高二数学下知识点
高二下数学第一单元知识点

高二下数学第一单元知识点在高二下学期的数学课程中,第一单元是非常重要的,它包含了许多基础的数学知识点。
在本文中,我们将介绍这些知识点,以帮助同学们更好地理解和掌握数学。
以下是本单元的知识点:一、函数与方程1. 函数定义与性质- 函数的定义域与值域- 一次函数、二次函数、指数函数和对数函数的性质2. 方程- 一次方程与二次方程的解法- 根的性质与判别式- 方程组的解法与应用二、数列与数列极限1. 等差数列与等比数列- 数列的概念与通项公式- 等差数列与等比数列的性质和应用2. 数列极限- 数列极限的概念与性质- 数列极限的计算方法- 应用题解析与归纳三、三角函数与解三角形1. 三角函数的定义与性质- 正弦函数、余弦函数、正切函数的定义与性质- 三角函数的基本关系式2. 解三角形- 解直角三角形的方法与步骤- 解一般三角形的方法与步骤- 角的平分线与中线的性质与应用四、平面向量与坐标系1. 平面向量的定义与运算- 平面向量的加法、减法、数量积、向量积- 平面向量与直线的关系与应用2. 坐标系与平面图形- 平面直角坐标系- 点、直线、圆的坐标表示方法和性质- 二次曲线方程与图像的性质五、导数与微分1. 导数的概念与计算方法- 函数的导数定义与性质- 基本初等函数的导数计算与性质2. 微分与应用题- 微分的概念与计算方法- 在几何问题、物理问题中的应用以上是高二下数学第一单元的主要知识点。
通过深入学习与练习,相信同学们能够掌握这些知识,为接下来的学习打下坚实的基础。
祝愿大家在学习数学的过程中取得优异的成绩!。
高二下数学圆知识点总结

高二下数学圆知识点总结数学是一门既有理论又有实践的学科,其中的圆是数学中的一个重要概念。
在高二下学期的数学学习中,我们学习了关于圆的多个知识点。
本文将对这些知识点进行总结,以帮助大家更好地理解和应用圆的相关概念。
一、圆的基本概念圆是平面上一组与一个确定点的距离相等的点的集合。
其中,确定点称为圆心,相等的距离称为半径。
圆用符号“⭕”表示,通常表示为圆O或者圆C。
我们经常用r表示圆的半径。
二、圆的元素及其关系1. 圆心角和弧度制在圆周上,以圆心为顶点所对应的角称为圆心角。
圆心角的度数等于其所对应的弧长所占圆周的比例。
在计算圆心角时,我们通常使用弧度制。
单位圆上的圆心角为1弧度。
2. 弧长和扇形面积圆的周长称为圆周长,弧长是圆周长上的一段。
计算弧长时需要考虑圆心角和半径的关系。
扇形是由圆心角和与之相交的圆弧所围成的区域。
我们可以通过计算扇形的面积来进一步了解扇形的性质。
3. 弦的性质在圆上,连接两个不同点的线段称为弦。
圆内、圆上和圆外的弦在几何性质上有所不同。
我们可以计算弦的长度以及弦和半径之间的关系。
4. 切线和切点切线是与圆只有一个交点的直线,这个交点称为切点。
切线和切点有一些特殊的性质,包括切线和半径垂直、切线与切点处的切线相切等。
三、圆之间的位置关系及公式推导1. 同心圆和离心率如果两个或多个圆的圆心重合,则这些圆称为同心圆。
同心圆具有一些特殊的性质。
离心率是一个数值,用来表示两个圆之间的距离和半径的比值。
2. 相交和相切如果两个圆在平面上具有一个或多个公共点,则称它们相交。
相交的情况包括内切、外切和相交于两点等。
在相交的情况下,我们可以计算相交部分的面积。
3. 圆内接四边形如果一个四边形的所有顶点都位于一个圆上,则称它为圆内接四边形。
圆内接四边形具有一些特殊的性质,包括对角线互相垂直、对角线互相平分等。
四、利用圆的性质解决问题在实际问题中,我们可以应用圆的性质来解决各种问题。
比如,通过计算圆的面积、周长和弧长,可以解决与圆有关的测量问题;通过计算圆心角和扇形面积,可以解决与角度和比例有关的问题;通过利用圆的位置关系,可以解决与几何图形相交、相切相关的问题。
高二下册数学知识点总结

高二下册数学知识点总结(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高二下册数学知识点总结本店铺为各位同学整理了《高二下册数学知识点总结》,希望对你的学习有所帮助!1.高二下册数学知识点总结篇一圆与圆的位置关系1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论。
高二下数学知识点

高二下数学知识点
高二下数学主要涵盖以下几个知识点:
1. 三角函数:三角函数是描述角度和边长之间关系的函数。
常见的三角函数有正弦函数、余弦函数、正切函数等。
它们在几何中的应用广泛,例如用于求解三角形的边长和角度。
2. 导数与微分:导数是描述函数变化率的概念,表示函数在某一点的瞬时变化速率。
微分是导数的几何意义,表示函数在某一点的切线斜率。
导数与微分在数学和物理等领域中有广泛的应用,例如求解函数的最值、描述曲线的形状等。
3. 不等式与函数的图像:不等式是描述数值关系的一种表达形式,函数的图像是函数在坐标系中的可视化表示。
学习不等式和函数的图像可以帮助我们理解函数的性质及其在数学和实际问题中的应用。
4. 数列与数列的求和:数列是按照一定规律排列的一组数,求和是将数列中的元素相加得到一个结果。
数列与求和在数学和实际问题中都有广泛的应用,例如在金融领域中用于计算投资的复利、在计算机科学中用于算法和数据结构等。
5. 二次函数与二次方程:二次函数是一个二次多项式函数,二次方程则是一个二次多项式的等式。
学习二次函数和二次方程可以帮助我们理解曲线的形状、解决实际问题以及解决数学中的各种方程和不等式。
以上是高二下学期数学的主要知识点,希望对您有所帮助。
如果您还有其他问题,请随时提出。
高二下数学学哪些知识点

高二下数学学哪些知识点在高二下学期的数学课程中,学生将继续深入学习数学的各个分支,建立更为扎实的数学基础,并为高三的学习打下坚实的基础。
在这一学期,学生将接触到以下几个重要的数学知识点。
一、平面向量与立体几何1. 平面向量的定义与运算:包括向量的表示、平移、数量积、向量积等基本概念和运算法则。
2. 平面向量的应用:如力的合成与分解、平面几何问题的解决等。
3. 空间几何基础:三维空间中的平行、垂直、共面等概念及其性质。
二、三角函数1. 弧度制和角度制的相互转换及其应用。
2. 三角函数的概念与性质:正弦、余弦、正切等函数的定义、性质及图像。
3. 三角函数的基本关系式与恒等变换。
三、导数与微分1. 导数的概念与性质:包括导数的几何意义、导数与函数的关系。
2. 常见函数的导数:常数函数、幂函数、指数函数、对数函数、三角函数等的导数求法。
3. 高阶导数与导数的应用:如函数的凹凸性、极值、最值等问题的解决。
四、数列与数学归纳法1. 数列基础概念:如公差、通项、等差数列、等比数列等。
2. 数列的求和与递推公式:通项公式、求和公式的推导与应用。
3. 数学归纳法:数学归纳法的原理与使用方法,以及归纳法解决问题的思路与步骤。
五、概率与统计1. 概率的基本概念与性质:包括概率的定义、加法定理、乘法定理等。
2. 随机事件与概率模型:样本空间、随机事件的概念与性质,概率模型的建立及其应用。
3. 统计基础:数据的收集和整理、频率与频率分布、均值、方差和标准差等统计概念。
总结:高二下学期的数学学习内容较为广泛,主要涉及平面向量与立体几何、三角函数、导数与微分、数列与数学归纳法,以及概率与统计等知识点。
通过学习这些知识,学生将进一步提高数学思维能力,培养解决实际问题的能力,并为高三的数学学习打下扎实的基础。
高二文科数学下学期知识点

高二文科数学下学期知识点高二文科数学下学期的知识点主要包括以下几个方面:概率与统计、三角函数与向量、导数与微积分、平面向量与曲线及椭圆、双曲线与抛物线、数列、排列与组合。
下面将逐一介绍这些知识点。
一、概率与统计概率与统计是数学中的一个重要分支,它主要研究随机事件的发生规律及其数值特征。
在高二文科数学下学期里,我们将学习以下几个内容:1. 随机事件概率的计算方法:包括频率定义、古典概型、几何概型等。
2. 条件概率与独立性:介绍条件概率的概念和计算方法,同时学习独立事件的性质与计算。
3. 随机变量与概率分布:引入随机变量的概念,学习离散型随机变量和连续型随机变量的概率分布。
4. 数理统计:介绍样本及其抽样方法,学习样本均值、样本方差等统计量的计算以及统计推断的概念。
二、三角函数与向量三角函数与向量是高中数学的重要内容之一,在高二下学期的文科数学中将重点学习以下几个知识点:1. 三角函数的性质与图像:学习正弦函数、余弦函数和正切函数的定义、性质及其图像特征。
2. 三角函数的基本关系式:学习正弦函数、余弦函数和正切函数之间的基本关系式,如诱导公式、和差化积等。
3. 平面向量的基本概念:引入平面向量的概念和表示方法,学习向量的加法、减法、数量积和向量积等运算。
4. 向量的数量积与几何应用:学习向量的数量积的定义、性质及其在几何问题中的应用,如向量的夹角、向量垂直平分等。
三、导数与微积分导数与微积分是高中数学中一门重要的数学工具,它们广泛应用于其他学科中。
在高二下学期的文科数学中,我们将学习以下内容:1. 函数与极限:学习函数的概念、函数的极限概念及其计算方法,了解函数的连续性。
2. 导数与导数的计算:介绍导数的概念和计算方法,学习常见函数的导数,如幂函数、指数函数、对数函数等。
3. 导数的应用:学习导数在函数图像的绘制、函数的最值问题、函数的单调性及极值等问题中的应用。
四、平面向量与曲线在高二下学期的文科数学中,我们将进一步学习关于平面向量与曲线的知识:1. 平面向量的叉积与混合积:学习向量的叉积和混合积的定义、性质及其在几何问题中的应用。
高二数学都学哪些知识点

高二数学都学哪些知识点高二数学学习的知识点数学是一门重要的科学学科,对于高中学生来说,数学是必修的一门学科。
高二是数学学科的重要阶段,学生在这一年需要掌握并牢固基础知识,为高考做好准备。
下面将重点介绍高二数学学习的知识点。
一、函数与方程1.1 函数的概念和性质:自变量、因变量、定义域、值域、奇偶性、单调性等。
1.2 一次函数:直线的斜率和截距,两点确定一条直线等。
1.3 二次函数:顶点、对称轴、平移、拉伸等。
1.4 不等式与方程:一元一次方程、一元二次方程、一元一次不等式、一元二次不等式等。
二、三角函数与解三角形2.1 三角函数的定义和性质:正弦、余弦、正切等。
2.2 三角函数的图像与性质:周期性、奇偶性等。
2.3 解三角形:正弦定理、余弦定理、面积公式等。
三、向量与坐标系3.1 向量的定义和性质:向量的模、方向、垂直、平行、共线等。
3.2 平面直角坐标系:直角坐标系的表示、距离公式等。
3.3 向量的运算:向量的加法、减法、数量积、向量积等。
四、数列与数列的极限4.1 数列的概念和性质:通项、公比、和等。
4.2 等差数列与等比数列:首项、公差、公比等。
4.3 数列求和:等差数列求和公式、等比数列求和公式等。
4.4 数列的极限:极限的定义、收敛与发散等。
五、导数与微分5.1 导数的概念和性质:导数的定义、导数的几何意义、导数的运算法则等。
5.2 常见函数的导数:常数函数、幂函数、指数函数、对数函数等。
5.3 函数的最值和单调性:极值点、临界点、函数单调性的判断等。
5.4 微分:微分的定义、微分的应用等。
六、概率与统计6.1 概率的基本概念:随机事件、样本空间、几何概率等。
6.2 条件概率与独立性:条件概率的计算、独立事件与互斥事件等。
6.3 统计与频率分布:频数、频率、频率分布表等。
6.4 统计图表的应用:条形图、折线图、饼图、直方图等。
以上是高二数学学习中的主要知识点,这些知识点涵盖了数学的基本理论和应用技巧,对于学生的数学学习和解题能力的提升至关重要。
数学高二的知识点有哪些

数学高二的知识点有哪些在高二数学学习中,学生将继续深入探索数学的各个领域。
下面将介绍高二数学的主要知识点。
一、函数与方程1. 函数的概念与性质:变量、函数的定义域和值域、函数图像、奇偶函数、周期函数等。
2. 一次函数与二次函数:定义、性质、图像、方程、不等式等。
3. 指数与对数函数:指数函数的性质、图像、指数方程与指数不等式;对数函数的性质、图像、对数方程与对数不等式。
4. 三角函数:正弦、余弦、正切函数的性质、图像、周期、相反三角函数、三角方程与三角恒等式。
5. 逆函数:函数的反函数、求反函数、反函数图像。
二、立体几何1. 空间几何体:立体的面、棱和顶点的性质,如正方体、长方体、正六面体等。
2. 空间图形的计算与性质:体积、表面积的计算公式,球、圆柱、锥等的性质与计算。
3. 空间坐标与方程:空间中的坐标系、坐标平面、空间直线、球面的方程。
三、概率与统计1. 随机事件与概率:基本概念、性质、计算方法;加法原理、乘法原理、区间型随机事件。
2. 排列组合与二项式定理:排列、组合的计算、性质与应用;二项式展开与二项式系数。
3. 样本调查与统计:统计指标的计算和比较、频率分布表与频率直方图、统计图的制作与分析。
四、数列与数学归纳法1. 数列的概念与性质:等差数列、等比数列的定义、通项公式、前n项和等的计算公式。
2. 递推关系与解法:递归定义、常用数列的递推关系,如斐波那契数列等。
3. 数学归纳法:数学归纳法的基本思想、证明方法与应用。
五、导数与函数的应用1. 导数的概念与性质:导数的定义、求导法则、导数的应用。
2. 函数的最值与最值问题:函数的增减性与极值、最值问题的应用。
3. 函数与曲线图像:函数图像的特征、一阶导数与函数的增减性、二阶导数与曲线的凹凸性。
六、三角函数与向量1. 三角函数的图像与性质:正弦、余弦、正切函数的周期、对称轴等性质。
2. 三角函数的运用:角度的换算、解三角方程、证明与运用三角恒等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.常用逻辑用语1. 四种命题,(原命题、否命题、逆命题、逆否命题) (1)四种命题的关系,(2)等价关系(互为逆否命题的等价性)(a )原命题与其逆否命题同真、同假。
(b )否命题与逆命题同真、同假。
2. 充分条件、必要条件、充要条件(1)定义:若p 成立,则q 成立,即q p ⇒时,p 是q 的充分条件。
同时q 是p 的必要条件。
若p 成立,则q 成立,且q 成立,则p 成立 ,即q p ⇒且p q ⇒,则p 与q 互为充要条件。
(2)判断方法: (i )定义法,(ii )集合法:设使p 成立的条件组成的集合是A ,使q 成立的条件组成的集合为B ,若B A ⊆ 则p 是q 的充分条件。
同时q 是p 的必要条件。
若A=B ,则p 与q 互为充要条件。
(iii )命题法:假设命题:“若p 则q ”。
当原命题为真时,p 是q 的充分条件。
当其逆命题也为真时,p 与q 互为充要条件。
注意:充分条件与充分非必要条件的区别:用集合法判断看,前者:集合A 是集合B 的子集;后者:集合A 是集合B 的真子集。
3. 全称命题、特称命题(含有全称量词的命题叫全称命题,含有存在量词的命题叫特称命题) (1)关系:全称命题的否定是特称命题,特称命题的否定是全称命题。
(2)全称量词与存在量词的否定。
关键词 否定词 关键词 否定词 关键词 否定词 关键词 否定词 都是不都是至少一个一个都没有至多一个至少两个属于不属于4. 逻辑连结词“或”,“且”,“非”。
(1)构造复合命题的方式:简单命题+逻辑连结词(或、且、非)+简单命题。
(2)复合命题的真假判断:p q 非p p 或q p 且q 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假假真假假注意:“命题的否定”与“否命题”是两个不同的概念:前者只否定结论,后者结论与条件共同否定。
二.圆锥曲线 一、椭圆方程.1. 椭圆方程的第一定义:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12222b a by a x =+.ii. 中心在原点,焦点在y 轴上:)0(12222 b a bx a y =+.②一般方程:)0,0(122 B A By Ax =+.③椭圆的标准方程:12222=+b y a x 的参数方程为⎩⎨⎧==θθsin cos b y a x (一象限θ应是属于20πθ ).⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==.⑤准线:c a x 2±=或ca y 2±=.⑥离心率:)10( e ace =. ⑦焦点半径: i. 设),(00y x P 为椭圆)0(12222 b a b y a x =+上的一点,21,F F 为左、右焦点,则 ii.设),(00y x P 为椭圆)0(12222 b a a y b x =+上的一点,21,F F 为上、下焦点,则由椭圆第二定义可知:)0()(),0()(0002200201 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”.注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(2222a b c a b d -=和),(2ab c⑶共离心率的椭圆系的方程:椭圆)0(12222b a b y a x =+的离心率是)(22b a c a c e -==,方程t t by a x (2222=+是大于0的参数,)0 b a 的离心率也是ace = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆:12222=+by ax 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为2tan2θb (用余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2cot 2θ⋅b .二、双曲线方程.1. 双曲线的第一定义:的一个端点的一条射线以无轨迹方程为双曲线21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-⑴①双曲线标准方程:)0,(1),0,(122222222 b a b x a y b a b y a x =-=-.一般方程:)0(122 AC Cy Ax =+.⑵①i. 焦点在x 轴上:顶点:)0,(),0,(a a - 焦点:)0,(),0,(c c - 准线方程c a x 2±= 渐近线方程:0=±b ya x 或02222=-b y a x ii. 焦点在y 轴上:顶点:),0(),,0(a a -. 焦点:),0(),,0(c c -. 准线方程:c a y 2±=. 渐近线方程:0=±b x a y 或02222=-b x a y ,参⇒-=+=0201,ex a PF ex a PF ⇒-=+=0201,ey a PF ey a PF ▲asin αacos α,()bsin αbcos α(),N yxN 的轨迹是椭圆数方程:⎩⎨⎧==θθtan sec b y a x 或⎩⎨⎧==θθsec tan a y b x .②轴y x ,为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c.③离心率ace =. ④准线距c a 22(两准线的距离);通径ab 22.⑤参数关系ace b a c =+=,222. ⑥焦点半径公式:对于双曲线方程12222=-b y a x(21,F F 分别为双曲线的左、右焦点或分别为双曲线的上下焦点)“长加短减”原则:(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)aex MF a ex MF -=+=0201 构成满足a MF MF 221=-aex F M a ex F M +-='--='0201 ⑶等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e .⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222b y a x互为共轭双曲线,它们具有共同的渐近线:02222=-b y a x . ⑸共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x 如果双曲线的渐近线为0=±bya x 时,它的双曲线方程可设为)0(2222≠=-λλby ax .例如:若双曲线一条渐近线为x y 21=且过)21,3(-p ,求双曲线的方程? 解:令双曲线的方程为:)0(422≠=-λλy x ,代入)21,3(-得12822=-y x . ⑹直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条; 区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条; 区域⑤:即过原点,无切线,无与渐近线平行的直线.小结:1.过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.2.若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入”“∆法与渐近线求交和两根之和与两根之积同号. ⑺若P 在双曲线12222=-by ax ,则常用结论1:从双曲线一个焦点到另一条渐近线的距离等于b.2:P 到焦点的距离为m = n ,则P 到两准线的距离比为m ︰n. 简证:ePF e PF d d 2121= =n m. ▲y xM'MF 1F2▲yxM'MF 1F 2▲yxF 1F 21234533三、抛物线方程.3. 设0 p ,抛物线的标准方程、类型及其几何性质:图形焦点 准线 范围对称轴 x 轴y 轴顶点 (0,0)离心率 焦点注:①x c by ay =++2顶点)244(2aba b ac --.②)0(22≠=p px y 则焦点半径2P x PF +=;)0(22≠=p py x 则焦点半径为2P y PF +=.③通径为2p ,这是过焦点的所有弦中最短的.④px y 22=(或py x 22=)的参数方程为⎩⎨⎧==pt y pt x 222(或⎩⎨⎧==222pt y ptx )(t 为参数). 四、圆锥曲线的统一定义..4. 圆锥曲线的统一定义:平面内到定点F 和定直线l 的距离之比为常数e 的点的轨迹.当10 e 时,轨迹为椭圆;当1=e 时,轨迹为抛物线;当1 e 时,轨迹为双曲线;当0=e 时,轨迹为圆(ace =,当b a c ==,0时). 5. 圆锥曲线方程具有对称性. 例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.因为具有对称性,所以欲证AB=CD, 即证AD 与BC 的中点重合即可. 注:椭圆、双曲线、抛物线的标准方程与几何性质椭圆双曲线抛物线定义1.到两定点F 1,F 2的距离之和为定值2a(2a>|F 1F 2|)的点的轨迹 1.到两定点F 1,F 2的距离之差的绝对值为定值2a(0<2a<|F 1F 2|)的点的轨迹2.与定点和直线的距离之比为定值e的点的轨迹.(0<e<1)2.与定点和直线的距离之比为定值e的点的轨迹.(e>1)与定点和直线的距离相等的点的轨迹.方 程标准方程12222=+b y a x (b a >>0) 12222=-b y a x (a>0,b>0) y 2=2px参数方程⎩⎨⎧==pt y pt x 222(t 为参数)范围 ─a ?x ?a ,─b ?y ?b |x| ? a ,y ?R x ?0中心 原点O (0,0) 原点O (0,0)顶点 (a,0), (─a,0), (0,b) , (0,─b) (a,0), (─a,0)(0,0) 对称轴 x 轴,y 轴;长轴长2a,短轴长2bx 轴,y 轴;实轴长2a, 虚轴长2b.x 轴焦点F 1(c,0), F 2(─c,0)F 1(c,0), F 2(─c,0)焦距2c (c=22ba -) 2c (c=22ba +)离心率e=1准线x=ca 2±x=ca 2±渐近线 y=±ab x焦半径通径2p焦参数 P1. 方程y 2=ax 与x 2=ay 的焦点坐标及准线方程.2. 共渐近线的双曲线系方程.四.导数及其应用1、函数()f x 从1x 到2x 的平均变化率:()()2121f x f x x x --2、导数定义:()f x 在点0x 处的导数记作xx f x x f x f y x xx ∆-∆+='='→∆=)()(lim)(00000;.3、函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率.4、常见函数的导数公式:①'C0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '=5、导数运算法则:()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦;()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦;()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦.6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增; 若()0f x '<,则函数()y f x =在这个区间内单调递减.7、求解函数()y f x =单调区间的步骤:(1)确定函数()y f x =的定义域; (2)求导数''()y f x =; (3)解不等式'()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间.8、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值;()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.9、求解函数极值的一般步骤:(1)确定函数的定义域 (2)求函数的导数f ’(x) (3)求方程f ’(x)=0的根(4)用方程f ’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格 (5)由f ’(x)在方程f ’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况 10、求函数()y f x =在[],a b 上的最大值与最小值的步骤是:()1求函数()y f x =在(),a b 内的极值;()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.五.数系的扩充和复数概念和公式总结1.虚数单位i :它的平方等于-1,即 21i =-2.i 与-1的关系: i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i3.i 的周期性:i4n+1=i,i 4n+2=-1, i 4n+3=-i, i 4n =14.复数的定义:形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部全体复数所成的集合叫做复数集,用字母C 表示 复数通常用字母z 表示,即(,)za bi ab R =+∈5. 复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi a b R +∈,当且仅当b =0时,复数a +bi (a 、b ∈R )是实数a ;当b ≠0时,复数z =a +bi 叫做虚数;当a =0且b ≠0时,z =bi 叫做纯虚数;a ≠0且b ≠0时,z =bi 叫做非纯虚数的纯虚数;当且仅当a =b =0时,z 就是实数0.5.复数集与其它数集之间的关系:N Z Q R C .6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等如果a ,b ,c ,d∈R ,那么a +bi =c +di ⇔a =c ,b =d一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较大小 当两个复数不全是实数时不能比较大小7. 复平面、实轴、虚轴:点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面, x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数(1)实轴上的点都表示实数(2)虚轴上的点都表示纯虚数(3)原点对应的有序实数对为(0,0)设z 1=a +bi ,z 2=c +di (a 、b 、c 、d ∈R )是任意两个复数,8.复数z 1与z 2的加法运算律:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i . 9.复数z 1与z 2的减法运算律:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i . 10.复数z 1与z 2的乘法运算律:z 1·z 2= (a +bi )(c +di )=(ac -bd )+(bc +ad )i .11.复数z 1与z 2的除法运算律:z 1÷z 2 =(a +bi )÷(c +di )=i dc adbc d c bd ac 2222+-+++(分母实数化) 12.共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数虚部不等于0的两个共轭复数也叫做共轭虚数通常记复数z 的共轭复数为z 。