信号与系统实验报告3

合集下载

信号与系统实验报告三

信号与系统实验报告三

一.实验目的1. 深入理解系统频率响应的物理意义2. 掌握利用Matlab 分析系统频率响应的方法3. 理解系统对信号的作用关系二.实验原理傅里叶变换是信号分析 的最重要的内容之一。

从已知信号()f t 求出相应的频谱函数()F j ω的数学表示为:()F j ω()j t f t e dt ω∞--∞=⎰()f t 的傅里叶变换存在的充分条件是()f t 在无限区间内绝对可积,即()f t 满足下式:()f t dt ∞-∞<∞⎰但上式并非傅里叶变换存在的必要条件。

在引入广义函数概念之后,使一些不满足绝对可积条件的函数也能进行傅里叶变换。

傅里叶反变换的定义为:1()()2j t f t F j e d ωωωπ∞-∞=⎰。

在这一部分的学习中,大家都体会到了这种数学运算的麻烦。

在MATLAB 语言中有专门对信号进行正反傅里叶变换的语句,使得傅里叶变换很容易在MATLAB 中实现。

在MATLAB 中实现傅里叶变换的方法有两种,一种是利用MATLAB 中的Symbolic Math Toolbox 提供的专用函数直接求解函数的傅里叶变换和傅里叶反变换,另一种是傅里叶变换的数值计算实现法。

下面分别介绍这两种实现方法的原理。

1.直接调用专用函数法①在MATLAB 中实现傅里叶变换的函数为:F=fourier( f ) 对f(t)进行傅里叶变换,其结果为F(w)F =fourier(f,v) 对f(t)进行傅里叶变换,其结果为F(v)F=fourier( f,u,v ) 对f(u)进行傅里叶变换,其结果为F(v) ②傅里叶反变换f=ifourier( F ) 对F(w)进行傅里叶反变换,其结果为f(x)f=ifourier(F,U) 对F(w)进行傅里叶反变换,其结果为f(u)f=ifourier( F,v,u ) 对F(v)进行傅里叶反变换,其结果为f(u)由于MATLAB 中函数类型非常丰富,要想了解函数的意义和用法,可以用mhelp 命令。

《信号与系统》课程实验报告

《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。

上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。

t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。

三、实验步骤该仿真提供了7种典型连续时间信号。

用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。

图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。

界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。

控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。

图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。

在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。

在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。

矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。

图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。

信号与系统实验实验报告

信号与系统实验实验报告

信号与系统实验实验报告一、实验目的本次信号与系统实验的主要目的是通过实际操作和观察,深入理解信号与系统的基本概念、原理和分析方法。

具体而言,包括以下几个方面:1、掌握常见信号的产生和表示方法,如正弦信号、方波信号、脉冲信号等。

2、熟悉线性时不变系统的特性,如叠加性、时不变性等,并通过实验进行验证。

3、学会使用基本的信号处理工具和仪器,如示波器、信号发生器等,进行信号的观测和分析。

4、理解卷积运算在信号处理中的作用,并通过实验计算和观察卷积结果。

二、实验设备1、信号发生器:用于产生各种类型的信号,如正弦波、方波、脉冲等。

2、示波器:用于观测输入和输出信号的波形、幅度、频率等参数。

3、计算机及相关软件:用于进行数据处理和分析。

三、实验原理1、信号的分类信号可以分为连续时间信号和离散时间信号。

连续时间信号在时间上是连续的,其数学表示通常为函数形式;离散时间信号在时间上是离散的,通常用序列来表示。

常见的信号类型包括正弦信号、方波信号、脉冲信号等。

2、线性时不变系统线性时不变系统具有叠加性和时不变性。

叠加性意味着多个输入信号的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合;时不变性表示系统的特性不随时间变化,即输入信号的时移对应输出信号的相同时移。

3、卷积运算卷积是信号处理中一种重要的运算,用于描述线性时不变系统对输入信号的作用。

对于两个信号 f(t) 和 g(t),它们的卷积定义为:\(f g)(t) =\int_{\infty}^{\infty} f(\tau) g(t \tau) d\tau \在离散时间情况下,卷积运算为:\(f g)n =\sum_{m =\infty}^{\infty} fm gn m \四、实验内容及步骤实验一:常见信号的产生与观测1、连接信号发生器和示波器。

2、设置信号发生器分别产生正弦波、方波和脉冲信号,调整频率、幅度和占空比等参数。

3、在示波器上观察并记录不同信号的波形、频率和幅度。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(2)深刻理解和掌握非周期信号的傅里叶变换及其计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。

二、实验原理、原理图及电路图(1) 周期信号的傅里叶分解设有连续时间周期信号()f t ,它的周期为T ,角频率22fT,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。

傅里叶级数有三角形式和指数形式两种。

1)三角形式的傅里叶级数:01212011()cos()cos(2)sin()sin(2)2cos()sin()2n n n n a f t a t a t b t b t a a n t b n t 式中系数n a ,n b 称为傅里叶系数,可由下式求得:222222()cos(),()sin()T T T T nna f t n t dtb f t n t dtTT2)指数形式的傅里叶级数:()jn tn nf t F e式中系数n F 称为傅里叶复系数,可由下式求得:221()T jn tT nF f t edtT周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。

Matlab中进行数值积分运算的函数有quad函数和int函数。

其中int函数主要用于符号运算,而quad函数(包括quad8,quadl)可以直接对信号进行积分运算。

因此利用Matlab进行周期信号的傅里叶分解可以直接对信号进行运算,也可以采用符号运算方法。

quadl函数(quad系)的调用形式为:y=quadl(‘func’,a,b)或y=quadl(@myfun,a,b)。

其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告
实验名称:信号与系统实验
一、实验目的:
1.了解信号与系统的基本概念
2.掌握信号的时域和频域表示方法
3.熟悉常见信号的特性及其对系统的影响
二、实验内容:
1.利用函数发生器产生不同频率的正弦信号,并通过示波器观察其时域和频域表示。

2.通过软件工具绘制不同信号的时域和频域图像。

3.利用滤波器对正弦信号进行滤波操作,并通过示波器观察滤波前后信号的变化。

三、实验结果分析:
1.通过实验仪器观察正弦信号的时域表示,可以看出信号的振幅、频率和相位信息。

2.通过实验仪器观察正弦信号的频域表示,可以看出信号的频率成分和幅度。

3.利用软件工具绘制信号的时域和频域图像,可以更直观地分析信号的特性。

4.经过滤波器处理的信号,可以通过示波器观察到滤波前后的信号波形和频谱的差异。

四、实验总结:
通过本次实验,我对信号与系统的概念有了更深入的理解,掌
握了信号的时域和频域表示方法。

通过观察实验仪器和绘制图像,我能够分析信号的特性及其对系统的影响。

此外,通过滤波器的处理,我也了解了滤波对信号的影响。

通过实验,我对信号与系统的理论知识有了更加直观的了解和应用。

信号与系统实验报告-实验3--周期信号的频谱分析

信号与系统实验报告-实验3--周期信号的频谱分析

信号与系统实验报告-实验3--周期信号的频谱分析信号与系统实验报告实验三周期信号的频谱分析实验三周期信号的频谱分析实验目的:1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法;2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;3、掌握各种典型的连续时间非周期信号的频谱特征。

实验内容:(1)Q3-1 编写程序Q3_1,绘制下面的信号的波形图:其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos(0t)、cos(30t)、cos(50t) 和x(t) 的波形图,给图形加title,网格线和x坐标标签,并且程序能够接受从键盘输入的和式中的项数。

程序如下:clear,%Clear all variablesclose all,%Close all figure windowsdt = 0.00001; %Specify the step of time variable t = -2:dt:4; %Specify the interval of timew0=0.5*pi; x1=cos(w0.*t); x2=cos(3*w0.*t);x3=cos(5*w0.*t);N=input('Type in the number of the harmonic components N=');x=0;for q=1:N;x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q;endsubplot(221)plot(t,x1)%Plot x1axis([-2 4 -2 2]);grid on,title('signal cos(w0.*t)')subplot(222)plot(t,x2)%Plot x2axis([-2 4 -2 2]); grid on,title('signal cos(3*w0.*t))')subplot(223)plot(t,x3)%Plot x3axis([-2 4 -2 2])grid on,title('signal cos(5*w0.*t))')subplot(224)plot(t,x)%Plot xtaxis([-2 4 -2 2])grid on,title('signal xt')(2)给程序3_1增加适当的语句,并以Q3_2存盘,使之能够计算例题1中的周期方波信号的傅里叶级数的系数,并绘制出信号的幅度谱和相位谱的谱线图。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。

由于b=2,故平移量为2时,实际是右移1,符合平移性质。

两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。

平移,伸缩变化都会导致输出结果相对应的平移伸缩。

2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。

两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。

二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。

两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。

3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。

两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。

三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。

2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。

两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。

信号与系统实验报告

信号与系统实验报告

信号与系统实验实验一 常用信号分类与观察一、实验目的1、了解单片机产生低频信号源2、观察常用信号的波形特点及产生方法。

3、学会使用示波器对常用波形参数的测量。

二、实验仪器1、20MHz 双踪示波器一台。

2、信号与系统实验箱一台。

三、实验内容1、信号的种类相当的多,这里列出了几种典型的信号,便于观察。

2、这些信号可以应用到后面的“基本运算单元”和“无失真传输系统分析”中。

四、实验原理对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。

因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。

在本实验中,将对常用信号和特性进行分析、研究。

信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。

常用信号有:指数信号、正弦信号、指数衰减正弦信号、抽样信号、钟形信号、脉冲信号等。

1、正弦信号:其表达式为)sin()(θω+=t K t f ,其信号的参数:振幅K 、角频率ω、与初始相位θ。

其波形如下图所示:图 1 正弦信号2、指数信号:指数信号可表示为atKe t f =)(。

对于不同的a 取值,其波形表现为不同的形式,如下图所示:图 2 指数信号3、指数衰减正弦信号:其表达式为 ⎪⎩⎪⎨⎧><=-)0()sin()0(0)(t t Ke t t f at ω其波形如下图:图 3 指数衰减正弦信号4、抽样信号:其表达式为: sin ()tSa t t=。

)(t Sa 是一个偶函数,t = ±π,±2π,…,±n π时,函数值为零。

该函数在很多应用场合具有独特的运用。

其信号如下图所示:图4 抽样信号5、钟形信号(高斯函数):其表达式为:2()()tf t Ee-τ= , 其信号如下图所示:图 5 钟形信号6、脉冲信号:其表达式为)()()(T t u t u t f --=,其中)(t u 为单位阶跃函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三 离散线性时不变系统的分析
姓名 罗治民 班级 电子12--BF 学号 14122502289 日期 2014.6.9 成绩
一、实验目的:深刻理解离散时间系统的系统函数在分析离散系统的时域特性、频域特性以及稳定性中的重要作用及意义,熟练掌握利用MATLAB 分析离散系统的时域响应、频响特性和零极点的方法。

二、实验条件:计算机一台,MATLAB 软件。

三、实验原理:
1.对差分方程进行Z 变换即可得系统函数:
在MATLAB 中可用向量a 和向量b 分别保存分母多项式和分子多项式的系数:
这些系数均从z 0按z 的降幂排列。

(1)离散系统的单位冲激响应h [k ]的计算
[h,k] = impz(b, a):计算系统的单位脉冲响应h[k]和相应的时间向量k ;也可简写为:h = impz(b, a)。

(2)离散系统零输入响应yzi [k ]的计算
y = filter(b, a, x, zi):%计算系统在输入x=0和初始状态作用下的输入响应y[k]。

zi 是由系统的初始状态经过filtic 函数转换而得到的初始条件:
zi= filtic (b, a, Y0) ,Y0为系统的初始状态,Y0= [ y[-1],y[-2],y[-3],...]。

(3)离散系统零状态响应yzs [k ]的计算
y = filter(b, a, x):计算系统在输入x 作用下的零状态响应y[k]; (4)离散系统全响应y [k ] 的计算
y = filter(b, a, x, zi):%计算系统在输入x 和初始状态作用下的完全响应y[k]。

zi 是由系统的初始状态经过filtic 函数转换而得到的初始条件:
zi= filtic (b, a, Y0) ,Y0为系统的初始状态,Y0= [ y[-1],y[-2],y[-3],...]。

2.离散系统的频率响应
1(1)0111(1)11()()
()()1()
M M M M N N
N N b b z b z b z Y z b z H z X z a z a z a z a z ----------++++===++++L L ]
,,,,[110M M b b b b b -=Λ]
,,,,1[110-=N a a a a Λ)
(j j e j e )e ()()e (j ΩΩ=Ω==ΩϕH z H H z
系统的频率响应可由H(z)求出,即
[H, w]=freqz(b, a, n);%计算系统的n点频率响应H,w为频率点向量。

H=freqz(b, a, w);%计算系统在指定频率点向量w上的频响;
abs(H);%幅度响应函数,angle(H);%相位响应。

已知某离散系统的系统函数:分析系统的幅频特性。

b=[1,1];
a=[1,-1,0.5];
[H,w]=freqz(b,a);
plot(w,abs(H));
3.离散系统的系统函数零极点分析
函数roots计算离散系统的零极点;使用zplane函数绘制离散系统的零极点分布图。

已知系统函数为计算该系统函数的零极点,并画出系统函数零极点分布图。

b=[1,2,0]; a=[1,0.4,-0.12];
z=roots(b);
p=roots(a);
zplane(b,a);
四、实验步骤及结果测试:(包括程序、结果图)
1.某离散线性时不变系统的差分方程如下:()3(1)2(2)()
y n y n y n x n
+-+-=
满足初始状态y(-1)=0,y(-2)=0.5,求系统输入为x(n)=2n u(n)时的零输入响应、零状态响应及全响应,画出各波形图。

解:
零输入响应:
b=[1]; a=[1,3,2]; y0=[0,0.5];
zi=filtic(b,a,y0); x=zeros(1,30); yi=filter(b,a,x,zi); stem(yi);
title('零输入响应');
8零输入响应
1
12
1
()
10.5
z
H z
z z
-
--
+
=
-+
1
12
12
()
10.40.12
z
H z
z z
-
--
+
=
+-
零状态响应:
k=0:30;
b=[1]; a=[1,3,2]; y0=[0,0.5]; x=2.^k
ys=filter(b,a,x); stem(ys);
title('零状态响应');
全响应:
k=0:30;
b=[1]; a=[1,3,2];
y0=[0,0.5]; zi=filtic(b,a,y0);
x=2.^k;
y=filter(b,a,x,zi); stem(y); title('全响应');
2.已知离散系统的系统函数为:123
123
4 1.6 1.64()10.40.350.4z z z H z z z z --------+=++-,求该系统的
零极点图,并绘出零极点图,通过零极点的分布判断系统的因果性和稳定性。

解:
零极点分布图:
b=[4,-1.6,-1.6,4]; a=[1,0.4,0.35,-0.4]; z=roots(b);
p=roots(a); zplane(b,a); title('零极点分布');
8
8
全响

Real Part
I m a g i n a r y P a r t
根据极点在单位圆内,可知系统属于因果、稳定系统。

3.已知离散系统的系统函数为:
246
246
0.10.20.20.1
()
10.60.40.04
z z z
H z
z z z
---
---
-+-
=
+++
,绘出系
统的零极点分布图,系统在0~π频率范围内的绝对幅频响应、相对幅频响应、相位频率响应和群延迟,并观察零极点分布与系统幅频响应的关系。

解:绝对幅频响应:
b=[0.1,0,-0.2,0,0.2,0,-0.1]; a=[1,0.6,0.4,0.04]; [H,w]=freqz(b,a);
plot(w,abs(H));
title('幅频响应');
相对幅频响应:
b=[0.1,0,-0.2,0,0.2,0,-0.1]; a=[1,0.6,0.4,0.04];
z=max(abs(H));
[H,w]=freqz(b,a);
plot(w,abs(H)./z);
title('相对幅频响应');
相位响应:
b=[0.1,0,-0.2,0,0.2,0,-0.1]; a=[1,0.6,0.4,0.04]; [H,w]=freqz(b,a);
plot(w,angle(H));
title('相频响应');
群延迟:
b=[0.1,-0.2,0.2,-0.1]; a=[1,0.6,0.4,0.04]; [H,w]=freqz(b,a); dy=-diff(angle(H)); plot(dy) ; title('群延迟');
极点主要影响频率响应的峰值,极点愈靠近单位圆,峰值愈尖锐;零点主要影响频率特性的谷值,零点愈靠近单位圆,谷值愈深,当零点在单位圆上时,频率特性为零,一个传递函数有几个极点幅度响应就有几个峰值,对应出现一些谷值。

频率特性还要受零点影响。

4.已知一阶离散系统的系统函数为:1
1
()z z H z z p -=
- , (1)假设系统函数的零点在原点,极点分别取0.2、0.5、0.8,比较它们的幅频响应曲线。

解:幅频响应:
b=[0,0,1];
a=conv([1,-0.2],[1,-0.5]);
a=conv(a,[1,-0.8]);
[H,w]=freqz(b,a); plot(w,abs(H)); title('幅频响应');
(2)假设系统的极点在原点,零点分别取0.2、0.5、0.8,比较它们的幅频响应曲线,从中总结零极点位置对幅频响应的影响。

解:
幅频响应
群延迟
幅频响应
a=[0,0,1];
b=conv([1,-0.2],[1,-0.5]); b=conv(a,[1,-0.8]); [H,w]=freqz(b,a); plot(w,abs(H)); title('幅频响应');
五、思考题:
2.对于因果稳定实系数的低通、高通、带通、带阻数字滤波器,零极点分布有何特点?
答:因为是因果稳定系统,,极点在单位圆内。

3.离散系统的系统函数的零极点对系统脉冲响应有何影响?
答:系统函数的极点位置决定包络线的变化趋势,而极点的幅角决定包络线的变化 率,零点位置只影响冲激响应的幅角和相位。

幅频响应。

相关文档
最新文档