心对称图形,故此选项错误;故选C .【点睛】此题主要考查了轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.化简24142x x +-+的结果是()A.2x - B.12x - C.22x - D.22x +【答案】B【解析】【分析】原式通分并利用同分母分式的加法法则计算即可求出值.【详解】原式4221(2)(2)(2)(2)(2)(2)2x x x x x x x x x -+=+==+-+-+--故选B .【点睛】本题考查分式的加减法;熟练掌握分式的运算法则,正确进行因式分解是解题的关键.8.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m ,9.9mB.9.7m ,9.8mC.9.8m ,9.7mD.9.8m ,9.9m【答案】B【解析】【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m ,因此中位数是9.7m ,平均数为:(9.59.69.79.79.810.110.2)79.8++++++÷=m ,故选B .【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.9.函数y ax a =-+与a y x =(0a ≠)在同一坐标系中的图象可能是()A. B. C. D.【答案】D【解析】【分析】根据反比例函数与一次函数的图象特点解答即可.【详解】0a >时,0a -<,y ax a =-+在一、二、四象限,a y x=在一、三象限,无选项符合.a<0时,0a ->,y ax a =-+在一、三、四象限,a y x=(0a ≠)在二、四象限,只有D 符合;故选D .【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由a 的取值确定函数所在的象限.10.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心、CE 为半径作弧,交CD 于点F ,连接,AE AF .若6AB =,60B ∠= ,则阴影部分的面积为()A.3π-B.2πC.9π-D.6π-【答案】A【解析】【分析】连接AC ,根据菱形的性质求出BCD ∠和6BC AB ==,求出AE 长,再根据三角形的面积和扇形的面积求出即可.【详解】连接AC ,∵四边形ABCD 是菱形,∴6AB BC ==,∵60B ∠= ,E 为BC 的中点,∴3CE BE CF ===,ABC ∆是等边三角形,//AB CD ,∵60B ∠= ,∴180120BCD B ∠=-∠= ,由勾股定理得:AE ==,∴11622AEB AEC AFC S S S ∆∆∆==⨯⨯==,∴阴影部分的面积212033360AEC AFC CEFS S S S ππ∆∆⨯=+-==扇形,故选A .【点睛】本题考查了等边三角形的性质和判定,菱形的性质,扇形的面积计算等知识点,能求出AEC ∆、AFC ∆和扇形ECF 的面积是解此题的关键.11.某数学社团开展实践性研究,在大明湖南门A 测得历下亭C 在北偏东37°方向,继续向北走105m 后到达游船码头B ,测得历下亭C 在游船码头B 的北编东53°方向.请计算一下南门A 与历下亭C 之间的距离约为()(参考数据:3tan 374≈ ,4tan 533≈ )A.225mB.275mC.300mD.315m【答案】C【解析】【分析】如图,作CE BA ⊥于E .设EC x =m ,BE y =m .构建方程组求出x ,y 即可解决问题.【详解】如图,作CE BA ⊥于E .设EC x =m ,BE y =m .在Rt ECB ∆中,tan 53EC EB= ,即43x y =,在Rt AEC ∆中,tan 37EC AE = ,即34105x y =+,解得180x =,135y =,∴300AC ===(m ),故选C .【点睛】本题考查解直角三角形的应用﹣方向角等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程组解决问题,属于中考常考题型.12.关于x 的一元二次方程2102ax bx ++=有一个根是﹣1,若二次函数212y ax bx =++的图象的顶点在第一象限,设2t a b =+,则t 的取值范围是()A.1142t << B.114t -<≤ C.1122t -≤< D.112t -<<【答案】D【解析】【分析】二次函数的图象过点(1,0)-,则102a b -+=,而2t a b =+,则216t a -=,226t b +=,二次函数的图象的顶点在第一象限,则02b a ->,21024b a->,即可求解.【详解】∵关于x 的一元二次方程2102ax bx ++=有一个根是﹣1,∴二次函数212y ax bx =++的图象过点(1,0)-,∴102a b -+=,∴12b a =+,2t a b =+,则216t a -=,226t b +=,∵二次函数212y ax bx =++的图象的顶点在第一象限,∴02b a ->,21024b a->,将216t a -=,226t b +=代入上式得:22602126t t +>-⨯,解得:112t -<<,222()1602124()6t t +->-,解得:12t <或13t <<,故:112t -<<,故选D .【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用二、填空题(本大题共6个小题,每题4分,共24分,将答案填在答题纸上)13.分解因式:a 2-4a +4=___【答案】(a -2)2.【解析】【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.【详解】解:a 2-4a +4=(a -2)2.故答案为:(a -2)2.14.如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在红色区域的概率等于_____.【答案】13.【解析】【分析】首先确定在图中红色区域的面积在整个面积中占的比例,根据这个比例即可求出指针落在红色区域的概率.【详解】由于一个圆平均分成6个相等的扇形,而转动的转盘又是自由停止的,所以指针指向每个扇形的可能性相等,即有8种等可能的结果,在这6种等可能结果中,指针指向红色部分区域的有2种可能结果,所以指针落在红色区域的概率是21 63=;故答案为1 3.【点睛】此题考查了概率公式,用到的知识点为:概率=相应的面积与总面积之比.15.如果一个正多边形的内角和是720︒,则这个正多边形是正______边形.【答案】六【解析】【分析】根据多边形的内角和公式求解即可.【详解】设这个正多边形是正n边形,则()2180720n-⨯︒=︒,解得:6n=.∴这个正多边形是正六边形.故答案为:六.【点睛】本题考查多边形的内角和公式.掌握n边形的内角和为()2180n-⨯︒是解题关键.16.代数式213x-与代数式32x-的和为4,则x=_____.【答案】﹣1.【解析】【分析】根据题意列出方程,求出方程的解即可得到x的值.【详解】根据题意得:213243x x -+-=,去分母得:219612x x -+-=,移项合并得:44x -=,解得:=1x -,故答案为﹣1.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.17.某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中1l 、2l 分别表示去年、今年水费y (元)与用水量x (3m )之间的关系.小雨家去年用水量为1503m ,若今年用水量与去年相同,水费将比去年多_____元.【答案】210.【解析】【分析】根据函数图象中的数据可以求得120x >时,2l 对应的函数解析式,从而可以求得150x =时对应的函数值,由1l 的的图象可以求得150x =时对应的函数值,从而可以计算出题目中所求问题的答案,本题得以解决.【详解】设当120x >时,2l 对应的函数解析式为y kx b =+,120480160720k b k b +=⎧⎨+=⎩,得6240k b =⎧⎨=-⎩,即当120x >时,2l 对应的函数解析式为6240y x =-,当150x =时,6150240660y =⨯-=,由图象可知,去年的水价是4801603÷=(元/3m ),故小雨家去年用水量为1503m ,需要缴费:1503450⨯=(元),660450210-=(元),即小雨家去年用水量为1503m ,若今年用水量与去年相同,水费将比去年多210元,故答案为210.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.如图,在矩形纸片ABCD 中,将AB 沿BM 翻折,使点A 落在BC 上的点N 处,BM 为折痕,连接MN ;再将CD 沿CE 翻折,使点D 恰好落在MN 上的点F 处,CE 为折痕,连接EF 并延长交BM 于点P ,若8AD =,5AB =,则线段PE 的长等于_____.【答案】203.【解析】【分析】根据折叠可得ABNM 是正方形,5CD CF ==,90D CFE ∠=∠= ,ED EF =,可求出三角形FNC 的三边为3,4,5,在Rt MEF ∆中,由勾股定理可以求出三边的长,通过作辅助线,可证FNC ∆∽PGF ∆,三边占比为3:4:5,设未知数,通过PG HN =,列方程求出待定系数,进而求出PF 的长,然后求PE 的长.【详解】过点P 作PG FN ⊥,PH BN ⊥,垂足为G 、H ,由折叠得:ABNM 是正方形,5AB BN NM MA ====,5CD CF ==,90D CFE ∠=∠= ,ED EF =,∴853NC MD ==-=,在Rt FNC ∆中,4FN ==,∴541MF =-=,在Rt MEF ∆中,设EF x =,则3ME x =-,由勾股定理得,2221(3)x x +-=,解得:53x =,∵90CFN PFG ∠+∠= ,90PFG FPG ∠+∠= ,∴FNC ∆∽PGF ∆,∴::::3:4:5FG PG PF NC FN FC ==,设3FG m =,则4PG m =,5PF m =,∴43GN PH BH m ===-,5(43)134HN m m PG m =--=+==,解得:1m =,∴55PF m ==,∴520533PE PF FE =+=+=,故答案为203.【点睛】考查折叠轴对称的性质,矩形、正方形的性质,直角三角形的性质等知识,知识的综合性较强,是有一定难度的题目.三、解答题:本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.19.计算:101((1)2cos 602π-++-+ 【答案】5.【解析】【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【详解】101((1)2cos 602π-++-+ 121232=+-⨯+313=-+5=【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.解不等式组53291032x x x x -≤+⎧⎪⎨+>⎪⎩,并写出它的所有整数解.【答案】不等式组的解集为24x <≤;所有整数解为3、4.【解析】【分析】先求出不等式的解集,再求出不等式组的解集,即可得出答案.【详解】解不等式组如下:53291032x x x x -≤+⎧⎪⎨+>⎪⎩①②解①得:4x ≤;解②得:2x >;∴原不等式组的解集为24x <≤;∴原不等式组的所有整数解为3、4.【点睛】本题考查了解一元一次不等式组,一元一次不等式的应用,解此题的关键是能根据不等式的解集求出不等式组的解集.21.如图,在ABCD Y 中,,E F 分别是AD 和BC 上的点,DAF BCE ∠=∠.求证:BF DE =.【答案】见解析【解析】【分析】由平行四边形的性质得出B D ∠=∠,BAD BCD ∠=∠,AB CD =,证出BAF DCE ∠=∠,证明ABF ∆≌CDE ∆(ASA ),即可得出BF DE =.【详解】证明:∵四边形ABCD 是平行四边形,∴B D ∠=∠,BAD BCD ∠=∠,AB CD =,∵DAF BCE ∠=∠,∴BAF DCE ∠=∠,在ABF ∆和CDE ∆中,B D AB CD BAF DCE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABF ∆≌CDE ∆(ASA ),∴BF DE =.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质;解题的关键是熟练掌握平行四边形的性质,证明三角形全等.22.为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A 种图书花费了3000元,购买B 种图书花费了1600元,A 种图书的单价是B 种图书的1.5倍,购买A 种图书的数量比B 种图书多20本.(1)求A 和B 两种图书的单价;(2)书店在“世界读书日”进行打折促销活动,所有图书都按8折销售学校当天购买了A 种图书20本和B 种图书25本,共花费多少元?【答案】(1)A 种图书的单价为30元,B 种图书的单价为20元;(2)共花费880元.【解析】【分析】(1)设B 种图书的单价为x 元,则A 种图书的单价为1.5x 元,根据数量=总价÷单价结合花3000元购买的A 种图书比花1600元购买的B 种图书多20本,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)根据总价=单价×数量,即可求出结论.【详解】(1)设B 种图书的单价为x 元,则A 种图书的单价为1.5x 元,依题意,得:30001600201.5x x-=,解得:20x =,经检验,20x =是所列分式方程的解,且符合题意,∴1.530x =.答:A 种图书的单价为30元,B 种图书的单价为20元.(2)300.820200.825880⨯⨯+⨯⨯=(元).答:共花费880元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.如图,AB 、CD 是O 的两条直径,过点C 的O 的切线交AB 的延长线于点E ,连接AC 、BD .(1)求证:ABD CAB ∠=∠;(2)若B 是OE 的中点,12AC =,求O 的半径.【答案】(1)见解析;(2)O 的半径为43【解析】【分析】(1)根据半径相等可知OAC OCA ∠=∠,ODB OBD ∠=∠,再根据对顶角相等和三角形内角和定理证明ABD CAB ∠=∠;(2)连接BC .由CE 为O 的切线,可得90OCE ∠= ,因为B 是OE 的中点,得BC OB =,又OB OC =,可知OBC ∆为等边三角形,60ABC ∠= ,所以3433BC AC ==O 的半径为43【详解】(1)证明:∵AB 、CD 是O 的两条直径,∴OA OC OB OD ===,∴OAC OCA ∠=∠,ODB OBD ∠=∠,∵AOC BOD ∠=∠,∴OAC OCA ODB OBD ∠=∠=∠=∠,即ABD CAB ∠=∠;(2)连接BC .∵AB 是O 的两条直径,∴∠ACB =90°,∵CE 为O 的切线,∴90OCE ∠= ,∵B 是OE 的中点,∴BC OB =,∵OB OC =,∴OBC ∆为等边三角形,∴60ABC ∠= ,∴30A ∠= ,∴33BC AC ==∴OB =,即O 的半径为【点睛】本题考查了切线的性质、圆周角定理、含30 角的直角三角形的性质,正确的作出辅助线是解题的关键.24.某学校八年级共400名学生,为了解该年级学生的视力情况,从中随机抽取40名学生的视力数据作为样本,数据统计如下:4.24.14.74.14.34.34.44.64.15.25.24.55.04.54.34.44.85.34.55.24.44.24.35.34.95.24.94.84.65.14.24.44.54.14.55.14.45.05.25.3根据数据绘制了如下的表格和统计图:等级视力(x )频数频率A 4.2x<40.1B 4.2 4.4x≤≤120.3C 4.5 4.7x≤≤aD 4.8 5.0x≤≤bE 5.1 5.3x≤≤100.25合计401根据上面提供的信息,回答下列问题:(1)统计表中的=a,b=;(2)请补全条形统计图;(3)根据抽样调查结果,请估计该校八年级学生视力为“E级”的有多少人?(4)该年级学生会宣传部有2名男生和2名女生,现从中随机挑选2名同学参加“防控近视,爱眼护眼”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.【答案】(1)8、0.15;(2)补全图形见解析;(3)估计该校八年级学生视力为“E级”的有100人;(4)恰好选到1名男生和1名女生的概率2 3.【解析】【分析】(1)由所列数据得出a的值,继而求出C组对应的频率,再根据频率之和等于1求出b的值;(2)总人数乘以b的值求出D组对应的频数,从而补全图形;(3)利用样本估计总体思想求解可得;(4)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.a=,【详解】(1)由题意知C等级的频数8÷=,则C组对应的频率为8400.2b=-+++=,∴1(0.10.30.20.25)0.15故答案为8、0.15;⨯=,(2)D组对应的频数为400.156补全图形如下:⨯=(人);(3)估计该校八年级学生视力为“E级”的有4000.25100(4)列表如下:男男女女男(男,男)(女,男)(女,男)男(男,男)(女,男)(女,男)女(男,女)(男,女)(女,女)女(男,女)(男,女)(女,女)得到所有等可能的情况有12种,其中恰好抽中一男一女的情况有8种,所以恰好选到1名男生和1名女生的概率82123=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图.25.如图1,点(0,8)A 、点(2,)B a 在直线2y x b =-+上,反比例函数ky x=(0x >)的图象经过点B .(1)求a 和k 的值;(2)将线段AB 向右平移m 个单位长度(0m >),得到对应线段CD ,连接AC 、BD .①如图2,当3m =时,过D 作DF x ⊥轴于点F ,交反比例函数图象于点E ,求DEEF的值;②在线段AB 运动过程中,连接BC ,若BCD ∆是以BC 为腰的等腰三形,求所有满足条件的m 的值.【答案】(1)4a =,8k =;(2)①32DE EF =;②BCD ∆是以BC 为腰的等腰三形,满足条件的m 的值为4或5.【解析】【分析】(1)先将点A 坐标代入直线AB 的解析式中,求出a ,进而求出点B 坐标,再将点B 坐标代入反比例函数解析式中即可得出结论;(2)①先确定出点(5,4)D ,进而求出点E 坐标,进而求出DE ,EF ,即可得出结论;②先表示出点C ,D 坐标,再分两种情况:Ⅰ、当BC CD =时,判断出点B 在AC 的垂直平分线上,即可得出结论;Ⅱ、当BC BD =时,先表示出BC ,用BC BD =建立方程求解即可得出结论.【详解】(1)∵点(0,8)A 在直线2y x b =+上,∴208b -⨯+=,∴8b =,∴直线AB 的解析式为28y x =-+,将点(2,)B a 代入直线AB 的解析式28y x =-+中,得228a -⨯+=,∴4a =,∴(2,4)B ,将(2,4)B 在反比例函数解析式ky x=(0x >)中,得248k xy ==⨯=;(2)①由(1)知,(2,4)B ,8k =,∴反比例函数解析式为8y x=,当3m =时,∴将线段AB 向右平移3个单位长度,得到对应线段CD ,∴(23,4)D +,即:(5,4)D ,∵DF x ⊥轴于点F ,交反比例函数8y x=的图象于点E ,∴8(5,)5E ,∴812455DE =-=,85EF =,∴1235825DE EF==;②如图,∵将线段AB 向右平移m 个单位长度(0m >),得到对应线段CD ,∴CD AB =,AC BD m ==,∵(0,8)A ,(2,4)B ,∴(,8)C m ,((2),4)D m +,∵BCD ∆是以BC 腰的等腰三形,∴Ⅰ、当BC CD =时,∴BC AB =,∴点B 在线段AC 的垂直平分线上,∴224m =⨯=,Ⅱ、当BC BD =时,∵(2,4)B ,(,8)C m ,∴BC =,m =,∴5m =,即:BCD ∆是以BC 为腰的等腰三形,满足条件的m 的值为4或5.【点睛】此题是反比例函数综合题,主要考查了待定系数法,平移的性质,等腰三角形的性质,线段的垂直平分线的性质,用方程的思想解决问题是解本题的关键.26.小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究在ABC ∆中,AB AC =,M 是平面内任意一点,将线段AM 绕点A 按顺时针方向旋转与BAC ∠相等的角度,得到线段AN ,连接NB .(1)如图1,若M 是线段BC 上的任意一点,请直接写出NAB ∠与MAC ∠的数量关系是,NB 与MC 的数量关系是;(2)如图2,点E 是AB 延长线上点,若M 是CBE ∠内部射线BD 上任意一点,连接MC ,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(二)拓展应用如图3,在111A B C ∆中,118A B =,11160A B C ∠= ,11175B A C ∠=,P 是11B C 上的任意点,连接1A P ,将1A P 绕点1A 按顺时针方向旋转75 ,得到线段1AQ ,连接1B Q .求线段1B Q 长度的最小值.【答案】(一)(1)结论:NAB MAC ∠=∠,BN MC =.理由见解析;(2)如图2中,①中结论仍然成立.理由见解析;(二)1QB 的最小值为-.【解析】【分析】(一)①结论:NAB MAC ∠=∠,BN MC =.根据SAS 证明NAB ∆≌MAC ∆即可.②①中结论仍然成立.证明方法类似.(二)如图3中,在11A C 上截取11A N A Q =,连接PN ,作11NH B C ⊥于H ,作111A MBC ⊥于M .理由全等三角形的性质证明1B Q PN =,推出当PN 的值最小时,1QB 的值最小,求出HN 的值即可解决问题.【详解】(一)(1)结论:NAB MAC ∠=∠,BN MC =.理由:如图1中,∵MAN CAB ∠=∠,∴NAB BAM BAM MAC ∠+∠=∠+∠,∴NAB MAC ∠=∠,∵AB AC =,AN AM =,∴NAB ∆≌MAC ∆(SAS ),∴BNCM =.故答案为NAB MAC ∠=∠,BNCM =.(2)如图2中,①中结论仍然成立.理由:∵MAN CAB ∠=∠,∴NAB BAM BAM MAC ∠+∠=∠+∠,∴NAB MAC ∠=∠,∵AB AC =,AN AM =,∴NAB ∆≌MAC ∆(SAS ),∴BNCM =.(二)如图3中,在11A C 上截取111A N A B =,连接PN ,作11NH B C ⊥于H ,作111A M B C ⊥于M .∵1111C A B PA Q ∠=∠,∴111QA B PA N ∠=∠,∵11A Q A P =,11A B AN =,∴11QA B ∆≌1PA N ∆(SAS ),∴1B Q PN =,∴当PN 的值最小时,1QB 的值最小,在11Rt A B M ∆中,∵1160A B M ∠=,118A B =,∴111sin 60A M A B =∙= ∵1111111753045MAC B AC B A M ∠=∠-∠=-=,∴11A C =∴11118NC A C A N =-=,在1Rt NHC ∆,∵145C ∠= ,∴NH =-,根据垂线段最短可知,当点P 与H 重合时,PN 的值最小,∴1QB 的最小值为-.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,等腰三角形的性质,解直角三角形,垂线段最短等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.27.如图1,抛物线2:C y ax bx =+经过点(4,0)A -、(1,3)B -两点,G 是其顶点,将抛物线C 绕点O 旋转180 ,得到新的抛物线'C .(1)求抛物线C 的函数解析式及顶点G 的坐标;(2)如图2,直线12:5l y kx =-经过点A ,D 是抛物线C 上的一点,设D 点的横坐标为m (2m <-),连接DO 并延长,交抛物线'C 于点E ,交直线l 于点M ,2DE EM =,求m 的值;(3)如图3,在(2)的条件下,连接AG 、AB ,在直线DE 下方的抛物线C 上是否存在点P ,使得DEP GAB ∠=∠?若存在,求出点P 的横坐标;若不存在,请说明理由.【答案】(1)24y x x =--,顶点为:(2,4)G -;(2)m 的值为﹣3;(3)存在,点P 的横坐标为:7734-或7374.【解析】【分析】(1)运用待定系数法将(4,0)A -、(1,3)B -代入2y ax bx =+中,即可求得a 和b 的值和抛物线C 解析式,再利用配方法将抛物线C 解析式化为顶点式即可求得顶点G 的坐标;(2)根据抛物线C 绕点O 旋转180 ,可求得新抛物线'C 的解析式,再将(4,0)A -代入125y kx =-中,即可求得直线l 解析式,根据对称性可得点E 坐标,过点D 作//DH y 轴交直线l 于H ,过E 作//EK y 轴交直线l 于K ,由2DE EM =,即可得13ME MD =,再证明MEK ∆∽MDH ∆,即可得3DH EK =,建立方程求解即可;(3)连接BG ,易证ABG ∆是Rt ∆,90ABG ∠= ,可得1tan tan 3DEP GAB ∠=∠=,在x 轴下方过点O 作OH OE ⊥,在OH 上截取13OH OE ==过点E 作ET y ⊥轴于T ,连接EH 交抛物线C 于点P ,点P 即为所求的点;通过建立方程组求解即可.【详解】(1)将(4,0)A -、(1,3)B -代入2y ax bx =+中,得16403a b a b -=⎧⎨-=⎩解得14a b =-⎧⎨=-⎩∴抛物线C 解析式为:24y x x =--,配方,得:224(2)4y x x x =--=-++,∴顶点为:(2,4)G -;(2)∵抛物线C 绕点O 旋转180 ,得到新的抛物线'C .∴新抛物线'C 的顶点为:'(2,4)G -,二次项系数为:'1a =∴新抛物线'C 的解析式为:22(2)44y x x x =--=-将(4,0)A -代入125y kx =-中,得12045k =--,解得35k =-,∴直线l 解析式为31255y x =--,∵2(,4)D m m m --,∴直线DO 的解析式为(4)y m x =-+,由抛物线C 与抛物线'C 关于原点对称,可得点D 、E 关于原点对称,∴2(,4)E m m m -+如图2,过点D 作//DH y 轴交直线l 于H ,过E 作//EK y 轴交直线l 于K ,则312(,)55H m m --,312(,)55K m m --,∴2231217124()5555DH m m m m m =-----=--+,2231217124(5555EK m m m m m =+--=++,∵2DE EM =∴13ME MD =,∵//DH y 轴,//EK y 轴∴//DH EK ∴MEK ∆∽MDH ∆∴13EK ME DH MD ==,即3DH EK =∴22171217123()5555m m m m --+=++解得:13m =-,225m =-,∵2m <-∴m 的值为:﹣3;(3)由(2)知:3m =-,∴(3,3)D -,(3,3)E -,OE =,如图3,连接BG ,在ABG ∆中,∵222(14)(30)18AB =-++-=,22BG =,220AG =∴222AB BG AG +=∴ABG ∆是直角三角形,90ABG ∠= ,∴1tan 3BG GAB AB ∠===,∵DEP GAB∠=∠∴1tan tan 3DEP GAB ∠=∠=,在x 轴下方过点O 作OH OE ⊥,在OH上截取13OH OE ==过点E 作ET y ⊥轴于T ,连接EH 交抛物线C 于点P ,点P 即为所求的点;∵(3,3)E -,∴45EOT ∠=∵90EOH ∠=∴45HOT ∠=∴(1,1)H --,设直线EH 解析式为y px q =+,则331p q p q +=-⎧⎨-+=-⎩,解得1232p q ⎧=-⎪⎪⎨⎪=-⎪⎩∴直线EH 解析式为1322y x =--,解方程组213224y x y x x ⎧=--⎪⎨⎪=--⎩,得117458x y ⎧--=⎪⎪⎨-⎪=⎪⎩,227458x y ⎧-+=⎪⎪⎨+⎪=-⎪⎩,∴点P的横坐标为:7734-或7374.【点睛】本题考查了二次函数图象和性质,待定系数法求函数解析式,旋转变换,相似三角形判定和性质,直线与抛物线交点,解直角三角形等知识点;属于中考压轴题型,综合性强,难度较大.。
山西省2019年中考数学试题含答案解析(Word版)

山西省2019年中考数学试题含答案解析(Word版)2019年山西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。
在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑。
)1.(2019·山西)下列选项中,哪个是1的相反数?A。
6/11B。
-6C。
6D。
-662.(2019·山西)以下不等式组的解集是?2x < 6.x ≥ 5}A。
x。
5B。
x < 3C。
-5 < x < 3D。
x < 53.(2019·山西)以下问题不适合进行全面调查的是?A。
调查某班学生每周课前预的时间。
B。
调查某中学在职教师的身体健康状况。
C。
调查全国中小学生课外阅读情况。
D。
调查某篮球队员的身高。
4.(2019·山西)如图所示,由几个大小相同的小正方体搭成的几何体的俯视图如下,小正方体中的数字表示该位置小正方体的个数。
则该几何体的左视图是?因为无法插入图片,请参考原文)5.(2019·山西)我国计划在2020年左右发射火星探测卫星。
据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为?A。
5.5×10^6B。
5.5×10^7C。
55×10^6D。
0.55×10^86.(2019·山西)下列运算正确的是?A。
(-3/2)^2 = 9/4B。
91 ÷ 3(3a^2) = 9a^6C。
5 - 3 ÷ 5 - 5 = -2/5D。
8 - 50 = -427.(2019·山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等。
求甲、乙两人每小时分别搬运多少kg货物。
设甲每小时搬运xkg货物,则可列方程为?5000 ÷ x = (8000 ÷ (x + 600))A。
2019年中考数学试题含答案

2019年中考数学试题含答案一、选择题1.阅读理解:已知两点1122,,()(),M x y N x y ,则线段MN 的中点(),K x y 的坐标公式为:122x x x +=,122y y y +=.如图,已知点O 为坐标原点,点()30A -,,O e 经过点A ,点B 为弦PA 的中点.若点(),P a b ,则有,a b 满足等式:229a b +=.设(),B m n ,则,m n 满足的等式是( )A .229m n +=B .223922m n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭ C .()()222323m n ++= D .()222349m n ++= 2.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿大半圆弧ACB 路线爬行,乙虫沿小半圆弧ADA 1、A 1EA 2、A 2FA 3、A 3GB 路线爬行,则下列结论正确的是 ( )A .甲先到B 点 B .乙先到B 点C .甲、乙同时到B 点D .无法确定3.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁4.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .185.如图,长宽高分别为2,1,1的长方体木块上有一只小虫从顶点A出发沿着长方体的外表面爬到顶点B,则它爬行的最短路程是()A.10B .5C .22D.36.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+43与x轴、y轴分别交于A 、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P 在线段OA上运动时,使得⊙P成为整圆的点P个数是()A.6B.8C.10D.127.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=5,BC=2,则sin∠ACD的值为()A.5B.25C.5D.238.不等式组213312xx+⎧⎨+≥-⎩<的解集在数轴上表示正确的是()A.B.C.D.9.下列各曲线中表示y是x的函数的是()A.B.C.D.10.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.tan tanαβB.sinsinβαC.sinsinαβD.coscosβα11.如图,正比例函数1y=k x与反比例函数2ky=x的图象相交于点A、B两点,若点A的坐标为(2,1),则点B的坐标是()A.(1,2)B.(-2,1)C.(-1,-2)D.(-2,-1)12.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A.4个B.3个C.2个D.1个二、填空题13.一列数123,,,a a a……na,其中1231211111,,,,111nna a a aa a a-=-===---L L,则1232014a a a a++++=L L__________.14.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.15.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =k x 的图象上,则k 的值为________.16.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.17.如图,在Rt △AOB 中,OA=OB=32,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为 .18.若一个数的平方等于5,则这个数等于_____.19.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.20.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____.三、解答题21.如图,AD 是ABC ∆的中线,AE BC ∥,BE 交AD 于点F ,F 是AD 的中点,连接EC .(1)求证:四边形ADCE 是平行四边形;(2)若四边形ABCE 的面积为S ,请直接写出图中所有面积是13S 的三角形.22.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++ 23.直线AB 交⊙O 于C 、D 两点,CE 是⊙O 的直径,CF 平分∠ACE 交⊙O 于点F ,连接EF ,过点F 作FG∥ED 交AB 于点G .(1)求证:直线FG 是⊙O 的切线;(2)若FG =4,⊙O 的半径为5,求四边形FGDE 的面积.24.解方程:3x x +﹣1x =1. 25.计算:(1)2(m ﹣1)2﹣(2m+1)(m ﹣1)(2)(1﹣)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据中点坐标公式求得点B 的坐标,然后代入,a b 满足的等式进行求解即可.【详解】∵点()30A -,,点(),P a b ,点(),B m n 为弦PA 的中点, ∴32a m -+=,02b n +=, ∴23,2a m b n =+=, 又,a b 满足等式:229a b +=,∴()222349m n ++=,故选D .【点睛】本题考查了坐标与图形性质,解题的关键是理解中点坐标公式. 2.C解析:C【解析】1 2π(AA1+A1A2+A2A3+A3B)=12π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点。
山东省烟台市2019年中考数学真题试题(含解析)

山东省烟台市2019年中考数学真题试题(含解析)一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.(3分)﹣8的立方根是()A.2 B.﹣2 C.±2 D.﹣22.(3分)下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图4.(3分)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为()A.B.C.D.无法确定5.(3分)某种计算机完成一次基本运算的时间约为1纳秒(ns),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为()A.1.5×10﹣9秒B.15×10﹣9秒C.1.5×10﹣8秒D.15×10﹣8秒6.(3分)当b+c=5时,关于x的一元二次方程3x2+bx﹣c=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定7.(3分)某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变8.(3分)已知∠AOB=60°,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N 为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则∠BOC 的度数为()A.15°B.45°C.15°或30°D.15°或45°9.(3分)南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A.128 B.256 C.512 D.102410.(3分)如图,面积为24的▱ABCD中,对角线BD平分∠ABC,过点D作DE⊥BD交BC的延长线于点E,DE=6,则sin∠DCE的值为()A.B.C.D.11.(3分)已知二次函数y=ax2+bx+c的y与x的部分对应值如表:下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(x2,3)是抛物线上两点,则x1<x2,其中正确的个数是()A.2 B.3 C.4 D.512.(3分)如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为()A.B.πC.πD.π二、填空题(本大题共6个小题,每小题3分,满分18分)13.(3分)|﹣6|×2﹣1﹣cos45°=.14.(3分)若关于x的分式方程﹣1=有增根,则m的值为.15.(3分)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A (﹣2,﹣1),B(﹣2,﹣3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,﹣1),B1(1,﹣5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为.16.(3分)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为.17.(3分)小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是.18.(3分)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O是△ABC的内切圆,则阴影部分面积为.三、解答题(本大题共7个小题,满分66分)19.(6分)先化简(x+3﹣)÷,再从0≤x≤4中选一个适合的整数代入求值.20.(8分)十八大以来,某校已举办五届校园艺术节,为了弘扬中华优秀传统文化,每届艺术节上都有一些班级表演“经典诵读”“民乐演奏”、“歌曲联唱”、“民族舞蹈”等节目.小颖对每届艺术节表演这些节目的班级数进行统计,并绘制了如图所示不完整的折线统计图和扇形统计图.(1)五届艺术节共有个班级表演这些节目,班数的中位数为,在扇形统计图中,第四届班级数的扇形圆心角的度数为;(2)补全折线统计图;(3)第六届艺术节,某班决定从这四项艺术形式中任选两项表演(“经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”分别用A,B,C,D表示),利用树状图或表格求出该班选择A和D两项的概率.21.(9分)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?22.(9分)如图,在矩形ABCD中,CD=2,AD=4,点P在BC上,将△ABP沿AP折叠,点B恰好落在对角线AC上的E点,O为AC上一点,⊙O经过点A,P(1)求证:BC是⊙O的切线;(2)在边CB上截取CF=CE,点F是线段BC的黄金分割点吗?请说明理由.23.(10分)如图所示,一种适用于笔记本电脑的铝合金支架,边OA,OB可绕点O开合,在OB边上有一固定点P,支柱PQ可绕点P转动,边OA上有六个卡孔,其中离点O最近的卡孔为M,离点O最远的卡孔为N.当支柱端点Q放入不同卡孔内,支架的倾斜角发生变化.将电脑放在支架上,电脑台面的角度可达到六档调节,这样更有利于工作和身体健康,现测得OP的长为12cm,OM为10cm,支柱PQ为8m.(1)当支柱的端点Q放在卡孔M处时,求∠AOB的度数;(2)当支柱的端点Q放在卡孔N处时,∠AOB=20.5°,若相邻两个卡孔的距离相同,求此间距.(结果精确到十分位)参考数据表24.(11分)【问题探究】(1)如图1,△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D,E在同一直线上,连接AD,BD.①请探究AD与BD之间的位置关系:;②若AC=BC=,DC=CE=,则线段AD的长为;【拓展延伸】(2)如图2,△ABC和△DEC均为直角三角形,∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角∠BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.25.(13分)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y=(x>0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F 的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?(请直接写出结果)2019年山东省烟台市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.【解答】解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选:B.2.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,也是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.3.【解答】解:将正方体①移走后,主视图不变,俯视图变化,左视图不变,故选:A.4.【解答】解:设正六边形边长为a,则灰色部分面积为3×=,白色区域面积为a×=,所以正六边形面积为a2,镖落在白色区域的概率P==,故选:B.5.【解答】解:所用时间=15×0.000 000 001=1.5×10﹣8.故选:C.6.【解答】解:∵b+c=5,∴c=5﹣b.△=b2﹣4×3×(﹣c)=b2+12c=b2﹣12b+60=(b﹣6)2+24.∵(b﹣6)2≥0,∴(b﹣6)2+24>0,∴△>0,∴关于x的一元二次方程3x2+bx﹣c=0有两个不相等的实数根.故选:A.7.【解答】解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.8.【解答】解:(1)以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,则OP为∠AOB的平分线,(2)两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则为作∠POB或∠POA的角平分线,则∠BOC=15°或45°,故选:D.9.【解答】解:由“杨辉三角”的规律可知,(a+b)9展开式中所有项的系数和为(1+1)9=29=512 故选:C.10.【解答】解:连接AC,过点D作DF⊥BE于点E,∵BD平分∠ABC,∴∠ABD=∠DBC,∵▱ABCD中,AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠ABD,∴AB=BC,∴四边形ABCD是菱形,∴AC⊥BD,OB=OD,∵DE⊥BD,∴OC∥ED,∵DE=6,∴OC=,∵▱ABCD的面积为24,∴,∴BD=8,∴==5,设CF=x,则BF=5+x,由BD2﹣BF2=DC2﹣CF2可得:82﹣(5+x)2=52﹣x2,解得x=,∴DF=,∴sin∠DCE=.故选:A.11.【解答】解:设抛物线解析式为y=ax(x﹣4),把(﹣1,5)代入得5=a×(﹣1)×(﹣1﹣4),解得a=1,∴抛物线解析式为y=x2﹣4x,所以①正确;抛物线的对称性为直线x=2,所以②正确;∵抛物线与x轴的交点坐标为(0,0),(4,0),∴当0<x<4时,y<0,所以③错误;抛物线与x轴的两个交点间的距离是4,所以④正确;若A(x1,2),B(x2,3)是抛物线上两点,则x2<x1<2或2<x1<x2,所以⑤错误.故选:B.12.【解答】解:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACD+∠BCE=90°,∵AD⊥DE,BE⊥DE,∴∠DAC+∠ACD=90°,∴∠DAC=∠ECB,∵∠ADC=∠CEB=90°,∴△ADC∽△CEB,∴=,即=,∵tan∠ABC==,∴∠ABC=30°,∴AB=2AC,∠AOC=60°,∵直线DE与⊙O相切于点C,∴∠ACD=∠ABC=30°,∴AC=2AD=2,∴AB=4,∴⊙O的半径为2,∴的长为:=π,故选:D.二、填空题(本大题共6个小题,每小题3分,满分18分)13.【解答】解:原式=6×﹣×=3﹣1=2.故答案为:2.14.【解答】.解:方程两边都乘(x﹣2),得3x﹣x+2=m+3∵原方程有增根,∴最简公分母(x﹣2)=0,解得x=2,当x=2时,m=3.故答案为3.15.【解答】解:如图,P点坐标为(﹣5,﹣1).故答案为(﹣5,﹣1).16.【解答】解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x+2≤ax+c的解为x≤1;故答案为x≤1;17.【解答】解:在折叠过程中角一直是轴对称的折叠,∠AOB=22.5°×2=45°;故答案为45°;18.【解答】解:连接OB,作OD⊥BC于D,如图,∵△ABC为等边三角形,∴AB=BC=AC=2,∠ABC=60°,∵⊙O是△ABC的内切圆,∴OH为⊙O的半径,∠OBH=30°,∵O点为等边三角形的外心,∴BH=CH=1,在Rt△OBH中,OH=BH=,∵S弓形AB=S扇形ACB﹣S△ABC,∴阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O=3S扇形ACB﹣2S△ABC﹣S⊙O=3×﹣2××22﹣π×()2=π﹣2.故答案为π﹣2.三、解答题(本大题共7个小题,满分66分)19.【解答】解:(x+3﹣)÷=(﹣)÷=•=,当x=1时,原式==.20.【解答】解:(1)第一届、第二届和第三届参加班级所占的百分比为1﹣22.5%﹣=45%,所以五届艺术节参加班级表演的总数为(5+7+6)÷45%=40(个);第四届参加班级数为40×22.5%=9(个),第五届参加班级数为40﹣18﹣9=13(个),所以班数的中位数为7(个)在扇形统计图中,第四届班级数的扇形圆心角的度数为360°×22.5%=81°;故答案为40,7,81°;(2)如图,(3)画树状图为:共有12种等可能的结果数,其中该班选择A和D两项的结果数为2,所以该班选择A和D两项的概率==.21.【解答】解:(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,依题意,得:,解得:.答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)设需调配36座客车m辆,22座客车n辆,依题意,得:36m+22n=218,∴n=.又∵m,n均为正整数,∴.答:需调配36座客车3辆,22座客车5辆.22.【解答】解:(1)连接OP,则∠PAO=∠APO,而△AEP是由△ABP沿AP折叠而得:故AE=AB=4,∠OAP=∠PAB,∴∠BAP=∠OPA,∴AB∥OP,∴∠OPC=90°,∴BC是⊙O的切线;(2)CF=CE=AC﹣AE=﹣4=2﹣2,=,故:点F是线段BC的黄金分割点.23.【解答】解:(1)如图,过点P作PH⊥OA于点H.设OH=x,则HM=10﹣x,由勾股定理得OP2﹣OH2=PH2,MP2﹣HM2=PH2,∴OP2﹣OH2=MP2﹣HM2,即122﹣x2=82﹣(10﹣x)2,解得x=9,即OH=9(cm),∴cos∠AOB===0.75,由表可知,∠AOB为41°;(2)过点P作PH⊥OA于点H.在Rt△OPH中,,OH=11.244(cm),,∴PH=4.2(cm),∴HN=(cm),∴ON=OH+HN=11.244+6.8=18.044(cm),∴MN=ON﹣OM=18.044﹣10=8.044(cm)∵电脑台面的角度可达到六档调节,相邻两个卡孔的距离相同,∴相邻两个卡孔的距离为8.044÷(6﹣1)≈1.6(cm)答:相邻两个卡孔的距离约为1.6cm.24.【解答】解:【问题探究】(1)∵△ABC和△DEC均为等腰直角三角形,∴AC=BC,CE=CD,∠ABC=∠DEC=45°=∠CDE∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,且AC=BC,CE=CD∴△ACD≌△BCE(SAS)∴∠ADC=∠BEC=45°∴∠ADE=∠ADC+∠CDE=90°∴AD⊥BD故答案为:AD⊥BD②如图,过点C作CF⊥AD于点F,∵∠ADC=45°,CF⊥AD,CD=∴DF=CF=1∴AF==3∴AD=AF+DF=4故答案为:4【拓展延伸】(2)若点D在BC右侧,如图,过点C作CF⊥AD于点F,∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.∴∠ACD=∠BCE,∴△ACD∽△BCE∴∠ADC=∠BEC,∵CD=,CE=1∴DE==2∵∠ADC=∠BEC,∠DCE=∠CFD=90°∴△DCE∽△CFD,∴即∴CF=,DF=∴AF==∴AD=DF+AF=3若点D在BC左侧,∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.∴∠ACD=∠BCE,∴△ACD∽△BCE∴∠ADC=∠BEC,∴∠CED=∠CDF∵CD=,CE=1∴DE==2∵∠CED=∠CDF,∠DCE=∠CFD=90°∴△DCE∽△CFD,∴即∴CF=,DF=∴AF==∴AD=AF﹣DF=225.【解答】解;(1)C(0,3)∵CD⊥y,∴D点纵坐标是3,∵D在y=上,∴D(2,3),将点A(﹣1,0)和D(2,3)代入y=ax2+bx+3,∴a=﹣1,b=2,∴y=﹣x2+2x+3;(2)M(1,4),B(3,0),作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;∴M'(﹣1,4),D'(2,﹣3),∴M'D'直线的解析式为y=﹣x+∴N(,0),F(0,);(3)设P(0,t),N(r,t),作△PBD的外接圆N,当⊙N与y轴相切时,∠BPD的度数最大;∴PN=ND,∴r=,∴t2﹣6t﹣4r+13=0,易求BD的中点为(,),直线BD的解析式为y=﹣3x+9,∴BD的中垂线解析式y=x+,N在中垂线上,∴t=r+,∴t2﹣18t+21=0,∴t=9+2或t=9﹣2,∵0<t<3,∴t=9﹣2,∴P(0,9﹣2);。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年数学中考试题(含答案)一、选择题1.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个2.下列计算正确的是()A.2a+3b=5ab B.(a-b)2=a2-b2C.(2x2)3=6x6D.x8÷x3=x53.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°4.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==5.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A.众数B.方差C.平均数D.中位数6.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分7.直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A.B.C.D.8.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A.24B.16C.413D.239.如果,则a的取值范围是()A. B. C. D.10.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.11.某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是()A.8%B.9%C.10%D.11%12.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折二、填空题13.如图:已知AB=10,点C、D在线段AB上且AC=DB=2; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是________.14.若ab=2,则222a ba ab--的值为________.15.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M,绕中点M转动上面的三角尺ABC,使其直角顶点C恰好落在三角尺A′B′C′的斜边A′B′上.当∠A=30°,AC=10时,两直角顶点C,C′间的距离是_____.16.不等式组3241112x xxx≤-⎧⎪⎨--<+⎪⎩的整数解是x=.17.如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于 cm.18.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为_____.19.当m=____________时,解分式方程533x mx x-=--会出现增根.20.如图,反比例函数y=kx的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k=_____.三、解答题21.计算:219(34)02cos452-︒⎛⎫-+--⎪⎝⎭.22.如图,在平面直角坐标系中,直线AB与函数y=kx(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=12OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.23.某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x (元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如下表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w(元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?24.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--.(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x=,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?25.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C.2.D解析:D【解析】分析:A.原式不能合并,错误;B.原式利用完全平方公式展开得到结果,即可做出判断;C.原式利用积的乘方运算法则计算得到结果,即可做出判断;D.原式利用同底数幂的除法法则计算得到结果,即可做出判断.详解:A.不是同类项,不能合并,故A错误;B.(a﹣b)2=a2﹣2ab+b2,故B错误;C.(2x2)3=8x6,故C错误;D.x8÷x3=x5,故D正确.故选D.点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解答本题的关键.3.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.4.A解析:A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.D解析:D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键. 6.B解析:B【解析】【分析】根据平均数的定义进行求解即可得.【详解】根据折线图可知该球员4节的得分分别为:12、4、10、6,所以该球员平均每节得分=1241064+++=8,故选B.【点睛】本题考查了折线统计图、平均数的定义等知识,解题的关键是理解题意,掌握平均数的求解方法.7.B解析:B【解析】【分析】若y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,可对A、D进行判断;若y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,则可对B、C进行判断.【详解】A、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以A选项错误;B、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以B选项正确;C、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以C选项错误;D、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以D选项错误.故选B.【点睛】本题考查了一次函数的图象:一次函数y=kx+b(k≠0)的图象为一条直线,当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;直线与y轴的交点坐标为(0,b).8.C解析:C【解析】【分析】由菱形ABCD的两条对角线相交于O,AC=6,BD=4,即可得AC⊥BD,求得OA与OB 的长,然后利用勾股定理,求得AB的长,继而求得答案.【详解】∵四边形ABCD是菱形,AC=6,BD=4,∴AC⊥BD,OA=12AC=3,OB=12BD=2,AB=BC=CD=AD,∴在Rt△AOB中,AB=222+3=13,∴菱形的周长为413.故选C.9.B解析:B【解析】试题分析:根据二次根式的性质1可知:,即故答案为B..考点:二次根式的性质.10.D解析:D 【解析】 【分析】根据从上边看得到的图形是俯视图,可得答案. 【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形. 故选:D . 【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.11.C解析:C 【解析】 【分析】设月平均增长率为x ,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可. 【详解】设该商店的每月盈利的平均增长率为x ,根据题意得: 240000(1+x )2=290400,解得:x 1=0.1=10%,x 2=-0.21(舍去), 故选C. 【点睛】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x )2=后来的量,其中增长用+,减少用-.12.B解析:B 【解析】 【详解】设可打x 折,则有1200×10x-800≥800×5%, 解得x≥7. 即最多打7折. 故选B . 【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.二、填空题13.3【解析】【分析】分别延长AEBF交于点H易证四边形EPFH为平行四边形得出G为PH中点则G的运行轨迹为三角形HCD的中位线MN再求出CD的长运用中位线的性质求出MN的长度即可【详解】如图分别延长A解析:3【解析】【分析】分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH中点,则G 的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.【详解】如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=10-2-2=6,∴MN=3,即G的移动路径长为3.故答案为:3.【点睛】本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.14.【解析】分析:先根据题意得出a=2b再由分式的基本性质把原式进行化简把a=2b代入进行计算即可详解:∵=2∴a=2b原式==当a=2b时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本解析:3 2【解析】分析:先根据题意得出a=2b,再由分式的基本性质把原式进行化简,把a=2b代入进行计算即可.详解:∵ab=2,∴a=2b,原式=()()() a b a b a a b+--=a b a +当a=2b时,原式=22b bb+=32.故答案为32.点睛:本题考查的是分式的化简求值,熟知分式的基本性质是解答此题的关键.15.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC1,根据M是AC、A1C1的中点,AC=A1C1,得出CM=A1M=C1M=12AC=5,再根据∠A1=∠A1CM=30°,得出∠CMC1=60°,△MCC1为等边三角形,从而证出CC1=CM,即可得出答案.【详解】解:如图,连接CC1,∵两块三角板重叠在一起,较长直角边的中点为M,∴M是AC、A1C1的中点,AC=A1C1,∴CM=A1M=C1M=12AC=5,∴∠A1=∠A1CM=30°,∴∠CMC1=60°,∴△CMC1为等边三角形,∴CC1=CM=5,∴CC1长为5.故答案为5.考点:等边三角形的判定与性质.16.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【解析:﹣4.【解析】【分析】先求出不等式组的解集,再得出不等式组的整数解即可.【详解】解:3241112x xxx≤-⎧⎪⎨--<+⎪⎩①②,∵解不等式①得:x≤﹣4,解不等式②得:x>﹣5,∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,故答案为﹣4.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.17.cm【解析】试题解析:如图折痕为GH由勾股定理得:AB==10cm由折叠得:AG=BG=AB=×10=5cmGH⊥AB∴∠AGH=90°∵∠A=∠A∠AGH=∠C=90°∴△ACB∽△AGH∴∴∴G解析:cm.【解析】试题解析:如图,折痕为GH,由勾股定理得:AB==10cm,由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴,∴,∴GH=cm.考点:翻折变换18.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x-=-.【解析】【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:13201320304060x x-=-.故答案为:13201320304060x x-=-.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.19.2【解析】分析:分式方程的增根是分式方程转化为整式方程的根且使分式方程的分母为0的未知数的值详解:分式方程可化为:x-5=-m由分母可知分式方程的增根是3当x=3时3-5=-m解得m=2故答案为:2解析:2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m,由分母可知,分式方程的增根是3,当x=3时,3-5=-m,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.-3【解析】分析:由平行四边形面积转化为矩形BDOA面积在得到矩形PDOE面积应用反比例函数比例系数k的意义即可详解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴解析:-3【解析】分析:由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.详解:过点P做PE⊥y轴于点E,∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO=S▱ABCD=6∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=﹣3故答案为:﹣3点睛:本题考查了反比例函数比例系数k的几何意义以及平行四边形的性质.三、解答题21.1【解析】【分析】直接利用零指数幂的性质以及特殊角的三角函数值和负指数幂的性质分别化简得出答案.【详解】解:原式=4﹣3+1﹣2 22=2﹣1=1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.22.(1) m=4,k=8,n=4;(2)△ABC的面积为4.【解析】试题分析:(1)由点A的纵坐标为2知OC=2,由OD=OC知OD=1、CD=3,根据△ACD的面积为6求得m=4,将A的坐标代入函数解析式求得k,将点B坐标代入函数解析式求得n;(2)作BE⊥AC,得BE=2,根据三角形面积公式求解可得.试题解析:(1)∵点A的坐标为(m,2),AC平行于x轴,∴OC=2,AC⊥y轴,∵OD=OC,∴OD=1,∴CD=3,∵△ACD的面积为6,∴CD•AC=6,∴AC=4,即m=4,则点A的坐标为(4,2),将其代入y=可得k=8,∵点B(2,n)在y=的图象上,∴n=4;(2)如图,过点B作BE⊥AC于点E,则BE=2,∴S △ABC =AC•BE=×4×2=4,即△ABC 的面积为4.考点:反比例函数与一次函数的交点问题.23.(1)25;(2)80,100,2000;(3)该产品的成本单价应不超过65元.【解析】分析:(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w 的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.详解;(1)设y 关于x 的函数解析式为y=kx+b ,8517595125k b k b +⎧⎨+⎩==,得5600k b ==-⎧⎨⎩, 即y 关于x 的函数解析式是y=-5x+600,当x=115时,y=-5×115+600=25,即m 的值是25;(2)设成本为a 元/个,当x=85时,875=175×(85-a ),得a=80,w=(-5x+600)(x-80)=-5x 2+1000x-48000=-5(x-100)2+2000,∴当x=100时,w 取得最大值,此时w=2000,(3)设科技创新后成本为b 元,当x=90时,(-5×90+600)(90-b )≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.点睛:本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.24.(1)0x =;(2)原分式方程中“?”代表的数是-1.【解析】【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】x-得(1)方程两边同时乘以()2()+-=-5321xx=解得0x=是原分式方程的解.经检验,0(2)设?为m,x-得方程两边同时乘以()2()+-=-321m xx=是原分式方程的增根,由于2x=代入上面的等式得所以把2()m+-=-3221m=-1所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.25.(1)1000,(2)答案见解析;(3)900.【解析】【分析】(1)结合不剩同学的个数和比例,计算总体个数,即可.(2)结合总体个数,计算剩少数的个数,补全条形图,即可.(3)计算一餐浪费食物的比例,乘以总体个数,即可.【详解】解:(1)这次被调查的学生共有600÷60%=1000人,故答案为1000;(2)剩少量的人数为1000﹣(600+150+50)=200人,补全条形图如下:(3),答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.【点睛】考查统计知识,考查扇形图的理解,难度较容易.。