高二数学知识点总结归纳

合集下载

高二数学知识点总结大全

高二数学知识点总结大全

高二数学知识点总结大全一、集合与函数1. 集合的概念和表示方法2. 集合的运算:交集、并集、差集、补集3. 集合的基本性质和运算规律4. 函数的概念和表示方法5. 函数的性质:定义域、值域、单调性、奇偶性6. 函数的图像、反函数和复合函数二、平面几何1. 直线与射线的性质与关系2. 角的概念、性质和分类:锐角、直角、钝角3. 举例说明平行线和垂直线的判定方法4. 三角形的分类:按角度分类、按边长分类5. 三角形的面积与周长的计算方法6. 三角形内角和、外角和的计算与性质7. 三角形相似性质与判定8. 三角形的中线、高线和垂心、重心的概念与性质三、数列与数列的极限1. 数列的概念与表示方法2. 等差数列与等比数列的性质3. 数列的通项公式与前n项和的公式4. 数列极限的定义与性质5. 数列极限的计算方法:夹逼定理、单调有界准则6. 数列极限存在的判定7. 数列极限与数列的收敛性和发散性的关系四、函数的导数与应用1. 函数的导数与导数的基本性质2. 基本初等函数的导数3. 导数的四则运算法则与复合函数的求导法则4. 高阶导数与隐函数求导5. 函数的单调性与极值点的判定6. 函数的凹凸性与拐点的判定7. 泰勒公式与函数图像的描绘8. 最值问题与最速下降问题的应用五、概率统计1. 随机事件与样本空间的概念2. 概率的定义、性质和计算方法3. 条件概率和乘法定理4. 全概率公式和贝叶斯定理5. 随机变量与概率密度函数的概念6. 二项分布、正态分布和泊松分布的性质与应用7. 抽样调查与统计推断的方法六、立体几何1. 空间几何体的基本概念与性质:点、线、面、体2. 空间几何体的投影、截面和旋转3. 圆柱体、圆锥体、棱锥体、棱柱体的特征与计算4. 球的性质与计算5. 空间向量的概念与基本运算法则6. 向量与几何体的应用:平面的方程、直线的方程七、三角函数1. 弧度与角度的转化关系2. 基本三角函数的定义与性质3. 三角函数图像的性质与变换4. 和差化积公式、倍角公式、半角公式的推导与应用5. 三角方程的解法与求解区间以上为高二数学知识点总结的大致内容,希望对你的学习有所帮助。

高二数学知识点归纳总结

高二数学知识点归纳总结

高二数学知识点归纳总结一、函数1.1 点与直线•直线函数的基本性质和常用公式•直线的斜率和方向角的概念及其计算方法•直线的截距和截角的概念及计算方法1.2 一次函数•基本性质和常用公式•斜率与函数图像的关系•函数的单调性和范围1.3 二次函数•基本性质和常用公式•函数图像的性质•最值和顶点的计算方法•参数 a 的影响1.4 分段函数•函数的定义和表示方法•函数的连续性和间断点•绝对值函数的性质二、数列2.1 等差数列•基本概念和性质•求通项公式和前 n 项和•等差中项的性质2.2 等比数列•基本概念和性质•求通项公式和前 n 项和•等比中项的性质2.3 递推数列•数列的递推公式及求解方法•递推数列的收敛性和极限2.4 数列极限•数列极限的概念和性质•收敛数列和发散数列的判断方法•Stolz 定理的应用三、三角函数3.1 弧度制与角度制•弧度制与角度制的定义和相互转换•弧度弧长公式和扇形面积公式3.2 三角函数初步•正弦、余弦、正切等三角函数的定义•三角函数图像和周期•三角函数的通性3.3 三角函数的诱导公式•三角函数诱导公式的意义和基本公式•诱导公式的变形和推广•诱导公式的应用3.4 三角函数的图像与性质•三角函数图像的性质和特点•三角函数的奇偶性和周期性•三角函数的单调性和单调区间四、空间几何4.1 点、直线、平面•空间几何要素之间的关系•管理空间位置和方向的基本方法•基本的测量和计算方法4.2 曲面和曲线•空间曲面和曲线的定义和性质•常见的曲线和曲面的名称、特点和应用•曲面和曲线的参数方程和极坐标方程4.3 空间角•角的基本概念和性质•一般空间角和二面角的定义•空间角的计算方法和性质4.4 空间向量•向量的基本概念和性质•向量的表示和运算方法•向量的数量积和向量积的概念和计算方法五、微积分5.1 导数及其应用•导数的定义和计算方法•导数的几何意义和物理意义•导数在应用问题中的应用5.2 函数的极限•函数极限的概念和性质•函数单侧极限的概念和意义•极限的基本计算方法和判定方法5.3 函数的连续性•函数连续的定义和判定法•连续函数的基本性质和中值定理•函数间的连续性和复合函数的连续性5.4 微分学基本定理•微分学基本定理的概念和形式•复合函数求导的方法•链式法则和其他微分公式六、概率与统计6.1 概率初步•随机事件的基本概念和性质•概率的定义和计算方法•概率的性质和常见的概率分布6.2 统计基本概念•统计数据的意义和数据处理方法•统计分布和数据的度量•统计学的基本规律和方法6.3 正态分布和参数估计•正态分布的概念和性质•正态分布的计算方法和统计应用•参数估计的基本原理和方法6.4 假设检验•假设检验的概念和基本步骤•假设检验的标准误和 P 值的计算方法•假设检验的应用和限制。

高二知识点数学总结归纳五篇(高二学考数学知识点总结)

高二知识点数学总结归纳五篇(高二学考数学知识点总结)

高二知识点数学总结归纳五篇(高二学考数学知识点总结)高二同学要依据自己的条件,以及高中阶段学科学问交叉多、综合性强,以及考查的学问和思维触点广的特点,找寻一套行之有效的学习方法。

下面就是给大家带来的高二数学学问点总结,希望能关怀到大家!高二数学学问点总结1一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k表示。

即。

斜率反映直线与轴的倾斜程度。

②过两点的直线的斜率公式:留意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的挨次无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程①点斜式:直线斜率k,且过点留意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

⑤一般式:(A,B不全为0)留意:各式的适用范围特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a 为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。

高二数学基础知识点全总结

高二数学基础知识点全总结

高二数学基础知识点全总结一、代数部分1. 一元二次方程一元二次方程是指形式为ax^2+bx+c=0的方程,其中a不等于0。

一元二次方程的求解方法有因式分解、配方法、公式法等,学生需要掌握这些方法,并且能够根据具体情况选择合适的方法来求解方程。

2. 多项式多项式是由一个或多个项相加或相减而成的代数表达式,其中每一项的指数都是非负整数。

多项式的加减乘除、因式分解、余式定理与因式定理都是需要掌握的基本知识点。

3. 不等式不等式是指带有不等关系的代数式,包括一元一次不等式、一元二次不等式以及多元不等式等。

解不等式需要利用代数运算法则,同时要注意代数表达式中不等关系的性质,并灵活应用这些性质来解决不等式问题。

4. 幂指数函数学生在高二阶段需要学习幂函数和指数函数的概念、性质及图像,同时要了解幂函数和指数函数的运算性质,包括指数函数的乘法和除法、指数律等。

5. 对数函数对数函数是指以某个正数作为底数,利用幂的运算法则引进的。

学生需要对对数函数的定义、性质,对数函数的图像以及对数函数的运算法则有一定的了解。

6. 绝对值绝对值的概念是非常重要的,学生需要了解绝对值的概念及性质,包括绝对值不等式、绝对值函数的图像等内容。

7. 排列组合与二项式定理排列组合是高中数学中的基础概念,学生需要了解排列组合的概念、性质以及运用。

而二项式定理则是指(a+b)^n的展开式,学生需要掌握二项式定理的应用,包括二项式系数、二项式展开式等。

8. 函数概念在高二数学中,学生需要掌握函数基本概念、函数的性质、函数的图像与性质等内容,同时要能够应用函数的知识解决实际问题。

二、几何部分1. 平面向量学生需要掌握平面向量的概念、平面向量的运算法则、平面向量的数量积与夹角的性质等。

2. 直线与圆直线与圆是高二数学中的重要几何概念,学生需要了解直线的方程、圆的方程、直线与圆的位置关系、直线与圆的切线与法线等内容。

3. 三角形学生需要掌握三角形的基本概念、三角形的性质、三角形的相似性与全等性、三角形的内心、外心、垂心、重心等特殊点的性质,以及利用这些性质解决相关问题。

高二数学的所有知识点总结归纳

高二数学的所有知识点总结归纳

高二数学的所有知识点总结归纳高二数学作为中学数学教学的重要组成部分,是学生数学基础知识和解题能力的进一步提升和巩固阶段。

在这一阶段,学生将接触到更为复杂和深入的数学知识,需要系统地学习和理解各个知识点,并通过多种题型的训练来提高解题能力。

本文将对高二数学的各个知识点进行总结归纳。

一、函数与方程1. 二次函数与一元二次方程2. 指数函数与指数方程3. 对数函数与对数方程4. 三角函数与三角方程二、数列与数列的极限1. 等差数列与等差数列的性质2. 等比数列与等比数列的性质3. 通项公式与求和公式4. 数列极限的概念与求解三、概率与统计1. 条件概率与乘法原理2. 排列与组合3. 统计分布与统计图表4. 正态分布与标准正态分布四、平面几何与空间几何1. 平面几何中的定理与性质2. 向量与向量的运算3. 空间几何中的定理与性质4. 空间几何中的推理与证明五、导数与微分1. 导数的概念与性质2. 常用导数公式与求导法则3. 函数的极值与最值4. 微分的概念与应用六、三角函数与解三角形1. 三角函数的基本性质与公式2. 三角方程的解法与应用3. 三角形的面积与周长计算4. 三角形的相似与全等条件七、立体几何与解立体几何问题1. 空间图形的投影与旋转2. 空间图形的平面分割与体积计算3. 空间几何问题的解法与推理以上是高二数学的主要知识点总结归纳,通过系统地学习和掌握这些知识点,学生可以提高数学运算和解题的能力,为高中数学的进一步学习和应用打下坚实的基础。

同时,希望学生能够灵活运用所学知识,通过解题的实践来加深对数学的理解和掌握。

只有在不断地实践和巩固中,才能真正掌握高二数学的知识,为未来的学习和发展奠定基础。

高二数学知识点总结(精选15篇)

高二数学知识点总结(精选15篇)

高二数学知识点总结(精选15篇)高二数学知识点总结1第一章:解三角形。

掌握正弦余弦公式及其变式和推论和三角面积公式即可。

第二章:数列。

考试必考。

等差等比数列的通项公式、前n 项和及一些性质。

这一章属于学起来很容易,但做题却不会做的类型。

考试题中,一般都是要求通项公式、前n项和,所以拿到题目之后要带有目的的去推导。

第三章:不等式。

这一章一般用线性规划的形式来考察。

这种题一般是和实际问题联系的,所以要会读题,从题中找不等式,画出线性规划图。

然后再根据实际问题的限制要求求最值。

选修中的简单逻辑用语、圆锥曲线和导数:逻辑用语只要弄懂充分条件和必要条件到底指的是前者还是后者,四种命题的真假性关系,逻辑连接词,及否命题和命题的否定的区别,考试一般会用选择题考这一知识点,难度不大;圆锥曲线一般作为考试的压轴题出现。

而且有多问,一般第一问较简单,是求曲线方程,只要记住圆锥曲线的表达式难度就不大。

后面两到三问难打一般会很大,而且较费时间。

所以不建议做。

这一章属于学的比较难,考试也比较难,但是考试要求不高的内容;导数,导数公式、运算法则、用导数求极值和最值的方法。

一般会考察用导数求最值,会用导数公式就难度不大。

高二数学知识点总结2一、集合、简易逻辑(14课时,8个)1、集合;2、子集;3、补集;4、交集;5、并集;6、逻辑连结词;7、四种命题;8、充要条件。

二、函数(30课时,12个)1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。

12、函数的应用举例。

三、数列(12课时,5个)1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。

四、三角函数(46课时,17个)1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。

高二数学课本知识点总结归纳(8篇)

高二数学课本知识点总结归纳(8篇)

高二数学课本知识点总结归纳(8篇)高二数学课本知识点总结归纳(8篇)你知道哪些高二数学知识点是真正对我们有帮助的吗在平凡的学习生活中,大家都背过各种知识点吧知识点就是一些常考的内容,或者考试经常出题的地方。

下面是小编给大家整理的高二数学课本知识点总结归纳,仅供参考希望能帮助到大家。

高二数学课本知识点总结归纳篇1高二数学知识点11、导数的定义:在点处的导数记作、2、导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。

V=s/(t)表示即时速度。

a=v/(t)表示加速度。

3、常见函数的导数公式:4、导数的四则运算法则:5、导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

高二数学知识点2等差数列:对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。

那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:将以上n—1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n—1个d,如此便得到上述通项公式。

此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。

值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。

等比数列:对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。

高二数学知识点总结_高二数学知识点

高二数学知识点总结_高二数学知识点

高二数学知识点总结_高二数学知识点高二数学是高中数学的重要阶段,主要学习内容包括函数、数列、三角函数、解析几何、概率论等。

以下是高二数学的主要知识点总结。

1. 函数(1) 函数及其表示:函数的定义、函数的自变量、因变量和函数值,函数的表示方法。

(2) 函数的性质:奇偶性、周期性、单调性、有界性等。

(3) 函数的运算:四则运算、复合函数、反函数等。

(4) 函数的图像:函数的平移、对称、伸缩等。

(5) 初等函数:指数函数、对数函数、幂函数、三角函数等。

(6) 函数的极值和最值:最大值、最小值、极值点、最值点等。

2. 数列(1) 定义和性质:数列的概念、数列的项、首项、公差、通项等。

(2) 常见数列:等差数列、等比数列、斐波那契数列等。

(3) 数列的运算:数列的加法、减法、数列的乘法和除法等。

(4) 数列的极限:数列的有界性、数列的单调性、数列的极限等。

3. 三角函数(1) 基本概念:角度、弧度、正弦、余弦、正切等。

(2) 基本关系式:正弦定理、余弦定理、正切定理等。

(3) 三角函数的图像与性质:正弦函数、余弦函数、正切函数等。

(4) 三角函数的运算:和差化积、积化和差等。

(5) 三角方程与三角不等式:解三角方程、解三角不等式、三角方程的应用等。

4. 解析几何(1) 平面直角坐标系:坐标轴、坐标、距离等。

(2) 直线与圆:直线的方程、直线的位置关系、圆的方程、圆的性质等。

(3) 曲线的方程与图像:二次函数、三次函数、指数函数、对数函数等的图像与性质。

(4) 平面向量:向量的概念、向量的运算、向量的线性相关与线性无关等。

(5) 空间几何:点、直线、平面的位置关系、立体图形的体积与表面积等。

5. 概率论(1) 随机事件与概率:随机事件的概念、概率的基本性质等。

(2) 事件的运算:事件的并、交、差、余等。

(3) 条件概率与独立事件:条件概率的概念、独立事件的概念等。

(4) 随机变量与概率分布:随机变量的概念、离散型随机变量、连续型随机变量等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学知识点总结归纳【一】一、集合概念(1)集合中元素的特征:确定性,互异性,无序性。

(2)集合与元素的关系用符号=表示。

(3)常用数集的符号表示:自然数集;正整数集;整数集;有理数集、实数集。

(4)集合的表示法:列举法,描述法,韦恩图。

(5)空集是指不含任何元素的集合。

空集是任何集合的子集,是任何非空集合的真子集。

函数一、映射与函数:(1)映射的概念:(2)一一映射:(3)函数的概念:二、函数的三要素:相同函数的判断方法:①对应法则;②定义域(两点必须同时具备)(1)函数解析式的求法:①定义法(拼凑):②换元法:③待定系数法:④赋值法:(2)函数定义域的求法:①含参问题的定义域要分类讨论;②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。

(3)函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;②逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:;④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域;⑦单调性法:函数为单调函数,可根据函数的单调性求值域。

⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。

【二】函数的单调性、奇偶性、周期性单调性:定义:注意定义是相对与某个具体的区间而言。

判定方法有:定义法(作差比较和作商比较)导数法(适用于多项式函数)复合函数法和图像法。

应用:比较大小,证明不等式,解不等式。

奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。

f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。

判别方法:定义法,图像法,复合函数法应用:把函数值进行转化求解。

周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。

其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.应用:求函数值和某个区间上的函数解析式。

四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。

常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)平移变换y=f(x)→y=f(x+a),y=f(x)+b注意:(ⅰ)有系数,要先提取系数。

如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。

(ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。

对称变换y=f(x)→y=f(-x),关于y轴对称y=f(x)→y=-f(x),关于x轴对称y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y 轴对称。

(注意:它是一个偶函数)伸缩变换:y=f(x)→y=f(ωx),y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。

一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a 对称;【三】(1)定义:(2)函数存在反函数的条件:(3)互为反函数的定义域与值域的关系:(4)求反函数的步骤:①将看成关于的方程,解出,若有两解,要注意解的选择;②将互换,得;③写出反函数的定义域(即的值域)。

(5)互为反函数的图象间的关系:(6)原函数与反函数具有相同的单调性;(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。

七、常用的初等函数:(1)一元一次函数:(2)一元二次函数:一般式两点式顶点式二次函数求最值问题:首先要采用配方法,化为一般式,有三个类型题型:(1)顶点固定,区间也固定。

如:(2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。

(3)顶点固定,区间变动,这时要讨论区间中的参数.等价命题在区间上有两根在区间上有两根在区间或上有一根注意:若在闭区间讨论方程有实数解的情况,可先利用在开区间上实根分布的情况,得出结果,在令和检查端点的情况。

(3)反比例函数:(4)指数函数:指数函数:y=(ao,a≠1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a1和0(5)对数函数:对数函数:y=(ao,a≠1)图象恒过点(1,0),单调性与a的值有关,在解题中,往往要对a分a1和0高二数学知识点总结(二)【一】(1)算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.(2)算法的特点:①有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.④不性:求解某一个问题的解法不一定是的,对于一个问题可以有不同的算法.⑤普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.【二】一、直线与圆:1、直线的倾斜角的范围是在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。

当直线与轴重合或平行时,规定倾斜角为0;2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。

3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为,⑵斜截式:直线在轴上的截距为和斜率,则直线方程为4、直线与直线的位置关系:(1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=05、点到直线的距离公式;两条平行线与的距离是6、圆的标准方程:.⑵圆的一般方程:注意能将标准方程化为一般方程7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②相切③相交9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长二、圆锥曲线方程:1、椭圆:①方程(ab0)注意还有一个;②定义:|PF1|+|PF2|=2a2c;③e=④长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2;2、双曲线:①方程(a,b0)注意还有一个;②定义:||PF1|-|PF2||=2a2c;③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b23、抛物线:①方程y2=2px注意还有三个,能区别开口方向;②定义:|PF|=d焦点F(,0),准线x=-;③焦半径;焦点弦=x1+x2+p;4、直线被圆锥曲线截得的弦长公式:5、注意解析几何与向量结合问题:1、,.(1);(2).2、数量积的定义:已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b,即3、模的计算:|a|=.算模可以先算向量的平方4、向量的运算过程中完全平方公式等照样适用:三、直线、平面、简单几何体:1、学会三视图的分析:2、斜二测画法应注意的地方:(1)在已知图形中取互相垂直的轴Ox、Oy。

画直观图时,把它画成对应轴ox、oy、使∠xoy=45°(或135°);(2)平行于x轴的线段长不变,平行于y轴的线段长减半.(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.3、表(侧)面积与体积公式:⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S 底h⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=⑷球体:①表面积:S=;②体积:V=4、位置关系的证明(主要方法):注意立体几何证明的书写(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。

(2)平面与平面平行:①线面平行面面平行。

(3)垂直问题:线线垂直线面垂直面面垂直。

核心是线面垂直:垂直平面内的两条相交直线5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)⑴异面直线所成角的求法:平移法:平移直线,构造三角形;⑵直线与平面所成的角:直线与射影所成的角高二数学知识点总结(三)数列定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列的通项公式为:an=a1+(n-1)d(1)前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)以上n均属于正整数。

解释说明:从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。

且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式。

推论公式:从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈N,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。

基本公式:和=(首项+末项)×项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项末项=首项+(项数-1)×公差高二数学知识点总结(四)【一】分层抽样先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

相关文档
最新文档