八年级数学下册17.1.1勾股定理练习4(新版)新人教版
人教版八年级下册数学 17.1 勾股定理 同步习题(含答案)

17.1 勾股定理同步习题知识点1 勾股定理1.如图,以直角三角形的三边a,b,c为边或直径,分别向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形个数是()A.1B.2C.3D.42.若一个直角三角形的两直角边的长分别为a,b,斜边长为c,则下列关于a,b,c的关系式中不正确的是()A.b2=c2-a2B.a2=c2-b2C.b2=a2-c2D.c2=a2+b23.一直角三角形的两边长分别为3和4,则第三边长为()A.5B. 7C.2D.5或74.如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5B.6C.8D.105.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10B.8C.6或10D.8或106.在△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8B.4.8或3.8C.3.8D.5知识点2 勾股定理与面积的关系7.如图,字母B所代表的正方形的面积是()A.12B.13C.144D.1948.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,则b的面积为()A.3B.4C. 5D.79.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.8010.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A.13B.26C.47D.94易错点考虑问题不全面而漏解(分类讨论思想)11.若一个直角三角形的三边长分别为a,b,c,且a2=9,b2=16,则c2为()A.25B.7C.7或25D.9或16提升训练考查角度1 利用勾股定理求直角三角形中的边长12.如图,在△ABC中,CD⊥AB于D,AC=4,BC=3,DB=.(1)求DC的长;(2)求AB的长.考查角度2 利用勾股定理求三角形的面积13.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.如图,作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD的长,再计算三角形面积探究培优拔尖角度1 利用勾股定理解非直角三角形问题(倍长中线法)14.如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)求△ABC中BC边上的高.拔尖角度2 利用勾股定理解四边形问题(补形法)15.如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,BC=6,CD=4,求: (1)AB的长;(2)四边形ABCD的面积.参考答案解:因为直角三角形的三边为a,b,c,所以应用勾股定理可得a2+b2=c2.第一个图形中,首先根据等边三角形的面积的求法,表示出3个等边三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第二个图形中,首先根据圆的面积的求法,表示出3个半圆形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积,然后根据a2+b2=c2,可得S1+S2=S3.2.【答案】C3.【答案】D解:当两直角边长分别为3和4时,斜边长为=5;当斜边长为4时,另一条直角边长为=.故选D.4.【答案】C5.【答案】C解:根据题意画出图形,如图①所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得BD==8,CD==2,此时BC=BD+CD=8+2=10;如图②所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得BD==8,CD==2,此时BC=BD-CD=8-2=6,则BC的长为6或10.故选C.6.【答案】A解:如图,过A点作AF⊥BC于F,连接AP,因为在△ABC中,AB=AC=5,BC=8,所以BF=4,所以在Rt△ABF中,AF2=AB2-BF2=9,所以AF=3,所以×8×3=×5×PD+×5×PE,即12=×5(PD+PE),解得PD+PE=4.8.7.【答案】C8.【答案】D解:利用勾股定理求出正方形的边长为10,阴影部分的面积为正方形面积与直角三角形面积之差.10.【答案】C11.错解:A诊断:容易忽略a,c为直角边长,b为斜边长这种情况,故很容易错选A.正解:C解题策略:解答此题要用分类讨论思想.此题有两种情况:a,b为直角边长,c为斜边长和a,c为直角边长,b为斜边长,利用勾股定理即可求解.12.解:(1)在Rt△BCD中,DC2=BC2-BD2=32-=,所以DC=.(2)在Rt△ACD中,AD2=AC2-CD2=42-=,所以AD=,所以AB=AD+BD=+=5.13.解:在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14-x,由勾股定理得AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2,所以152-x2=132-(14-x)2,解得x=9.在Rt△ABD中,AD===12.所以S△ABC=BC·AD=×14×12=84.14.解:(1)∵DB⊥BC,BC=4,CD=5,∴BD==3.(2)如图,延长BD至E,使DE=BD,连接AE.∵D是AC的中点,∴AD=DC.在△BDC和△EDA 中,∴△BDC≌△EDA(SAS),∴∠DAE=∠DCB,∴AE∥BC.∵BD⊥BC,∴BE⊥AE.∴BE为△ABC中BC边上的高,∴BE=2BD=6.15.解:(1)如图,延长AD,BC交于点E,在Rt△ABE中,∠A=60°,∴∠E=30°.在Rt△CDE中,CD=4,∴CE=2CD=8,∴BE=BC+CE=6+8=14.设AB=x,则有AE=2x,根据勾股定理得:x2+142=(2x)2,解得x=,则AB=.(2)在Rt△CDE中,∠CDE=90°,∴DE===4.∴S=S△ABE-S△CDE 四边形ABCD =·AB·BE-·CD·DE=××14-×4×4=.。
初中数学人教版八年级下册第十七章17.1勾股定理

初中数学·人教版·八年级下册——第十七章勾股定理17.1 勾股定理基础闯关全练拓展训练1.在△ABC中,∠C=90°,2∠A=∠B,∠A,∠B,∠C的对边分别为a,b,c,则a∶b∶c等于()A.1∶2∶1B.1∶√2∶1C.1∶√3∶2D.1∶2∶√3答案C设∠A=x°,则∠B=2x°,∵△ABC中∠C=90°,∴∠A+∠B=90°,即x°+2x°=90°,解得x=30,∴∠A=30°,∠B=60°,设a=1,∴c=2,由勾股定理得b=√c2-a2=√4-1=√3,∴a∶b∶c=1∶√3∶2.故选C.2.如图是由5个正方形和5个等腰直角三角形组成的图形,已知③号正方形的面积是1,那么①号正方形的面积是()A.4B.8C.16D.32答案C如图,根据勾股定理知④号正方形的边长为√12+12=√2,则②号正方形的边长为√(√2)2+(√2)2=2,⑤号正方形的边长为√22+22=2√2,则①号正方形的边长为√(2√2)2+(2√2)2=4,所以①号正方形的面积为4×4=16.故选C.3.(2016广西防城港期中)如图,长方体的长、宽、高分别为4cm,3cm,12cm,则BD'=.答案13cm解析连接BD,则BD=√42+32=5(cm),故BD'=√52+122=13(cm).4.(2016江西宜春高安期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于.答案24cm2解析∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得a2+b2=c2,即(a+b)2-2ab=c2,∴196-2ab=100,即ab=48,则Rt△ABC的面积为1ab=24cm2.2能力提升全练拓展训练1.图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt△ABC中,若直角边AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是.答案76解析在题图乙的四个大直角三角形中,两直角边长分别为5,12,所以斜边长为13,所以这个风车的外围周长为4×13+4×6=76.2.(2014山东潍坊中考)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,所以该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是尺.答案25解析由题意可知葛藤绕圆柱五周到达点B,故先把圆柱平均分成五段,将最下边一段圆柱的侧面展开图画出,并连接其对角线,则该对角线的长即为每段的最短长度,为√32+42=5(尺),所以葛藤的最短长度为5×5=25尺,故答案为25.3.(2016山东聊城莘县期中)如图,已知直角△ABC的两直角边长分别为6,8,分别以其三边为直径向外作半圆,则图中阴影部分的面积为.答案24解析在Rt△ABC中,AC=6,BC=8,根据勾股定理得:AB=√AC2+BC2=10,则S阴影=S半圆AC+S半圆BC+S△ABC-S半圆AB=322π+12×42×π+12×6×8-522π=24.4.如图,在长方形ABCD中,AD=4,DC=3,将△ADC按逆时针方向绕点A旋转到△AEF(点A、B、E在同一直线上),连接CF,则CF=.答案5√2解析△AEF是由△ADC旋转得来的,可得△AEF≌△ADC,所以∠EAF=∠DAC,AF=AC.则△CAF是等腰直角三角形,所以CF=√FA2+CA2,又AC=√DA2+DC2=√42+32=5,所以CF=√52+52=5√2.三年模拟全练拓展训练1.(2016广东深圳翰林学校第一次月考,15,★★☆)如图,长方体的长为15cm,宽为10cm,高为20cm,点B到点C的距离为5 cm,一只蚂蚁如果沿着长方体的表面从A点爬到B点,需要爬行的最短距离是.答案25cm解析(1)当长方形NFGC与长方形CGAD展开在一个面上时,AB=√BD2+AD2=√152+202=25(cm);(2)当长方形NMDC与长方形CDAG展开在一个面上时,AB=√AG2+BG2=√102+252=5√29(cm);(3)当长方形NCGF与长方形FGAE展开在一个面上时,AB=√AC2+BC2=√302+52=5√37(cm).因为25<5√29<5√37,所以蚂蚁需要爬行的最短距离是25cm.2.(2016河北保定模拟,23,★★☆)(1)如图①所示,分别以Rt△ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间的关系(不必证明);(2)如图②,分别以Rt△ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,确定它们的关系并证明;(3)如图③,分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S2,S3表示,确定它们的关系并证明.解析(1)S2+S3=S1.(2)S2+S3=S1.证明:S3=π8AC2,S2=π8BC2,S1=π8AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=π8(BC2+AC2)=π8AB2=S1,∴S2+S3=S1.(3)S2+S3=S1.证明:S1=√34AB2,S2=√34BC2,S3=√34AC2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=√34(BC2+AC2)=√34AB2=S1,∴S2+S3=S1.五年中考全练拓展训练1.(2016湖南株洲中考,8,★☆☆)如图,以直角三角形的边a、b、c为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形个数为()A.1B.2C.3D.4答案D根据勾股定理可得a2+b2=c2.(1)第一个图形中,首先根据等边三角形的面积的求法,表示出3个三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.(2)第二个图形中,首先根据圆的面积的求法,表示出3个半圆的面积,然后根据a2+b2=c2,可得S1+S2=S3.(3)第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.(4)第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积,然后根据a2+b2=c2,可得S1+S2=S3.故满足S1+S2=S3的图形个数为4.2.(2016浙江杭州中考,9,★☆☆)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形.若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0B.m2-2mn+n2=0C.m2+2mn-n2=0D.m2-2mn-n2=0答案C根据题意画图,如图.在Rt△ABC中,n>m且△ABE和△AEC均为等腰三角形,∴AB=BE=m,则AE=EC=n-m,根据勾股定理可得AE=√2AB,即n-m=√2m,两边平方整理得,m2+2mn-n2=0,故选C.3.(2014广西钦州中考,12,★☆☆)如图,在6个边长为1的小正方形及其部分对角线构成的图形中,从A点到B点只能沿图中的线段走,那么从A点到B点的最短路程的走法共有()A.1种B.2种C.3种D.4种答案C根据题意得出最短路径如图所示,最短路程为√22+22+1=2√2+1,则从A点到B点的最短路程的走法共有3种.故选C.4.(2013四川雅安中考,17,★★☆)在平面直角坐标系中,已知点A(-√5,0),B(√5,0),点C在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标.答案(0,2),(0,-2),(-3,0),(3,0)解析如图,①当点C位于y轴上时,设C(0,b).则√(√5)2+b2+√(√5)2+b2=6,解得b=2或b=-2,此时C(0,2)或C(0,-2).②当点C位于x轴上时,设C(a,0).则|-√5-a|+|a-√5|=6,即2a=6或-2a=6,解得a=3或a=-3,此时C(-3,0)或C(3,0).综上所述,满足条件的所有点C的坐标是(0,2),(0,-2),(-3,0),(3,0).核心素养全练拓展训练1.(2014浙江温州中考改编)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感.他惊喜地发现:当两个全等的直角三角形如图①或图②摆放时,都可以用“面积法”来证明.下面是小聪利用图①证明勾股定理的过程:将两个全等的直角三角形按图①所示方式摆放,其中∠DAB=90°.求证:a2+b2=c2.图①图②证明:连接DB,过点D作BC边上的高DF,则DF=EC=b-a.∵S四边形ADCB=S△ACD+S△ABC=12b2+12ab,又∵S四边形ADCB=S△ADB+S△DCB=12c2+12a(b-a),∴12b2+12ab=12c2+12a(b-a).∴a2+b2=c2.请参照上述证法,利用图②完成下面的证明.将两个全等的直角三角形按图②所示方式摆放,其中∠DAB=90°.求证:a2+b2=c2.证明:连接.∵S五边形ACBED=,又∵S五边形ACBED=,∴.∴a2+b2=c2.证明连接BD,过点B作DE边上的高BF,则BF=b-a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=12ab+12b2+12ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=12ab+12c2+12a(b-a),∴12ab+12b2+12ab=12ab+12c2+12a(b-a),∴a2+b2=c2.2.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出代数式√x2+4+√(12-x)2+9的最小值.解析(1)√(8-x)2+25+√x2+1.(2)当A、C、E三点共线时,AC+CE的值最小.(3)如图所示,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,且AB=2,ED=3,连接AE交BD于点C.设BC=x,AE的长即为代数式√x2+4+√(12-x)2+9的最小值.过点A作AF∥BD交ED的延长线于点F,得长方形ABDF,则AB=DF=2,AF=BD=12.所以AE=√122+(3+2)2=13.即√x2+4+√(12-x)2+9的最小值为13.。
新人教版八年级下17.1勾股定理练习题

17.1勾股定理练习题一、选择题1.在Rt △ABC 中,∠C=90°,若AC=6,BC=8,则AB 的长为( ) A.6 B.8 C.10 D.122.在Rt △ABC 中,斜边AB=1,则222AC BC AB ++的值是( ) A.2 B.4 C.6 D.83. 如图所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D=120°,则该零件另一腰AB 的长是______ cm (结果不取近似值).4.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π=3)是( ).A20cm B10cm C14cm D 无法确定5.如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对 6. 如果Rt △的两直角边长分别为n 2-1,2n (n >1),那么它的斜边长是( )A.2nB.n+1C.n 2-1D.n 2+17.已知直角三角形两边的长为3和4,则此三角形的周长为( ).A .12B .7+7C .12或7+7D .以上都不对 8.△ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+ 9.在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A .42B .32C .42 或 32D .37 或 3310.在Rt ∆ABC 中,∠C=900,周长为60,斜边与一条直角边的比为13:5,则这个三角形的三边 长分别是( )A .5,4,3 B.13,12,5 C. 10,8,6 D.26,24,1011.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A.90°B.60°C.45°D.30°12. 如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为( )A.4B.6C.16D.5513. 如图,AB ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).A.12B.7C.5D.13DC BACBCBA 4题图 3题图 5题图 11题图 12题图 13题图14. 将一个有45°角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为( ) A.3 B.6 C. 23 D. 2615. 如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF=3,则AB 的长为( ) A.3 B.4 C.5 D.616. 直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )2ddC.2dD.d 17.下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则222c b a =+B.若 a 、b 、c 是Rt △ABC 的三边,则222c b a =+C.若a 、b 、c 是Rt △ABC 的三边, 90=∠A ,则222c b a =+D.若a 、b 、c 是Rt △ABC 的三边, 90=∠C ,则222c b a =+. 18. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 二、填空题1.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.2.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是_________3. 某楼梯的侧面视图如图4所示,其中4AB =米,30BAC ∠=°,90C ∠=°,因某种活动要求铺设红色地毯,则在AB 段楼梯所铺地毯的长度应为 .4.已知等边三角形的边长为2cm ,则它的高为 ,面积为 .5. 如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是__________Bl 3l 2l 1CBAA 14题图 15题图 2题图 3题图 5题图 6题图6. 如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是_____________.7. 某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要 元.8. 种盛饮料的圆柱形杯(如图),测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做 ㎝。
人教版八年级数学下册 17.1.1勾股定理 习题课件

8. (2019·邵阳)公元 3 世纪初,中国古代数学家赵爽注《周髀算经》 时,创造了“赵爽弦图”. 如图,设勾 a=6,弦 c=10,则小正 方形 ABCD 的面积是___4_____.
9. 如图,点 E 在正方形 ABCD 内,满足∠AEB=90°,AE=6, BE=8,则阴影部分的面积是( C )
13. 如图,在四边形 ABCD 中,∠B=∠D=90°,AB=20 m, BC=15 m,CD=7 m,求四边形 ABCD 的面积.
【点拨】将不规则四边形分割成特殊的三角形,再 利用特殊的三角形性质求面积.
解:如图,连接AC. 因为∠B=∠D=90°, 所以△ABC与△ACD都是直角三角形.
在 Rt△ABC 中,根据勾股定理, 得 AC2=AB2+BC2=202+152=625,则 AC=25 m. 在 Rt△ACD 中, 根据勾股定理,得 AD2=AC2-CD2=252-72=576,则 AD=24 m. 故 S 四边形 ABCD=S△ABC+S△ACD=12AB·BC+12AD·CD=12×20×15+12 ×24×7=234(m2).
解:(1)因为 DB⊥BC,BC=4,CD=5, 所以在 Rt△BCD 中,根据勾股定理得 DB=3.
15. (中考·柳州)如图,在△ABC 中,D 为 AC 边的中点,且 DB ⊥BC,BC=4,CD=5.
(1)求 DB 的长; (2)在△ABC 中,求 BC 边上的高的长.
解:(2)如图,延长 BD 至 E,使 DE=DB,连接 AE. 因为 D 是 AC 边的中点, 所以 AD=CD.
【点拨】设直角三角形较短的一条直角边长为 x,由 S1=S2 可得
2x2=12m2,解得 x=12m(负值舍去).由勾股定理得12m2+n+12m
数学八年级下人教新课标17.1勾股定理课时练习(解析版)

17.1 勾股定理(带解析)一、选择题1.一个直角三角形的三边分别是6cm、8cm、Xcm,则X=()cmA.100cm B.10cmC.10cm 或72cm D.100cm 或28cm2.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5m,消防车的云梯底端距地面1m,云梯的最大伸长为13m,则云梯可以达到该建筑物的最大高度是()A.16m B.13m C.14m D.15mNMDAB C图1 图2 图33. 如图1,在边长为1的正方形网格中,△ABC的三边a,b,c的大小关系是()A.c<b<a B.c<a<b C.a<c<b D.a<b<c4.已知:如图2,∠ABC=∠ADC=900,M、N分别是AC、BD的中点,AC=10,BD=8,则MN为()A.3 B.4 C.5 D.65.在Rt△ABC中,∠ACB=90°,AC=3,BC=4,则点C到AB的距离是()A.45B.35C.125D.346.如图3,有一块直角三角形纸片,两条直角边AC=6cm,BC=8cm.若将直角边AC沿直线折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm图4 图57.如图4,AB=AC,则数轴上点C所表示的数为()A.5+1 B.5-1 C.-5+1 D.-5-1二、填空题8.一直角三角形的两条直角边长分别为5、12,则斜边上的中线是.9.一轮船先向东航行8海里,接着又向北航行6海里,则该船这时离出发点__ ___海里.10.若直角三角形两直角边的比是3:4,斜边长是20cm,则直角三角形的面积是___ _____.11.如图5是一张直角三角形的纸片,两直角边AC=6cm,BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则DE=______________cm.三、解答题的点.12.用直尺和圆规在如图所示的数轴上作出1313.已知直角三角形斜边长为(26+3)cm,一直角边长为(6+23)cm,求这个直角三角形的面积.14.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?15.如图,一次“台风”过后,一根旗杆被台风从离地面2.8米处吹断裂,倒下的旗杆的顶端落在离旗杆底部9.6米处,那么这根旗杆被吹断裂前有多高?(旗杆粗细、断裂磨损忽略不计)16.如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”。
人教版数学八年级下册17.1---17.2基础练(含答案)

人教版数学八年级下册17.1《勾股定理》一、选择题1.下列各组数,可以作为直角三角形的三边长的是( )A.2,3,4B.7,24,25C.8,12,20D.5,13,15.2.如图,CB=1,且OA=OB,BC⊥OC,则点A在数轴上表示的实数是( )A. B.﹣ C. D.﹣3.由线段a、b、c组成的三角形不是直角三角形的是( )A.=7,b=24,c=25;B.a=,b=,c=;C.a=,b=1,c=;D.a=,b=4,c=5;4.以下列各组数为边长,能组成直角三角形的是()A.2,3,4B.10,8,4C.7,25,24D.7,15,125.已知Rt△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若∠B=900,则()A.b2= a2+ c2;B.c2= a2+ b2;C.a2+b2=c2;D.a+b=c6.如图,直角△ABC的周长为24,且AB:AC=5:3,则BC=()A.6B.8C.10D.127.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A.25B.14C.7D.7或258.如图,在边长为1个单位长度的小正方形组成的网格中,点A,B都是格点,则以AB为边的正方形的面积为( )A.10B.9C.100D.259.已知一个直角三角形的两直角边长分别为5和12,则第三边长的平方是()A.169B.119C.13D.14410.以面积为9 cm2的正方形对角线为边作正方形,其面积为()A.9 cm2B.13 cm2C.18cm2D.24 cm2二、填空题11.已知直角三角形的两边长分别是5,12,则第三边的长为_______.12.如果一梯子底端离建筑物9 m远,那么15 m长的梯子可达到建筑物的高度是_______m.13.如图,数轴上点A表示的实数是.14.在Rt△ABC中,∠C=90o, AC=6,BC=8,则AB边的长是 .15.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DE⊥AB于点E,若CD=2,BD=4,则AE的长是_____.三、解答题16.已知,如图,在△ABC中,D为边BC上的一点,AB=13,AD=12,AC=15,BD=5,求BC的长.17.如图,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?参考答案1.答案为:B2.答案为:D3.答案为:B4.答案为:C5.答案为:A6.答案为:B7.答案为:C8.答案为:A9.答案为:A10.答案为:C.11.答案为:10cm或cm;12.答案为:12.13.答案为:14.答案为:10.15.答案为:16.解:∵AD2+BD2=144+25=169,AB2=169,∴AD2+BD2=AB2,∴AD⊥BC,即∠ADC=90°,∴CD=9,∴BC=CD+BD=5+9=14.17.解:如图,在Rt△ABC中,根据勾股定理可知,BC=3000(米).3000÷20=150米/秒=540千米/小时.所以飞机每小时飞行540千米.17.2《勾股定理的逆定理》一、选择题1.下列各组数中不能作为直角三角形的三边长的是( )A.6,8,10B.5,12,13C.1,2,3D.9,12,152.下列三角形中,可以构成直角三角形的有( )A.三边长分别为2,2,3B.三边长分别为3,3,5C.三边长分别为4,5,6D.三边长分别为1.5,2,2.53.满足下列条件的△ABC不是直角三角形的是( )A.BC=8,AC=15,AB=17B.BC:AC:AB=3:4:5C.∠A+∠B=∠CD.∠A:∠B:∠C=3:4:54.下列各组线段中的三个长度:①9,12,15;②7,24,25;③32,42,52;④3a,4a,5a(a>0);⑤m2﹣n2,2mn,m2+n2(m,n为正整数,且m>n).其中可以构成直角三角形的有( )A.5组B.4组C.3组D.2组5.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列判断错误的是( )A.如果∠C-∠B=∠A,则△ABC是直角三角形B.如果a2+c2=b2,则△ABC不是直角三角形C.如果(c-a)(c+a)=b2,则△ABC是直角三角形D.如果∠A∶∠B∶∠C=5∶2∶3,则△ABC是直角三角形6.适合下列条件的△ABC中,直角三角形的个数为( )①a=3,b=4,c=5;②a=6,∠A=45°;③a=2,b=2,c=2;④∠A=38°,∠B=52°.A.1个B.2个C.3个D.4个7.△ABC的三边为a、b、c,且(a+b)(a﹣b)=c2,则( )A.△ABC是锐角三角形B.c边的对角是直角C.△ABC是钝角三角形D.a边的对角是直角8.如图,在4×4的方格中,△ABC的形状是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形9.有下面的判断:①若△ABC中,a2+b2≠c2,则△ABC不是直角三角形;②△ABC是直角三角形,∠C=90°,则a2+b2=c2;③若△ABC中,a2-b2=c2,则△ABC是直角三角形;④若△ABC是直角三角形,则(a+b)(a-b)=c2.其中判断正确的有( )A.4个B.3个C.2个D.1个10.已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,判断△ABC的形状( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形二、填空题11.在△ABC中,如果(a+b)(a﹣b)=c2,那么∠ =90°.12.如果△ABC的三边长a,b,c满足关系式(a-24)2+∣b-18∣+∣c-30∣=0,则△ABC的形状是。
新人教版八年级数学下册《第17章+勾股定理》(含答案)

新人教版八年级数学下册《第17章勾股定理》一.选择题1.下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=52.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或253.正方形的面积是4,则它的对角线长是()A.2 B.C.D.44.如果直角三角形两直角边为5:12,则斜边上的高与斜边的比为()A.60:13 B.5:12 C.12:13 D.60:1695.如图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于()A.6 B.C.D.46.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.35海里D.40海里7.三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形8.如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,则BE的长是()A.3 B.4 C.5 D.6二.填空题9.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为.10.在△ABC中,∠C=90°,AB=5,则AB2+AC2+BC2=.11.正方形的对角线为4,则它的边长AB=.12.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为.13.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有米.三.做一做14.如图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别画出一条长度是有理数的线段和一条长度是无理数的线段,并写出这两条线段的长度.四.解答题15.如图:带阴影部分的半圆的面积是多少?(π取3)16.如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD的形状,并说明理由.17.在Rt△ABC中,∠C=90°.(1)已知c=25,b=15,求a;(2)已知a=,∠A=60°,求b、c.18.有一只小鸟在一棵高4m的小树梢上捉虫子,它的伙伴在离该树12m,高20m的一棵大树的树梢上发出友好的叫声,它立刻以4m/s的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大树和伙伴在一起?19.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.20.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,求梯子顶端A下落了多少米?新人教版八年级数学下册《第17章勾股定理》2016年单元测试卷参考答案与试题解析一.选择题1.A;2.D;3.C;4.D;5.B;6.D;7.C;8.A;二.填空题9.cm;10.50;11.2;12.24;13.24;三.做一做14.如图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别画出一条长度是有理数的线段和一条长度是无理数的线段,并写出这两条线段的长度.【解答】解:表示无理数的线段AB,表示有理数的线段CD.∵△ABE是直角三角形,∴AB==2,同理,CD═CD==5,故答案为:表示无理数的线段AB,表示有理数的线段CD四.解答题15.如图:带阴影部分的半圆的面积是多少?(π取3)【解答】解:由题意可得:半圆的直径为:=10,则阴影部分的半圆的面积是:π×52=×3×25=.16.如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD的形状,并说明理由.【解答】解:△ABD为直角三角形.理由如下:∵在△ABC中,∠C=90°,∴AB2=CB2+AC2=42+32=52,∴在△ABD中,AB2+AD2=52+122=132,∴AB2+AD2=BD2,∴△ABD为直角三角形.17.在Rt△ABC中,∠C=90°.(1)已知c=25,b=15,求a;(2)已知a=,∠A=60°,求b、c.【解答】解:(1)根据勾股定理可得:a==20;(2)∵△ABC为Rt△,∠A=60°,∴∠B=30°,∴c=2b,根据勾股定理可得:a2+b2=c2,即6+b2=(2b)2,解得b=,则c=2.18.有一只小鸟在一棵高4m的小树梢上捉虫子,它的伙伴在离该树12m,高20m的一棵大树的树梢上发出友好的叫声,它立刻以4m/s的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大树和伙伴在一起?【解答】解:如图所示,根据题意,得AC=20﹣4=16,BC=12.根据勾股定理,得AB=20.则小鸟所用的时间是20÷4=5(s).19.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.【解答】解:连接BD,∵AB=3cm,AD=4cm,∠A=90°∴BD=5cm,S=×3×4=6cm2△ABD又∵BD=5cm,BC=13cm,CD=12cm∴BD2+CD2=BC2∴∠BDC=90°=×5×12=30cm2∴S△BDC∴S=S△ABD+S△BDC=6+30=36cm2.四边形ABCD20.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,求梯子顶端A下落了多少米?【解答】解:在Rt△ABC中,AB=2.5米,BC=1.5米,故AC===2米,在Rt△ECD中,AB=DE=2.5米,CD=(1.5+0.5)米,故EC===1.5米,故AE=AC﹣CE=2﹣1.5=0.5米.。
17.1 勾股定理(第一课时 勾股定理的证明)(练习)(解析版)八年级数学下册(人教版)

第十七章勾股定理17.1 勾股定理(第一课时勾股定理的证明)精选练习答案一、单选题(共10小题)1.(2020·山东青岛市·八年级期中)若实数m、n满足|m﹣3|+4n-=0,且m、n恰好是Rt的两条边长,则的周长是()A.5 B.57C.12 D.12或7【答案】D【分析】根据非负数的性质分别求出m、n,分4是直角边、4是斜边两种情况,根据勾股定理、三角形的周长公式计算,得到答案.【详解】n-0,∵|m﹣4n-0,∴|m﹣3|=04∴m﹣3=0,n﹣4=0,解得,m=3,n=4,当422+5,34则△ABC的周长=3+4+5=12,当422-7,43则△ABC的周长=7=7故选:D.2.(2020·吉林长春市·八年级期末)勾股定理是人类最伟大的科学发现之一,在我国古代《周髀算经》中早有记载.如图①,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图②的方式放置在最大正方形内.若图中阴影部分图形的面积为3,则较小两个正方形重叠部分图形的面积为()A .2B .3C .5D .6【答案】B【分析】 由图①结合勾股定理可得三个正方形面积之间的关系,在图②中,可知两个小正方形的面积与阴影部分面积之和减去大正方形的面积即可得到重叠部分的面积.【详解】设以直角三角形三边为边长的正方形面积分别为S 1,S 2,S 3,大小正方形重叠部分的面积为S ,则由勾股定理可得:S 1+S 2=S 3,在图②中,S 1+S 2+3-S=S 3,∴S=3,故选:B .3.(2020·广东清远市·八年级期末)下列各组数是勾股数的是( )A .4,5,6B .5,7,9C .6,8,10D .10,11,12【答案】C【分析】根据勾股数的定义:满足222+=a b c 的三个正整数a 、b 、c 叫做勾股数,逐一进行判断即可.【详解】解:A. 222456+≠,故此选项错误;B. 222579+≠,故此选项错误;C. 2226810+=,故此选项正确;D. 222101112+≠,故此选项错误.故选:C .4.(2020·福建福州市·八年级期末)在平面直角坐标系中,点P(1-,3)到原点的距离是( ) A .10 B .4 C .22 D .2 【答案】A【分析】根据平面直角坐标系中,两点间的距离公式,即可求解.【详解】∵P(1-,3),原点坐标为(0,0),∴点P(1-,3)到原点的距离=22(10)(30)10--+-=,故选A .5.(2020·吉林长春市·八年级期末)如图,在△ABC 中,∠C =90°,点D 是线段AB 的垂直平分线与BC 的交点,连结AD .若CD =2,BD =4,则AC 的长为( )A .4B .3C .3D 3【答案】C【分析】 根据线段垂直平分线性质得出AD=BD ,再用勾股定理即可求出AC .【详解】解:∵点D 是线段AB 的垂直平分线与BC 的交点,BD=4,∴AD=BD=4,∴2222AC AD CD;4223故选:C.6.(2020·张掖市期中)已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.C.12或D.以上都不对【答案】C【详解】设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,=,此时这个三角形的周长.故选C7.(2020·江门市期中)在△ABC中,AB=10,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或10【答案】C【详解】分两种情况:在图①中,由勾股定理,得==;BD8===;CD2∴BC=BD+CD=8+2=10.在图②中,由勾股定理,得==;BD8===;CD2∴BC=BD―CD=8―2=6.故选C.8.(2020·河北张家口市·八年级期中)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .6【答案】C【详解】 如图所示,∵(a+b )2=21∴a 2+2ab+b 2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选C .9.(2020·山东泰安市·八年级期中)如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .11【答案】C【详解】 试题分析:运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE ,然后证明△ACB ≌△DCE ,再结合全等三角形的性质和勾股定理来求解即可.解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,在△ABC和△CED中,,∴△ACB≌△CDE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=1+9=10,∴b的面积为10,故选C.10.(2020·伊宁市期中)若一个直角三角形的两直角边的长为12和5,则第三边的长为()A.13119B.13或15 C.13 D.15【答案】C【分析】直角三角形中斜边最长,结合已知数据,利用勾股定理可求出第三边的长.【详解】当12,522+=12513.故第三边的长为13.故选:C.二、填空题(共5小题)11.(2020·南丹县期中)已知直角三角形的两边长分别为3、4.则第三边长为________.【答案】57【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:22-=;437②长为3、4的边都是直角边时:第三边的长为:22435;∴第三边的长为:7或5.∆的周12.(2020·黑龙江绥化市期中)在△ABC中,AB=15,AC=13,高AD=12,则ABC长为_______________.【答案】32或42【分析】根据题意画出图形,分两种情况:△ABC是钝角三角形或锐角三角形,分别求出边BC,即可得到答案【详解】当△ABC是钝角三角形时,∵∠D=90°,AC=13,AD=12,∴2222CD AC AD=-=-=,13125∵∠D=90°,AB=15,AD=12,∴2222BD AB AD=-=-=,15129∴BC=BD-CD=9-5=4,∴△ABC的周长=4+15+13=32;当△ABC是锐角三角形时,∵∠ADC=90°,AC=13,AD=12,∴2222=-=-=,13125CD AC AD∵∠ADB=90°,AB=15,AD=12,∴2222=-=-=,15129BD AB AD∴BC=BD-CD=9+5=14,∴△ABC的周长=14+15+13=42;综上,△ABC的周长是32或42,故答案为:32或42.13.(2020·广西防城港市·八年级期中)如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm2,10cm2,14cm2,则正方形D的面积是__________cm2.【答案】17【解析】试题解析:根据勾股定理可知,∵S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=49.∴正方形D的面积=49-8-10-14=17(cm2).14.(2020·山东菏泽市·八年级期中)已知一直角三角形两直角边的长分别为6cm和8cm,则第三边上的高为________.【答案】4.8cm【分析】先由勾股定理求出斜边的长,再用面积法求解.【详解】解:如图,在Rt △ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CD ⊥AB , 则2210AB AC BC =+=(cm ), 由1122ABC S AC BC AB CD ==, 得6810CD ⨯=,解得CD =4.8(cm).故答案为4.8cm.15.(2020·广东韶关市·八年级期中)平面直角坐标系中,点()3,4P -到原点的距离是_____.【答案】5【分析】作PA x ⊥轴于A ,则4PA =,3OA =,再根据勾股定理求解.【详解】作PA x ⊥轴于A ,则4PA =,3OA =.则根据勾股定理,得5OP =.故答案为5.三、解答题(共2小题)16.(2020·湖南株洲市期末)如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长;(2)求△ADB 的面积.【答案】(1)DE=3;(2)ADB S 15∆=.【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:2222AB AC BC 6810=+=+=, ∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 17.(2020·宿州期中)在四边形ABCD 中,∠B =90°,AB =4,BC =3,CD =12,AD =13.(1)求AC 的长;11/1 (2)求四边形ABCD 的面积.【答案】(1)5;(2)36【分析】(1)由勾股定理可得:22AC AB BC =+,从而可得答案;(2)先证明ACD △是直角三角形,再利用四边形的面积等于两个直角三角形的面积和,从而可得答案.【详解】解:(1)∵∠B =90°,AB =4,BC =3,∴2222435AC AB BC =+=+=;(2)由(1)知,AC =5,∵CD =12,AD =13,∴AC 2+CD 2=22251216913+===AD 2,∴ACD △是直角三角形,∠ACD =90°,∵AB =4,BC =3,∠B =90°,AC =5,CD =12,∠ACD =90°,∴四边形ABCD 的面积是,即四边形ABCD 的面积是36.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.1.1勾股定理
一、夯实基础
1.已知,一直角三角形的两边长为3和4,则第三边长的平方为.
2. 如图字母B所代表的正方形的面积是 ( )
A. 12
B. 13
C. 144
D. 194
25
B
169
3.(1)在Rt△ABC中,∠C=90°.①若AB=41,AC=9,则BC=_______;(2)若AC=1.5,BC=2,则AB=______.
4.如图,四边形ABCD的面积等于.
5.一个直角三角形两边长分别为10和24,则第三边长的平方为.
二、能力提升
6. 一个直角三角形的一条直角边长为5,斜边长为13,则面积为()
A.30 B.32.5 C.60 D.75
7.已知x、y为正数,且│x2-4│+(y2-3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()
A、5
B、25
C、7
D、15
8. 两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm,另一只朝左挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距()
A.50cm B.100c m C.140cm D.80cm。
9. 如图,每个小方格的边长都为1.求图中格点四边形ABCD的面积.
.
C A
D
三、课外拓展
10. 如图2,小李准备建一个蔬菜大棚,棚宽4米,高3米,长20米,棚的斜面用塑料布遮盖,不计墙的厚度,请计算阳光透过的最大面积.
3
11. 如图所示,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC于C,则四边形ABCD的面积是.
四、中考链接
12.(2016.黔东南州)2002年8月在北京召开的国际数学家大会会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为( )
参考答案
一、夯实基础
1.25或7
2.C
3.(1)40 (2)2.5
4.36
5.676或476
二、能力提升
6.A
7. C
8.13
9.12.5
三、课外拓展
10. 100平方米
11.48
四、中考链接
12.25。