大学物理习集

合集下载

大学物理习题答案

大学物理习题答案

大学物理习题答案 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-一、 单项选择题:1. 北京正负电子对撞机中电子在周长为L 的储存环中作轨道运动。

已知电子的动量是P ,则偏转磁场的磁感应强度为: ( C ) (A)eLP π; (B)eL P π4; (C) eLPπ2; (D) 0。

2. 在磁感应强度为B的均匀磁场中,取一边长为a 的立方形闭合面,则通过该闭合面的磁通量的大小为: ( D )(A) B a 2; (B) B a 22; (C) B a 26; (D) 0。

3.半径为R 的长直圆柱体载流为I ,电流I 均匀分布在横截面上,则圆柱体内(R r 〈)的一点P 的磁感应强度的大小为 ( B ) (A) r I B πμ20=; (B) 202R Ir B πμ=; (C) 202rIB πμ=; (D) 202RIB πμ=。

4.单色光从空气射入水中,下面哪种说法是正确的 ( A ) (A) 频率不变,光速变小; (B) 波长不变,频率变大; (C) 波长变短,光速不变; (D) 波长不变,频率不变.5.如图,在C 点放置点电荷q 1,在A 点放置点电荷q 2,S 是包围点电荷q 1的封闭曲面,P 点是S 曲面上的任意一点.现在把q 2从A 点移到B 点,则 (D )(A) 通过S 面的电通量改变,但P 点的电场强度不变;(B) 通过S 面的电通量和P 点的电场强度都改变; (C) 通过S 面的电通量和P 点的电场强度都不变; (D) 通过S 面的电通量不变,但P 点的电场强度改变。

6.如图所示,两平面玻璃板OA 和OB 构成一空气劈尖,一平面单色光垂直入射到劈尖上,当A 板与B 板的夹角θ增大时,干涉图样将 ( C )(A) 干涉条纹间距增大,并向O 方向移动; (B) 干涉条纹间距减小,并向B 方向移动; (C) 干涉条纹间距减小,并向O 方向移动; (D) 干涉条纹间距增大,并向O 方向移动.7.在均匀磁场中有一电子枪,它可发射出速率分别为v 和2v 的两个电子,这两个电子的速度方向相同,且均与磁感应强度B 垂直,则这两个电子绕行一周所需的时间之比为 ( A )(A) 1:1; (B) 1:2; (C) 2:1; (D) 4:1.8.如图所示,均匀磁场的磁感强度为B ,方向沿y 轴正向,欲要使电量为Q 的正离子沿x 轴正向作匀速直线运动,则必须加一个均匀电场E ,其大小和方向为 ( D )(A) E =νB ,E 沿z 轴正向; (B) E =vB ,E 沿y 轴正向;(C) E =B ν,E 沿z 轴正向; (D) E =B ν,E 沿z 轴负向。

大学普通物理复习题(10套)带答案

大学普通物理复习题(10套)带答案

普通物理试题1-10试题1一、填空题11. 7.在与匀强磁场B垂直的平面,有一长为L 的铜杆OP ,以角速度 绕端点O 作逆时针匀角速转动,如图13—11,则OP 间的电势差为 P O U U (221L B )。

3. 3.光程差 与相位差 的关系是(2 )25. 1.单色光在水中传播时,与在真空中传播比较:频率(不变 );波长( 变小 );传播速度( 变小 )。

(选填:变大、变小、不变。

)68.17-5. 波长为 的平行单色光斜入射向一平行放置的双缝,如图所示,已知入射角为θ缝宽为a ,双缝距离为b ,产生夫琅和费衍射,第二级衍射条纹出现的角位置是(sin 2sin 1b。

33. 9. 单色平行光垂直照射在薄膜上.经上下两表面反射的两束光发生干涉、如图所示, 若薄膜的厚度为e .且321n n n ,1 为入射光在1n 中的波长,则两束反射光的光程差为 ( 22112 n e n)。

二、选择题6. 2. 如图示,在一无限长的长直载流导线旁,有一形单匝线圈,导线与线圈一侧平行并在同一平面,问:下列几种情况中,它们的互感产生变化的有( B ,C ,D )(该题可有多个选择)(A) 直导线中电流不变,线圈平行直导线移动; (B) 直导线中电流不变,线圈垂直于直导线移动;(C) 直导线中电流不变,线圈绕AB 轴转动; (D) 直导线中电流变化,线圈不动12.16-1.折射率为n 1的媒质中,有两个相干光源.发出的光分别经r 1和r 2到达P 点.在r 2路径上有一块厚度为d ,折射率为n 2的透明媒质,如图所示,则这两条光线到达P 点所经过的光程是( C )。

(A )12r r(B ) d n n r r 2112(C ) d n n n r r 12112 (D ) d n n r r 1211283. 7.用白光垂直照射一平面衍射光栅、发现除中心亮纹(0 k )之外,其它各级均展开成一光谱.在同一级衍射光谱中.偏离中心亮纹较远的是( A )。

大学物理练习题

大学物理练习题
关系为( )
I
I
S 1 2S
2
A、Φ21 2Φ12
B、 Φ21 Φ12
C、 Φ21 Φ12
D、 Φ21
1 2
Φ12
7. 如图所示,两个“无限长”的、半径分别为 R1 和 R2 的共轴圆柱面均匀带电,沿轴线方向单位长度
上所带电荷分别为 1 和 2 ,则在两圆柱面之间、距离轴线为 r 处的 P 点的电场强度大小 E 为( )
B. 电动势只在 导线中产生
C. 电动势在 和 中都产生,且两者大小相等
D. 导线中的电动势小于 导线中的电动势
20.螺线管产生的磁场是一个非均匀磁场
B.一个通电的无限长的密绕的螺线管产生的磁场在螺线管内、外部都是一个均匀磁场
C.一个通电的无限长的密绕的螺线管产生的磁场在螺线管内部是一个均匀磁场,外部没有磁场
A、 1 qa qb 4 0 r
B、 1 qa qb 4 0 r
C、
1 4π 0
qa r
qb Rb
D、
1 4π 0
qa Ra
qb Rb
6. 面积为 S 和 2S 的两圆线圈 1、2 如图放置,通有相同的电流 I .线圈 1 的电流所产生的通过线圈
2 的磁通用Φ21 表示,线圈 2 的电流所产生的通过线圈 1 的磁通用Φ12 表示,则Φ21 和 Φ12 的大小
三、计算题
1. 一个内外半径分别为 R1 和 R2 的均匀带电球壳,总电荷为 Q1,球壳外同心罩一个半径为 R3 的均匀带 电球面,球面电荷为 Q2,求电场分布。
2. 有一同轴电缆,其尺寸如图所示,两导体中的电流均为 I,但电流的流向相反,导体的磁性可不考
虑,试计算以下各处的磁感应强度:(1)r<R1; (2)R1<r<R2; (3)R2<r<R3; (4)r>R3。

(完整版)《大学物理》练习题及参考答案

(完整版)《大学物理》练习题及参考答案

《大学物理》练习题一. 单选题:1.下列说法正确的是……………………………………() 参看课本P32-36A . 惯性系中,真空中的光速与光源的运动状态无关,与光的频率有关B . 惯性系中,真空中的光速与光源的运动状态无关,与光的频率无关C . 惯性系中,真空中的光速与光源的运动状态有关,与光的频率无关D . 惯性系中,真空中的光速与光源的运动状态有关,与光的频率有关2.下列说法正确的是………………………………… ( ) 参看课本P32-36A . 伽利略变换与洛伦兹变换是等价的B . 所有惯性系对一切物理定律都是不等价的C . 在所有惯性系中,真空的光速具有相同的量值cD . 由相对论时空观知:时钟的快慢和量尺的长短都与物体的运动无关3.下列说法正确的是………………………………… ( )参看课本P58,76,103 A . 动量守恒定律的守恒条件是系统所受的合外力矩为零 B . 角动量守恒定律的守恒条件是系统所受的合外力为零 C . 机械能守恒定律的守恒条件是系统所受的合外力不做功 D . 以上说法都不正确4. 下列关于牛顿运动定律的说法正确的是…………( ) 参看课本P44-45A . 牛顿第一运动定律是描述物体间力的相互作用的规律B . 牛顿第二运动定律是描述力处于平衡时物体的运动规律C . 牛顿第三运动定律是描述物体力和运动的定量关系的规律D . 牛顿三条运动定律是一个整体,是描述宏观物体低速运动的客观规律5.下列关于保守力的说法错误的是…………………( ) 参看课本P71-72 A . 由重力对物体所做的功的特点可知,重力是一种保守力B . 由弹性力对物体所做的功的特点可知,弹性力也是一种保守力C . 由摩擦力对物体所做的功的特点可知,摩擦力也是一种保守力D . 由万有引力对物体所做的功的特点可知,万有引力也是一种保守力6.已知某质点的运动方程的分量式是,,式中R 、ω是常cos x R t ω=sin y R t ω=数.则此质点将做………………………………………………() 参看课本P19A . 匀速圆周运动B . 匀变速直线运动C . 匀速直线运动D . 条件不够,无法确定7.如图所示,三个质量相同、线度相同而形状不同的均质物体,它们对各自的几何对称轴的转动惯量最大的是………( )A . 薄圆筒B . 圆柱体 参看课本P95C . 正方体D . 一样大8.下列关于弹性碰撞的说法正确的是………………() 中学知识在课堂已复习A . 系统只有动量守恒B . 系统只有机械能守恒C . 系统的动量和机械能都守恒D . 系统的动量和机械能都不守恒9.某人张开双臂,手握哑铃,坐在转椅上,让转椅转动起来,若此后无外力矩作用.则当此人收回双臂时,人和转椅这一系统的…………………( ) 参看课本P104A . 转速不变,角动量变大B . 转速变大,角动量保持不变C . 转速和角动量都变大D . 转速和角动量都保持不变10.下列关于卡诺循环的说法正确的是………………( ) 参看课本P144 A . 卡诺循环是由两个平衡的等温过程和两个平衡的绝热过程组成的B . 卡诺循环是由两个平衡的等温过程和两个平衡的等体过程组成的C . 卡诺循环是由两个平衡的等体过程和两个平衡的等压过程组成的D . 卡诺循环是由两个平衡的绝热过程和两个平衡的等压过程组成的11. 如图所示,在场强为E 的匀强电场中,有一个半径为R 的半球面,若场强E 的方向与半球面的对称轴平行,则通过这个半球面的电通量大小为…………………( ) 参看课本P172-173A .B .2E 22R E πC . D . 02R E 12.一点电荷,放在球形高斯面的中心处,下列情况中通过高斯面的电通量会发生变化的…………………………( ) 参看课本P173 A . 将另一点电荷放在高斯面内 B . 将高斯面半径缩小C . 将另一点电荷放在高斯面外D . 将球心处的点电荷移开,但仍在高斯面内13.如图所示,在与均匀磁场垂直的平面内有一长为l 的铜棒B MN ,设棒绕M 点以匀角速度ω转动,转轴与平行,则棒的动B 生电动势大小为……………()参看课本P257A .B . Bl ω2BlωC .D . 12Bl ω212Blω14. 、方均v 、最概然速率为,则这气体分子的三种速率的关系是…………(p v ) A .B 参看课本P125v >p vC .D p v pv =15. 下列关于导体静电平衡的说法错误………………( ) 参看课本P190-191 A . 导体是等势体,其表面是等势面 B . 导体内部场强处处为零 C . 导体表面的场强处处与表面垂直 D . 导体内部处处存在净电荷16. 下列哪种现代厨房电器是利用涡流原理工作的…( ) 参看课本P259A . 微波炉B . 电饭锅17. 下列关于电源电动势的说法正确的是……………() 参看课本P249-250A . 电源电动势等于电源把电荷从正极经内电路移到负极时所作的功B . 电源电动势的大小只取于电源本身的性质,而与外电路无关C . 电动势的指向习惯为自正极经内电路到负极的指向D . 沿着电动势的指向,电源将提高电荷的电势能18. 磁介质有三种,下列用相对磁导率正确表征它们各自特性的是………( r μ)A . 顺磁质,抗磁质,铁磁质 参看课本P39-2400r μ<0r μ<1r μ?B . 顺磁质,抗磁质,铁磁质1r μ>1r μ=1r μ?C . 顺磁质,抗磁质,铁磁质0r μ>0r μ>0r μ> D . 顺磁质,抗磁质,铁磁质1r μ>1r μ<1r μ?19. 在均匀磁场中,一带电粒子在洛伦兹力作用下做匀速率圆周运动,如果磁场的磁感应强度减小,则………………………………………………( ) 参看课本P231 A . 粒子的运动速率减小 B . 粒子的轨道半径减小 C . 粒子的运动频率不变 D . 粒子的运动周期增大20. 两根无限长的载流直导线互相平行,通有大小相等,方向相反的I 1和I 2,在两导线的正中间放一个通有电流I 的矩形线圈abcd ,如图所示. 则线圈受到的合力为…………( ) 参看课本P221-223A . 水平向左B . 水平向右C . 零D . 无法判断21. 下列说法错误的是……………………………………( ) 参看课本P263A . 通过螺线管的电流越大,螺线管的自感系数也越大B . 螺线管的半径越大,螺线管的自感系数也越大C . 螺线管中单位长度的匝数越多,螺线管的自感系数也越大D . 螺线管中充有铁磁质时的自感系数大于真空时的自感系数22. 一电偶极子放在匀强电场中,当电矩的方向与场强的方向不一致时,则它所受的合力F 和合力矩M 分别为…………………………………( ) 参看课本P168-169A . F =0 ,M =0B . F ≠0 ,M ≠0C . F =0 ,M ≠0D . F ≠0 ,M =023. 若一平面载流线圈在磁场中既不受磁力,也不受磁力矩作用,这说明……( )A . 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行 参看课本P223-224B . 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行C . 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直D . 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直24. 下列关于机械振动和机械波的说法正确的是………( ) 参看课本P306A . 质点做机械振动,一定产生机械波B .波是指波源质点在介质的传播过程C . 波的传播速度也就是波源的振动速度D . 波在介质中的传播频率与波源的振动频率相同,而与介质无关25. 在以下矢量场中,属保守力场的是…………………( ) A . 静电场 B . 涡旋电场 参看课本P180,212,258C . 稳恒磁场D . 变化磁场26. 如图所示,一根长为2a 的细金属杆AB 与载流长直导线共面,导线中通过的电流为I ,金属杆A 端距导线距离为a .金属杆AB 以速度v 向上匀速运动时,杆内产生的动生电动势为……( ) 参看课本P261 (8-8)A . ,方向由B →A B .,方向由A →B2ln 20πμεIv i =2ln 20πμεIv i =C . ,方向由B →A D . ,方向由A →B0ln 32i Iv μεπ=3ln 20πμεIv i =27.在驻波中,两个相邻波节间各质点的振动………( ) 参看课本P325A . 振幅相同,相位相同B . 振幅不同,相位相同C . 振幅相同,相位不同D . 振幅不同,相位不同28.两个质点做简谐振动,曲线如图所示,则有( )A . A 振动的相位超前B 振动π/2 参看课本P291B . A 振动的相位落后B 振动π/2C . A 振动的相位超前B 振动πD . A 振动的相位与B 振动同相29.同一点光源发出的两列光波产生相干的必要条件是…() 参看课本P336A . 两光源的频率相同,振动方向相同,相位差恒定B . 两光源的频率相同,振幅相同,相位差恒定C . 两光源发出的光波传播方向相同,振动方向相同,振幅相同D .两光源发出的光波传播方向相同,频率相同,相位差恒定30.如图所示,在一圆形电流I 所在的平面内选取一个同心圆形闭合环路L ,则由安培环路定理可知……………………………………………( ) 参看课本P235A . ,且环路上任一点B =0d 0L B l ⋅=⎰B . ,但环路上任一点B ≠0d 0L B l ⋅=⎰ C . ,且环路上任一点B ≠0d 0 L B l ⋅≠⎰D . ,且环路上任一点B =常量d 0 LB l ⋅≠⎰二. 填空题:31. 平行板电容器充电后与电源断开,然后充满相对电容率为εr 的各向均匀电介质. 则其电容C 将______,两极板间的电势差U 将________. (填减小、增大或不变) 参看课本P195,20032. 某质点沿x 轴运动,其运动方程为: x =10t –5t 2,式中x 、t 分别以m 、s 为单位. 质点任意时刻的速度v =________,加速度a =________. 参看课本P16-1733. 某人相对地面的电容为60pF ,如果他所带电荷为,则他相对地面的电C 100.68-⨯势差为__________,他具有的电势能为_____________. 参看课本P200,20234. 一人从10 m 深的井中提水,起始时,桶中装有10 kg 的水,桶的质量为1 kg ,由于水桶漏水,每升高1m 要漏去0.1 kg 的水,则水桶匀速地从井中提到井口,人所作的功为____________.参看课本P70 (2-14)35.质量为m 、半径为R 、自转运动周期为T 的月球,若月球是密度均匀分布的实球体,则其绕自转轴的转动惯量是__________,做自转运动的转动动能是__________.参看课本P100 (3-4)36. 1mol 氢气,在温度为127℃时,氢气分子的总平均动能是_____________,总转动动能是______________,内能是_____________. 〔已知摩尔气体常量R = 8.31 J/(mol ·K ) 参看课本 P120 (4-8)37. 如图所示,两个平行的无限大均匀带电平面,其面电荷密度分别为+σ和-σ. 则区域Ⅱ的场强大小E Ⅱ=___________ . 参看课本P17738. 用一定波长的单色光进行双缝干涉实验时,要使屏上的干涉条纹间距变宽,可采用的方法是: (1) _________________________;(2) ________________________. 参看课本P34439. 通过磁场中任意闭合曲面的磁通量等于_________. 感生电场是由______________产生的,它的电场线是__________曲线. (填闭合或不闭合) 参看课本P212,25840. 子弹在枪膛中前进时受到的合力与时间关系为,子弹飞出枪口5400410N F t =-⨯的速度为200m /s ,则子弹受到的冲量为_____________. 参看课本P55-5641. 将电荷量为2.0×10-8C 的点电荷,从电场中A 点移到B 点,电场力做功6.0×10-6J . 则A 、B 两点的电势差U AB =____________ . 参看课本P18142. 如图所示,图中O 点的磁感应强度大小B =______________.参看课本P229-23043. 一个螺线管的自感L =10 mH ,通过线圈的电流I =2A ,则它所储存的磁能W =_____________. 参看课本P26744. 理想气体在某热力学过程中内能增加了ΔE =250J ,而气体对外界做功A =50J ,则气体吸收的热量Q = . 参看课本P132-13345. 一平面简谐波沿x 轴的正方向传播,波速为100 m/s ,t =0时的曲线如图所示,则简谐波的波长λ =____________,频率ν =_____________. 参看课本P30946. 两个同心的球面,半径分别为R 1、R 2(R 1R 2),分别<带有总电量为Q 1、Q 2. 设电荷均匀分布在球面上,则两球面间的电势差U 12= ________________________.参看课本P186-187三. 计算题:47. 一正方形线圈由外皮绝缘的细导线绕成,共绕有100匝,每边长为10 cm ,放在B = 5.0T 的磁场中,当导线中通有I =10.0A 的电流时,求: (1) 线圈磁矩m 的大小;(2) 作用在线圈上的磁力矩M 的最大值. 参看课本P225 (7-7)48.如图所示,已知子弹质量为m ,木块质量为M ,弹簧的劲度系数为k,子弹以初速v o射入木块后,弹簧被压缩了L.设木块与平面间的滑动摩擦因数为μ,不计空气阻力.求初速v o.参看课本P80 (2-23)49. 一卡诺热机的效率为40%,其工作的低温热源温度为27℃.若要将其效率提高到50%,求高温热源的温度应提高多少?参看课本P148 (5-14)50. 质量均匀的链条总长为l,放在光滑的桌面上,一端沿桌面边缘下垂,其长度为a,如图所示.设开始时链条静止,求链条刚刚离开桌边时的速度.参看课本P70 (2-18)51.一平面简谐波在t =0时刻的波形如图所示,设波的频率ν=5 Hz,且此时图中P点的运动方向向下,求:(1) 此波的波函数;(2) P点的振动方程和位置坐标.参看课本P318 (10-11)52.如图所示,A和B两飞轮的轴杆可由摩擦啮合器使之连接,A轮的转动惯量J A=10 kg·m2.开始时,B轮静止,A轮以n A= 600 r/min的转速转动.然后使A和B连接,连接后两轮的转速n = 200 r/min.求: (1) B轮的转动惯量J B ;(2) 在啮合过程中损失的机械能ΔE.参看课本P105 (3-9及补充)53.如图所示,载流I的导线处于磁感应强度为B的均匀磁场中,导线上的一段是半径为R、垂直于磁场的半圆,求这段半圆导线所受安培力.参看课本P224-22554.如图所示的截面为矩形的环形均匀密绕的螺绕环,环的内外半径分别a和b,厚度为h,共有N匝,环中通有电流为I .求: (1) 环内外的磁感应强度B;(2) 环的自感L.参看课本P237-238 (7-23及补充)55.如图所示,一长直导线通有电流I,在与其相距d处放在有一矩形线框,线框长为l ,宽为a ,共有N 匝. 当线框以速度v 沿垂直于长导线的方向向右运动时,线框中的动生电动势是多少? 参看课本P255 (8-3)二. 填空题:31. 增大 减小32.33. 1000V 0.03 J1010m/s t -210m/s t -34. 1029 (或1050) J 35. 36. 4986J 3324J 8310 J 225mR 22245mR T π37. 38. (1) 将两缝的距离变小 (2) 将双缝到光屏的距离变大σε39. 零 变化的磁场 闭合 40.41.300V42.0.2N s ⋅0112I R μπ⎛⎫- ⎪⎝⎭43. 0.02 J44. 300 J45. 0.8 m 125 Hz46.1012114Q R R πε⎛⎫- ⎪⎝⎭三. 计算题:47. 线圈磁矩22100100.110A m m NIS ==⨯⨯=⋅线圈最大磁力矩max 10550N mM mB ==⨯=⋅48. 设子弹质量为m ,木块质量为M ,子弹与木块的共同速度v由动量守恒定律得①0()mv m M v =+由功能原理得 ②2211()()22m M gL kL m M v μ-+=-+由①、②式得 0v =49. 卡诺热机效率: 211T T η=-21300500K 110.4T T η⇒===--同理 21300600K 110.5T T η'==='--高温热源应提高的温度 11600500100KT T '-=-=n50. 设桌面为零势面,由机械能守恒定律得21222a a l mg mg mv l -=-+v ⇒=51. 解:(1) 由图中v P <0知此波沿x 轴负向传播,继而知原点此时向y 正向运动原点处0002A y v =->,023ϕπ⇒=-又x = 3m 处3300y v =>,32πϕ⇒=-由 得2x ϕπλ∆∆=2x λπϕ∆=∆30236m 223πππ-=⨯=⎛⎫--- ⎪⎝⎭此波的波函数 02cos 2x y A t ππνϕλ⎛⎫=++ ⎪⎝⎭20.10cos 10m 183t x πππ⎛⎫=+- ⎪⎝⎭(2) P 点处 P P 00y v =,<P 2πϕ⇒=P 点振动方程P P cos(2)y A t πνϕ=+0.10cos 10m 2t ππ⎛⎫=+ ⎪⎝⎭P 点位置坐标 p 363321m22x λ=+=+=52. (1) 由动量矩守恒定律得A A AB ()J J J ωω=+A A AB 2()2J n J J n ππ=+B 60020010(10)6060J ⨯=+⨯2B 20kg m J ⇒=⋅(2) 损失的机械能2222A A A B A A A B 222241111()(2)()(2)222216001200104(1020)4 1.31510J 260260E J J J J n J J n ωωππππ∆=-+=-+⎛⎫⎛⎫=⨯⨯-+⨯=⨯ ⎪ ⎪⎝⎭⎝⎭53. 依题意得 d 0x x F F =∑=d d sin d sin sin d y F F BI l BIR θθθθ===0sin d 2y F F BIR BIRπθθ===⎰54. (1)0d 2B r B r Iπμ⋅=⋅=∑⎰ 环外的磁感应强度 0B =环内的磁感应强度 02B r NIπμ⋅=02NI B rμπ=(2) 0d d d 2NIhBh r r rμΦπ==001d d ln 22b a NIh NIh br r aμμΦΦππ===⎰⎰环的自感 20ln 2N h N b L I I aμψΦπ===55. 线框的动生电动势1212()N B B lvεεε=-=-001122()NIlv NIlav d d a d d a μμππ⎛⎫=-= ⎪++⎝⎭。

大学物理练习题

大学物理练习题
(B) v
O
ω
6、一光滑的内表面半径为 10 cm 的半球形碗,以匀角速度 绕其对称 OC 旋转.已知放在 碗内表面上的一个小球 P 相对于碗静止,其位置高于碗底 4 cm,则由此可推知碗旋转的角 速度约为 (A) 10 rad/s. (C) 17 rad/s (B) 13 rad/s. (D) 18 rad/s.
大学物理强化练习
一、选择题 1、一运动质点在某瞬时位于矢径 r ( x, y) 的端点处,其速度的大小为:

dr A) dt
dr B) dt
C)
dr dt
D) (
dx 2 dy 2 ) ( ) dt dt
球1
2、两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状 态,如图所示.将绳子剪断的瞬间,球 1 和球 2 的加速度分别为
14、站在电梯内的一个人,看到用细线连结的质量不同的两个物体跨过电梯内的一个无摩擦的定滑轮而处 于“平衡”状态.由此,他断定电梯作加速运动,其加速度为 (A) (C) 大小为 g,方向向上. 大小为 (B) (D) 大小为 g,方向向下. 大小为
1 g ,方向向上. 2
1 g ,方向向下. 2
15、空中有一气球,下连一绳梯,它们的质量共为 M.在梯上站一质量为 m 的人,起始 时气球与人均相对于地面静止.当人相对于绳梯以速度 v 向上爬时,气球的速度为(以向 上为正) (A) (C)
2 Rg .
Rg .
(B) (D)
2 Rg .
1 Rg . 2
(B) (D) (E)
1 2 Rg . 2
10、假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的 (A) (C) (E) 角动量守恒,动能也守恒. 角动量不守恒,动能守恒. 角动量守恒,动量也守恒.

大学物理复习题

大学物理复习题

一、 选择题1.已知自由空间一均匀平面波, 其磁场强度为0cos()y H e H t z ωβ=-, 则电场强度的方向____, 能流密度的方向为____。

( A )A. x ,zB. -x ,zC. x , -zD. -x , -z2.损耗媒质中的电磁波,其传播速度随媒质电导率σ的增大而 。

( B )A.不变B. 减小C. 增大D.和电导率无关3.如图所示两个载流线圈,所受的电流力使两线圈间的距离 。

( A )A.增大B.缩小C.不变D.和力无关4.在无损耗媒质中,电磁波的相速度与波的频率 。

( C )A .成正比B .成反比C .无关D .线性变化5.电位移表达式D E ε= ( C )A .在各种电介质中适用B .只在各向异性的电介质中适用C .只在各向同性的、线性的均匀的电介质中适用D .真空中适用6.恒定电流场基本方程的微分形式说明它是 ( B )A. 有散无旋场B.无散无旋场C.无散有旋场D.有散有旋场7.已知电场中一闭合面上的电移位 D 的通量不等于零,则意味着该面内 ( D )A .一定存在自由磁荷B .一定不存在自由电荷C .不能确定D .一定存在自由电荷8.下面表述正确的为 ( D )A .矢量场的散度结果为一矢量场B .标量场的梯度结果为一标量场C .矢量场的旋度结果为一标量场D .标量场的梯度结果为一矢量场9.电偶极子是_ __ ( A )A .两个相距很小的等量异号点电荷组成的系统B .两个相距很小的等量同号点电荷组成的系统C .两个相距很大的等量异号点电荷组成的系统D .两个相距很大的等量同号点电荷组成的系统10.亥姆霍兹定理表明,研究一个矢量场,必须研究它的 ,才能确定该矢量场的性质。

( A )A.散度和旋度B.散度和通量C.旋度和环量D.梯度和方向导数11.磁场强度表达式B H μ= ( C )A.在各种磁介质中适用B.只在各向异性的磁介质中适用C.只在各向同性的、线性的均匀的磁介质中适用D.真空中适用12.正弦电磁场 ( 角频率为ω ) 的磁场强度复矢量H 满足的亥姆霍兹方程为 ( A )A.22000H H ωεμ∇+=B.220r r H H ωεμ∇+=C.200r H H ωεμ∇+=D.200r H H ωεμ∇+=13.静电场中电位为零处的电场强度 ( C )A.一定为零B.最大C.不能确定D.最小14.标量场的梯度的方向为 ( B )A.等值面的切线方向B.等值面的法线方向C.标量增加的方向D.标量减小的方向15.下列关于电场(力)线表述正确的是 ( B )A.由正的自由电荷出发,终止于负的自由电荷B.由正电荷出发,终止于负电荷C.正电荷逆着电场线运动D.负电荷顺着电场线运动16.矢量场的散度在直角坐标下的表示形式为 ( A )A.y x z A A A x y z∂∂∂++∂∂∂ B.x y z Ax Ay Az e e e x y z ∂∂∂++∂∂∂ C.x y z A A A e e e x y z ∂∂∂++∂∂∂ D.A A A x y z ∂∂∂++∂∂∂ 17.已知自由空间一均匀平面波,其电场强度为0cos()x E e E t z ωβ=-, 则能流密度的方向____, 磁场强度的方向为____。

《大学物理》各章练习题及答案解析

《大学物理》各章练习题及答案解析

《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。

(B) 匀速率圆周运动。

(C) 行星的椭圆轨道运动。

(D) 抛体运动。

(E) 圆锥摆运动。

2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。

3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。

《大学物理》练习题库

《大学物理》练习题库

大学物理练习题第一章 质点运动学一、选择题1. 一质点在某时刻位于位矢 (,)r x y 的端点处,其速度大小为( )A.dr dtB.d r dtC.d r dt 2. 一质点作曲线运动,任意时刻的位矢为r ,速度为v ,那么( )A v v ∆=∆B r r ∆=∆C t ∆时间间隔内的平均速度为r t ∆∆D t ∆时间间隔内的平均加速度为v t ∆∆3. 以下五种运动的形式中,a保持不变的运动是( )A 单摆的运动B 匀速率圆周运动C 行星的椭圆轨道运动D 抛物运动4. 下面选项中的物理定义中属于理想模型概念的是( )A 机械能B 质点C 位移D 转动惯量5. 质点以速度v =4+t 2m/s 作直线运动,沿质点运动直线作OX 轴,并已知t =3s 时,质点位于x =9m 处,则该质点的运动方程为( )A x =2tB x =4t +t 3/2C x =4t+t 3/3+12D x =4t +t 3/3-126. 质点做匀速率圆周运动时,其速度和加速度的变化情况为( )A 加速度不变,速度在变化B 速度不变,加速度在变化C 二者都不变D 二者都在变7. 某物体的运动规律为dv /dt =-kv 2t ,式中的k 为大于零的常数,当t =0时,初速度为v 0,则速度v 与时间t 的函数关系是( )A v =kt 2/2+v 0B v =-kt 2/2+v 0C 1/v = kt 2/2+1/v 0D 1/v = -kt 2/2+1/v 0二、填空题1.设质点的运动方程为r =R cos ωt i +R sin ωt j (式中R ,ω皆为常量),则质点的速度v= , v 的大小= ,加速度a = ,写出轨道方程 。

2.质点的运动方程为j t i t r 223+=,则质点的速度表示v = ,加速度a = ,t =1s 时,v 的大小= ,写出轨道方程 。

3.一质点沿X 轴作直线运动,它的运动方程为:x =3+6t +8t 2-12t 3 (SI),则(1)质点在t =0时刻的速度v 0= ,加速度a 0= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理习题集上册物理教研室2003年元月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄( 2)练习一位移速度加速度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄( 2)练习二圆周运动相对运动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄( 3)练习三牛顿运动定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄( 4)练习四动量与角动量功┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄( 6)练习五功能原理碰撞┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄( 7)练习六力矩转动惯量转动定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄( 9)练习七转动定律(续) 角动量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄-(11)练习八转动中的功和能对定轴的角动量┄┄┄┄┄┄┄┄┄┄┄┄┄┄(12)练习九力学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(14)练习十状态方程压强公式自由度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(15)练习十一理想气体的内能分布律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(17)练习十二自由程碰撞频率迁移过程热力学第一定律┄┄┄┄┄┄┄┄(18)练习十三等值过程循环过程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(20)练习十四循环过程(续)热力学第二定律熵┄┄┄┄┄┄┄┄┄┄┄┄┄(21)练习十五热学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(23)练习十六谐振动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(24)1练习十七谐振动能量谐振动合成┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(26)练习十八阻尼受迫共振波动方程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(27)练习十九波的能量波的干涉┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(29)练习二十驻波多普勒效应┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(31)练习二十一振动和波习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(32)练习二十二光的相干性双缝干涉光程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(34)练习二十三薄膜干涉劈尖┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(36)练习二十四牛顿环迈克耳逊干涉仪衍射现象┄┄┄┄┄┄┄┄┄┄┄┄(37)练习二十五单缝圆孔光学仪器的分辨率┄┄┄┄┄┄┄┄┄┄┄┄┄(38)练习二十六光栅X射线的衍射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(40)练习二十七光的偏振┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(41)练习二十八光学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(43)部分物理常量引力常量G=6.67×10-11N2·m2·kg-2重力加速度g=9.8m/s-2阿伏伽德罗常量N A=6.02×1023mol-1摩尔气体常量R=8.31J·mol-1·K-1标准大气压1atm=1.013×105Pa玻耳兹曼常量k=1.38×10-23J·K-1 真空中光速c=3.00×108m/s电子质量m e=9.11×10-31kg中子质量m n=1.67×10-27kg质子质量m p=1.67×10-27kg元电荷e=1.60×10-19C真空中电容率ε0= 8.85×10-12 C2⋅N-1m-221真空中磁导率 μ0=4π×10-7H/m=1.26×10-6H/m 普朗克常量 h = 6.63×10-34 J ⋅ s维恩常量 b =2.897×10-3mK斯特藩-玻尔兹常量 σ = 5.67×10-8 W/m 2⋅K 4说明:字母为黑体者表示矢量练习一 位移 速度 加速度一. 选择题1. 以下四种运动,加速度保持不变的运动是 (A) 单摆的运动; (B) 圆周运动; (C) 抛体运动;(D) 匀速率曲线运动. 2. 质点在y 轴上运动,运动方程为y =4t 2-2t 3,则质点返回原点时的速度和加速度分别为: (A) 8m/s, 16m/s 2. (B) -8m/s, -16m/s 2. (C) -8m/s, 16m/s 2. (D) 8m/s, -16m/s 2.3. 物体通过两个连续相等位移的平均速度分别为v 1=10m/s, v 2=15m/s,若物体作直线运动,则在整个过程中物体的平均速度为(A) 12 m/s .(B) 11.75 m/s . (C) 12.5 m/s .(D) 13.75 m/s . 4. 质点沿X 轴作直线运动,其v - t 图象为一曲线,如图1.1所示,则以下说法正确的是(A) 0~t 3时间内质点的位移用v - t 曲线与t 轴所围面积绝对值之和表示, 路程用v - t 曲线与t 轴所围面积的代数和表示;(B) 0~t 3时间内质点的路程用v - t 曲线与t 轴所围面积绝对值之和表示, 位移用v - t 曲线与t 轴所围面积的代数和表示;(C) 0~t 3时间内质点的加速度大于零; (D) t 1时刻质点的加速度不等于零.5. 质点沿XOY 平面作曲线运动,其运动方程为:x =2t , y =19-2t 2. 则质点位置矢量与速度矢量恰好垂直的时刻为(A) 0秒和3.16秒. (B) 1.78秒.(C) 1.78秒和3秒. (D) 0秒和3秒.图1.1二. 填空题1. 一小球沿斜面向上运动,其运动方程为s=5+4t-t2 (SI),则小球运动到最高点的时刻为t=秒.2. 一质点沿X轴运动, v=1+3t2 (SI), 若t=0时,质点位于原点.则质点的加速度a= (SI);质点的运动方程为x= (SI).3. 一质点的运动方程为r=A cosω t i+B sinω t j, A, B ,ω为常量.则质点的加速度矢量为a= , 轨迹方程为.三.计算题1. 湖中有一条小船,岸边有人用绳子通过岸上高于水面h的滑轮拉船,设人收绳的速率为v0,求船的速度u和加速度a.2. 一人站在山脚下向山坡上扔石子,石子初速为v0,与水平夹角为θ(斜向上),山坡与水平面成α角.(1) 如不计空气阻力,求石子在山坡上的落地点对山脚的距离s;(2) 如果α值与v0值一定,θ取何值时s最大,并求出最大值s max.练习二圆周运动相对运动一.选择题1. 下面表述正确的是(A) 质点作圆周运动,加速度一定与速度垂直;(B) 物体作直线运动,法向加速度必为零;(C) 轨道最弯处法向加速度最大;(D) 某时刻的速率为零,切向加速度必为零.2. 由于地球自转,静止于地球上的物体有向心加速度,下面说法正确的是(A) 静止于地球上的物体,其向心加速度指向地球中心;(B) 荆州所在地的向心加速度比北京所在地的向心加速度大;(C) 荆州所在地的向心加速度比北京所在地的向心加速度小;(D) 荆州所在地的向心加速度与北京所在地的向心加速度一样大小.3. 下列情况不可能存在的是(A) 速率增加,加速度大小减少;(B) 速率减少,加速度大小增加;(C) 速率不变而有加速度;(D) 速率增加而无加速度;(E) 速率增加而法向加速度大小不变.4. 质点沿半径R=1m的圆周运动,某时刻角速度ω=1rad/s,角加速度α=1rad/s2,则质点速度和加速度的大小为(A) 1m/s, 1m/s2.3(B) 1m/s, 2m/s2.(C) 1m/s, 2m/s2.(D) 2m/s, 2m/s2.5. 一抛射体的初速度为v0,抛射角为θ,抛射点的法向加速度,最高点的切向加速度以及最高点的曲率半径分别为(A) g cosθ ,0 , v02 cos2θ/g.(B) g cosθ ,g sinθ, 0.(C) g sinθ, 0, v02/g.(D) g , g , v02sin2θ/g.二.填空题1. 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为.2. 任意时刻a t=0的运动是运动;任意时刻a n=0的运动是运动;任意时刻a=0的运动是运动;任意时刻a t=0, a n=常量的运动是运动.3. 已知质点的运动方程为r=2t2i+cosπt j (SI), 则其速度v= ;加速度a t= ;法向加速度a n= .三.计算题1. 一轻杆CA以角速度ω绕定点C转动,而A端与重物M用细绳连接后跨过定滑轮B,如图2.1.试求重物M的速度.(已知CB=l为常数,ϕ=ωt,在t时刻∠CBA=α,计算速度时α作为已知数代入).2. 升降机以a=2g的加速度从静止开始上升,机顶有一螺帽在t0=2.0s时因松动而落下,设升降机高为h=2.0m,试求螺帽下落到底板所需时间t及相对地面下落的距离s.练习三牛顿运动定律一.选择题1. 下面说法正确的是(A) 物体在恒力作用下,不可能作曲线运动;(B) 物体在变力作用下,不可能作直线运动;(C) 物体在垂直于速度方向,且大小不变的力作用下,作匀速圆周运动;(D) 物体在不垂直于速度方向力的作用下,不可能作圆周运动;(E) 物体在垂直于速度方向,但大小可变的力的作用下,可以作匀速曲线运动.45 2. 如图3.1(A)所示,m A >μm B 时,算出m B 向右的加速度为a ,今去掉m A 而代之以拉力T = m A g , 如图3.1(B)所示,算出m B 的加速度a ',则(A) a > a '. (B) a = a '. (C) a < a '.(D) 无法判断. 3. 把一块砖轻放在原来静止的斜面上,砖不往下滑动,如图3.2所示,斜面与地面之间无摩擦,则(A) 斜面保持静止. (B) 斜面向左运动. (C) 斜面向右运动.(D) 无法判断斜面是否运动. 4. 如图3.3所示,弹簧秤挂一滑轮,滑轮两边各挂一质量为m 和2m 的物体,绳子与滑轮的质量忽略不计,轴承处摩擦忽略不计,在m 及2m 的运动过程中,弹簧秤的读数为(A) 3mg . (B) 2mg . (C) 1mg . (D) 8mg / 3.5. 如图3.4所示,手提一根下端系着重物的轻弹簧,竖直向上作匀加速运动,当手突然停止运动的瞬间,物体将(A) 向上作加速运动. (B) 向上作匀速运动. (C) 立即处于静止状态.(D) 在重力作用下向上作减速运动. 二.填空题1. 如图3.5所示,一根绳子系着一质量为m 的小球,悬挂在天花板上,小球在水平面内作匀速圆周运动,有人在铅直方向求合力写出T cos θ - mg = 0 (1) 也有人在沿绳子拉力方向求合力写出T - mg cos θ = 0 (2)显然两式互相矛盾,你认为哪式正确?答 . 理由是 .2. 如图3.6所示,一水平圆盘,半径为r ,边缘放置一质量为m 的物体A ,它与盘的静摩擦系数为μ,圆盘绕中心轴OO '转动,当图3.1图3.2图3.3< < < < 图3.4am A6其角速度ω 小于或等于 时,物A 不致于飞出.3. 一质量为m 1的物体拴在长为l 1的轻绳上,绳子的另一端固定在光滑水平桌面上,另一质量为 m 2的物体用长为l 2的轻绳与m 1相接,二者均在桌面上作角速度为ω的匀速圆周运动,如图3.7所示.则l 1, l 2两绳上的张力T 1= ; T 2= . 三.计算题1. 一条轻绳跨过轴承摩擦可忽略的轻滑轮,在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2的环, 如图3.8所示.求环相对于绳以恒定的加速度a 2滑动时,物体和环相对地面的加速度各为多少?环与绳之间的摩擦力多大?2. 质量为m 的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度成正比,比例系数为k ,忽略子弹的重力,求(1) 子弹射入沙土后,速度随时间变化的函数关系式; (2) 子弹射入沙土的最大深度.练习四 动量与角动量 功一.选择题1. 以下说法正确的是(A) 大力的冲量一定比小力的冲量大; (B) 小力的冲量有可能比大力的冲量大; (C) 速度大的物体动量一定大; (D) 质量大的物体动量一定大.2. 作匀速圆周运动的物体运动一周后回到原处,这一周期内物体 (A) 动量守恒,合外力为零. (B) 动量守恒,合外力不为零.(C) 动量变化为零,合外力不为零, 合外力的冲量为零. (D) 动量变化为零,合外力为零.3. 一弹性小球水平抛出,落地后弹性跳起,达到原先的高度时速度的大小与方向与原先的相同,则(A) 此过程动量守恒,重力与地面弹力的合力为零.(B) 此过程前后的动量相等,重力的冲量与地面弹力的冲量大小相等,方向相反. (C) 此过程动量守恒,合外力的冲量为零.a 2图3.87(D) 此过程前后动量相等,重力的冲量为零.4. 质量为M 的船静止在平静的湖面上,一质量为m 的人在船上从船头走到船尾,相对于船的速度为v ..如设船的速度为V ,则用动量守恒定律列出的方程为(A) MV +mv = 0. (B) MV = m (v +V ). (C) MV = mv .(D) MV +m (v +V ) = 0. (E) mv +(M +m)V = 0. (F) mv =(M +m)V . 5. 长为l 的轻绳,一端固定在光滑水平面上,另一端系一质量为m 的物体.开始时物体在A 点,绳子处于松弛状态,物体以速度v 0垂直于OA 运动,AO 长为h .当绳子被拉直后物体作半径为l 的圆周运动,如图4.1所示.在绳子被拉直的过程中物体的角动量大小的增量和动量大小的增量分别为(A) 0, mv 0(h/l -1). (B) 0, 0.(C) mv 0(l -h ), 0.(D) mv 0(l -h , mv 0(h/l -1). 二.填空题1. 力 F = x i +3y 2j (S I) 作用于其运动方程为x = 2t (S I) 的作直线运动的物体上, 则0~1s 内力F 作的功为A = J .2. 完全相同的甲乙二船静止于水面上,一人从甲船跳到乙船,不计水的阻力, 则甲船的速率v 1与乙船的速率 v 2相比较有:v 1 v 2(填<、=、>), 两船的速度方向 .3. 一运动员(m =60kg)作立定跳远在平地上可跳5m,今让其站在一小车(M =140kg)上以与地面完全相同的姿势作立定向地下跳远,忽略小车的高度,则他可跳远 m .三.计算题1. 一质点作半径为r ,半锥角为θ的圆锥摆运动,其质量为m ,速度为v 0如图4.2所示.若质点从a 到b 绕行半周,求作用于质点上的重力的冲量I 1和张力T 的冲量I2.2. 一质量均匀分布的柔软细绳铅直地悬挂着,绳的下端刚好触到水平桌面,如果把绳的上端放开,绳将落在桌面上,试求在绳下落的过程中,任意时刻作用于桌面的压力.练习五 功能原理 碰撞A 0图4.1m8一.选择题1. 以下说法正确的是(A) 功是标量,能也是标量,不涉及方向问题;(B) 某方向的合力为零,功在该方向的投影必为零; (C) 某方向合外力做的功为零,该方向的机械能守恒;(D) 物体的速度大,合外力做的功多,物体所具有的功也多. 2. 以下说法错误的是(A) 势能的增量大,相关的保守力做的正功多;(B) 势能是属于物体系的,其量值与势能零点的选取有关; (C) 功是能量转换的量度;(D) 物体速率的增量大,合外力做的正功多.3. 如图5.1,1/4圆弧轨道(质量为M )与水平面光滑接触,一物体(质量为m )自轨道顶端滑下, M 与m 间有摩擦,则(A) M 与m 组成系统的总动量及水平方向动量都守恒, M 、m 与地组成的系统机械能守恒;(B) M 与m 组成系统的总动量及水平方向动量都守恒, M 、m 与地组成的系统机械能不守恒;(C) M 与m 组成的系统动量不守恒, 水平方向动量不守恒, M 、m 与地组成的系统机械能守恒;(D) M 与m 组成的系统动量不守恒, 水平方向动量守恒, M 、m 与地组成的系统机械能不守恒.4. 悬挂在天花板上的弹簧下端挂一重物M ,如图5.2所示.开始物体在平衡位置O 以上一点A . (1)手把住M 缓慢下放至平衡点;(2)手突然放开,物体自己经过平衡点.合力做的功分别为A 1、A 2 ,则 (A) A 1 > A 2.(B) A 1 < A 2.(C) A 1 = A 2.(D) 无法确定. 5. 一辆汽车从静止出发,在平直的公路上加速前进,如果发动机的功率一定,下面说法正确的是:(A) 汽车的加速度是不变的;(B) 汽车的加速度与它的速度成正比; (C) 汽车的加速度随时间减小;(D) 汽车的动能与它通过的路程成正比.二.填空题1. 如图5.3所示,原长l 0、弹性系数为k 的弹簧悬挂在天花板上,下端静止于O 点;悬一重物m 后,弹簧伸长x 0而平衡,图5.1 < 图5.2 图5.3图5.4B9 此时弹簧下端静止于O '点;当物体m 运动到P 点时,弹簧又伸长x .如取O 点为弹性势能零点,P 点处系统的弹性势能为 ;如以O '点为弹性势能零点,则P 点处系统的弹性势能为 ;如取O '点为重力势能与弹性势能零点,则P 点处地球、重物与弹簧组成的系统的总势能为 .2. 己知地球半径为R ,质量为M .现有一质量为m 的物体处在离地面高度2R 处,以地球和物体为系统,如取地面的引力势能为零,则系统的引力势能为 ;如取无穷远处的引力势能为零,则系统的引力势能为 .3. 如图5.4所示, 一半径R =0.5m 的圆弧轨道, 一质量为m =2kg 的物体从轨道的上端A 点下滑, 到达底部B 点时的速度为v =2 m /s, 则重力做功为,正压力做功为 ,摩擦力做功为 .正压N 能否写成N = mg cos α = mg sin θ (如图示C 点)?答 .三.计算题1. 某弹簧不遵守胡克定律,若施力F ,则相应伸长为x , 力与伸长x 的关系为F =52.8 x +38.4x 2 (SI)求:(1) 将弹簧从定长 x 1 = 0.50m 拉伸到定长x 2 = 1.00m 时,外力所需做的功.(2) 将弹簧放在水平光滑的桌面上,一端固定,另一端系一个质量为2.17kg 的物体,然后将弹簧拉伸到一定长x 2 = 1.00m,再将物体由静止释放,求当弹簧回到x 1 = 0.50m 时,物体的速率. (3) 此弹簧的弹力是保守力吗?为什么?2. 如图5.5所示,甲乙两小球质量均为m ,甲球系于长为l 的细绳一端,另一端固定在O 点,并把小球甲拉到与O 处于同一水平面的A 点. 乙球静止放在O 点正下方距O 点为l 的B 点.弧BDC 为半径R =l /2的圆弧光滑轨道,圆心为O '.整个装置在同一铅直平面内.当甲球从静止落到B 点与乙球作弹性碰撞,并使乙球沿弧BDC 滑动,求D 点(θ=60︒)处乙球对轨道的压力.练习六 力矩 转动惯量 转动定律一.选择题1. 以下运动形态不是平动的是(A) 火车在平直的斜坡上运动;(B) 火车在拐弯时的运动;(C) 活塞在气缸内的运动;(D) 空中缆车的运动.2. 以下说法正确的是(A) 合外力为零,合外力矩一定为零;(B) 合外力为零,合外力矩一定不为零;图5.5(C) 合外力为零,合外力矩可以不为零;(D) 合外力不为零,合外力矩一定不为零;(E) 合外力不为零,合外力矩一定为零.3. 一质量为m ,长为l 的均质细杆可在水平桌面上绕杆的一端转动,杆与桌面间的摩擦系数为μ,求摩擦力矩M μ . 先取微元细杆d r ,其质量d m = λd r = (m /l )d r .它受的摩擦力是d f μ= μ(d m )g =(μmg /l )d r ,再进行以下的计算,(A) M μ=⎰r d f μ=⎰l r r l mg0d μ=μmgl/2.(B) M μ=(⎰d f μ)l/2=(⎰l r lmg 0d μ)l/2=μmgl/2. (C) M μ=(⎰d f μ)l/3=(⎰l r lmg 0d μ)l/3=μmgl/3. (D) M μ=(⎰d f μ)l =(⎰l r l mg 0d μ)l =μmgl . 4. 质量为m , 内外半径分别为R 1、R 2的均匀宽圆环,求对中心轴的转动惯量.先取宽度为d r 以中心轴为轴的细圆环微元,如图6.1所示.宽圆环的质量面密度为σ = m /S =m /[π (R 22-R 12)],细圆环的面积为d S =2πr d r ,得出微元质量d m = σd S =2mr d r /( R 22-R 12),接着要进行的计算是,(A) I =()2d 2d 212221223221R R m R R r mr m r m R R +=-=⎰⎰ . (B) I =⎰⎰⎪⎪⎭⎫ ⎝⎛-=m R R R R R r mr R m 2221222221d 2)d (=mR 22 . (C) I =⎰⎰⎪⎪⎭⎫ ⎝⎛-=m R R R R R r mr R m 2121222121d 2)d (=mR 12. (D) I =()42d 22)d (212212212221221R R m R R R R r mr R R m m R R +=⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+⎰⎰. (E) I =()42d 22)d (212212212221221R R m R R R R r mr R R m m R R -=⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎰⎰. (F) I =⎰m R m 22)d (-⎰m R m 21)d (=m (R 22-R 12) . (G) I =I 大圆-I 小圆=m (R 22-R 12)/2.5. 有A 、B 两个半径相同,质量相同的细圆环.A 环的质量均匀分布,B 环的质量不均匀分布,设它们对过环心的中心轴的转动惯量分别为I A 和I B ,则有(A) I A >I B ..(B) I A <I B ..(C) 无法确定哪个大. (D) I A =I B .图6.1 (1)(2) 图6.211 二.填空题1. 质量为m 的均匀圆盘,半径为r ,绕中心轴的转动惯量I 1 = ;质量为M ,半径为R , 长度为l 的均匀圆柱,绕中心轴的转动惯量 I 2 = . 如果M = m , r = R , 则I 1 I 2 .2. 如图6.2所示,两个质量和半径都相同的均匀滑轮,轴处无摩擦, α1和α2分别表示图(1)、图(2)中滑轮的角加速度,则α1 α2(填< = >) .3. 如图6.3所示,半径分别为R A 和R B 的两轮,同皮带连结,若皮带不打滑,则两轮的角速度ωA :ωB = ;两轮边缘上A 点及B 点的线速度v A :v B = ;切向加速度a t A : a t B= ;法向加速度a n A :a n B = .三.计算题1. 质量为m 的均匀细杆长为l ,竖直站立,下面有一绞链,如图6.4,开始时杆静止,因处于不稳平衡,它便倒下,求当它与铅直线成60︒角时的角加速度和角速度.2. 一质量为m ,半径为R 的均匀圆盘放在粗糙的水平桌面上,圆盘与桌面的摩擦系数为μ ,圆盘可绕过中心且垂直于盘面的轴转动,求转动过程中,作用于圆盘上的摩擦力矩.练习七 转动定律(续) 角动量一.选择题1. 以下说法错误的是:(A) 角速度大的物体,受的合外力矩不一定大;(B) 有角加速度的物体,所受合外力矩不可能为零;(C) 有角加速度的物体,所受合外力一定不为零;(D) 作定轴(轴过质心)转动的物体,不论角加速度多大,所受合外力一定为零.2. 在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是:(A) 合力矩增大时, 物体角速度一定增大;(B) 合力矩减小时, 物体角速度一定减小;(C) 合力矩减小时,物体角加速度不一定变小;(D) 合力矩增大时,物体角加速度不一定增大.3. 质量相同的三个均匀刚体A 、B 、C(如图7.1所示)以相同的角速度ω绕其对称轴旋转, 己知R A =RC <R B ,若从某时刻起,它们受到相同的阻力矩,则 (A) A 先停转.图6.4 图7.112(B) B 先停转.(C) C 先停转.(D) A 、C 同时停转.4. 几个力同时作用在一个具有固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动.(B) 转速必然不变.(C) 转速必然改变.(D) 转速可能不变,也可能改变. 5. 一轻绳跨过一具有水平光滑轴,质量为M 的定滑轮,绳的两端分别悬挂有质量为m 1和m 2的物体(m 1<m 2),如图7.2所示,绳和轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等.(B) 左边小于右边.(C) 右边小于左边.(D) 无法判断.二.填空题1. 半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动, 皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速转动,在4s 内被动轮的角速度达到8π rad/s ,则主动轮在这段时间内转过了 圈.2. 在OXY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量I z = .3. 一薄圆盘半径为R , 质量为m ,可绕AA '转动,如图7.3所示,则此情况下盘的转动惯量I AA ' = .设该盘从静止开始,在恒力矩M 的作用下转动, t 秒时边缘B 点的切向加速度a t = ,法向加速度a n = . 三.计算题1. 如图7.4所示,有一飞轮,半径为r = 20cm,可绕水平轴转动,在轮上绕一根很长的轻绳,若在自由端系一质量m 1 = 20g 的物体,此物体匀速下降;若系m 2=50g 的物体,则此物体在10s 内由静止开始加速下降40cm .设摩擦阻力矩保持不变.求摩擦阻力矩、飞轮的转动惯量以及绳系重物m 2后的张力? 2. 飞轮为质量m = 60kg , 半径r = 0.25m 的圆盘,绕其水平中心轴转动,转速为900转/分.现利用一制动的闸杆,杆的一端加一竖直方向的制动力F ,使飞轮减速.闸杆的尺寸如图7.5所示, 闸瓦与飞轮的摩擦系数μ= 0.4, 飞轮的转动惯量可按圆盘计算.图7.3图7.4图7.5 图7.213 (1) 设F =100N,求使飞轮停止转动的时间,并求出飞轮从制动到停止共转了几转.(2) 欲使飞轮在2秒钟内转速减为一半,求此情况的制动力.练习八 转动中的功和能 对定轴的角动量一.选择题1. 在光滑水平桌面上有一光滑小孔O ,一条细绳从其中穿过,绳的两端各栓一个质量分别m 1和m 2的小球,使m 1在桌面上绕O 转动,同时m 2在重力作用下向下运动,对于m 1、m 2组成系统的动量,它们对过O 点轴的角动量以及它们和地组成系统的机械能, 以下说法正确的是(A) m 1、m 2组成系统的动量及它们和地组成系统的机械能都守恒;(B) m 1、m 2组成系统的动量,它们对过O 点轴的角动量以及它们和地组成系统的机械能都守恒;(C) 只有m 1、m 2组成系统对过O 点轴的角动量守恒;(D) 只有m 1、m 2和地组成系统的机械能守恒;(E) m 1、m 2组成系统对过O 点轴的角动量以及它们和地组成系统的机械能守恒.2. 银河系中有一天体是均匀球体,其半径为R ,绕其对称轴自转的周期为T ,由于引力凝聚的作用,体积不断收缩,则一万年以后应有(A) 自转周期变小,动能也变小.(B) 自转周期变小,动能增大.(C) 自转周期变大,动能增大.(D) 自转周期变大,动能减小.(E) 自转周期不变,动能减小.3. 以下说法正确的是:(A) 力矩的功与力的功在量纲上不同,因力矩的量纲与力的量纲不同;(B) 力矩的功与力的功在量纲上不同, 力矩做功使转动动能增大, 力做功使平动动能增大,所以转动动能和平动动能在量纲上也不同;(C) 转动动能和平动动能量纲相同,但力矩的功与力的功在量纲上不同;(D) 转动动能和平动动能, 力矩的功与力的功在量纲上完全相同.4. 如图8.1所示,一绳子长l ,质量为m 的单摆和一长度为l ,质量为m ,能绕水平轴转动的匀质细棒,现将摆球和细棒同时从与铅直线成θ角的位置静止释放.当二者运动到竖直位置时,摆球和细棒的角速度应满足(A) ω1一定大于ω2.(B) ω1一定等于ω2. (C) ω1一定小于ω2. (D) 都不一定.5. 一人站在无摩擦的转动平台上并随转动平台一起转动,双臂水平地举着二哑铃,当他把二哑铃水平地收缩到胸前的过程中,(A) 人与哑铃组成系统对转轴的角动量守恒,人与哑铃同平台组成系统的机械能不守恒.图8.114(B) 人与哑铃组成系统对转轴的角动量不守恒,人与哑铃同平台组成系统的机械能守恒.(C) 人与哑铃组成系统对转轴的角动量,人与哑铃同平台组成系统的机械能都守恒.(D) 人与哑铃组成系统对转轴的角动量,人与哑铃同平台组成系统的机械能都不守恒.二.填空题1. 一辆能进行遥控的电动小汽车(质量m =0.5kg)可在一绕光滑竖直轴转动的水平平台上(平台半径为R =1m,质量M =2kg)作半径为r =0.8m 的圆周运动.开始时,汽车与平台处于静止状态,平台可视为均匀圆盘.当小汽车以相对于平台绕中心轴向前作速率为v =5m/s 的匀速圆周运动时,平台转动的角速度为ω1 = ;当小车急刹车停下来时,平台的角速度ω2= ;当小车从静止开始在平台上运行一周时,平台转动的角度θ = .2. 光滑水平桌面上有一小孔,孔中穿一轻绳,绳的一端栓一质量为m 的小球,另一端用手拉住.若小球开始在光滑桌面上作半径为R 1速率为v 1的圆周运动,今用力F 慢慢往下拉绳子,当圆周运动的半径减小到R 2时,则小球的速率为 , 力F 做的功为 .3. 转动着的飞轮转动惯量为J , 在t =0时角速度为ω0, 此后飞轮经历制动过程,阻力矩M μ的大小与角速度ω的平方成正比, 比例系数为k (k 为大于0的常数), 当ω =ω0/3 时, 飞轮的角加速度α= , 从开始制动到ω =ω0/3 所经过的时间t = .三.计算题1. 落体法测飞轮的转动惯量,如图8.2所示,将飞轮支持,使之能绕水平轴转动,在轮边缘上绕一轻绳,在绳的一端系一质量为m 的重物,测得重物由静止下落高度H 所用的时间为t ,已知飞轮半径为R ,忽略摩擦阻力,试求飞轮的转动惯量.2. 如图8.3所示,质量为M 的均匀细棒,长为L ,可绕过端点O 的水平光滑轴在竖直面内转动,当棒竖直静止下垂时,有一质量为m 的小球飞来,垂直击中棒的中点.由于碰撞,小球碰后以初速度为零自由下落,而细棒碰撞后的最大偏角为θ,求小球击中细棒前的速度值.练习九 力学习题课一.选择题1. 圆盘绕O 轴转动,如图9.1所示.若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将(A) 增大.图8.3图9.1(B) 不变.(C) 减小.(D) 无法判断.2. 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为I0,角速度为ω0,当她突然收臂使转动惯量减小为I0 / 2时,其角速度应为(A) 2ω0.(B)2ω0.(C) 4ω0.(D) ω0/2.(E) ω0/2.3. 转动惯量相同的两物体m1、m2都可作定轴转动,分别受到不过转轴的两力F1、F2的作用,且F1>F2,它们获得的角加速度分别为α1和α2.则以下说法不正确的是(A)α1可能大于α2;(B) α1可能小于α2;(C)α1可能等α2;(D)α1一定大于α2.4. 一圆锥摆,如图9.2,摆球在水平面内作圆周运动.则(A) 摆球的动量, 摆球与地球组成系统的机械能都守恒.(B) 摆球的动量, 摆球与地球组成系统的机械能都不守恒.(C) 摆球的动量不守恒, 摆球与地球组成系统的机械能守恒.(D) 摆球的动量守恒, 摆球与地球组成系统的机械能不守恒.5. 如图9.3,质量分别为m1、m2的物体A和B用弹簧连接后置于光滑水平桌面上,且A、B上面上又分别放有质量为m3和m4的物体C和D;A与C之间、B与D之间均有摩擦.今用外力压缩A与B,在撤掉外力,A与B被弹开的过程中,若A与C、B与D之间发生相对运动,则A、B、C、D及弹簧组成的系统(A) 动量、机械能都不守恒.(B) 动量守恒,机械能不守恒.(C) 动量不守恒,机械能守恒.(D) 动量、机械能都守恒.二.填空题1. 铀238的核(质量为238原子质量单位),放射一个α粒子(氦原子核,质量为4个原子量单位)后蜕变为钍234的核,设铀核原是静止的,α粒子射出时速度大小为1.4×107m/s,则钍核的速度大小为,方向为.2. 如图9.4所示,加速度a至少等于时, 物体m对斜面的正压力为零, 此时绳子的张力T = .图9.3图9.415。

相关文档
最新文档