2019届普通高等学校招生全国统一考试数学模拟卷(解析版)

合集下载

2019年高考数学模拟试题含答案(3)

2019年高考数学模拟试题含答案(3)
2019 年高考数学模拟试题含答案(3)(word 版可编辑修改)
2019 年高考数学模拟试题含答案(3)(word 版可编辑修改)
编辑整理:
尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对 文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019 年高考数学模拟试题含 答案(3)(word 版可编辑修改))的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您 的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以 下为 2019 年高考数学模拟试题含答案(3)(word 版可编辑修改)的全部内容。
如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。 3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。 4.考试结束后,将本试卷和答题卡一并收回.
一.选择题:本大题共 12 个小题,每小题 5 分,共 60 分。在每小题给出的四个选项中只
有一项是符合题目要求的
1.已知集合 A {x x2 2x 3 0}, B {2,3,4} ,则 (CR A) B =
数学科答案(理科)
一、选择题 1—5 ACADD 6—10 ABCBC 11—12 BA
高三数学(理)科试题(第 7 页 共 6 页)
2019 年高考数学模拟试题含答案(3)(word 版可编辑修改)
二、填空题 13。45 14。3
15.65
16.
3或 4
3 6
三、解答题
17. 解:(1)因为{an}是等差数列且公差为 d,所以 an an1 d(n 2).。.。..。。。。。1

2019年普通高等学校招生全国统一考试模拟卷数学答案

2019年普通高等学校招生全国统一考试模拟卷数学答案

最高考·高考全真模拟卷·数学参考答案2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(一)1. 1或-2 解析:∵ A ∩B ={1},∴ 1∈B ,∴ a =1或a 2-3=1,∴ a =1或a =±2,但a =2 不合题意,舍去.2. [-4,0] 解析:∵ Δ=a 2+4a ≤0,∴ -4≤a ≤0.3.102 解析:z =2+i 1-i =(2+i )(1+i )(1-i )(1+i )=12+32i ,|z|=14+94=102. 4. e 或0 解析:y =⎩⎪⎨⎪⎧x 2+1,x ≤0,ln x ,x >0,令y =1,则x =0或x =e.5. 24 解析:∵ log 238=log 23-3<4,log 23<4,又x<4时,f(x)=f(x +3),∴ f ⎝⎛⎭⎫log 238=f(log 23-3)=f(log 23+3).∵ log 23+3>4,∴ f(log 23+3)=2log 23+3=2log 23·23=24.6. 23 解析:从盒中抓出两球共有3种方法,其中颜色不同的有2种,故概率为23.7. 6 解析:作出如图所示可行域,当直线经过最优点(4,6)时,z 取得最大值6.8. 23 解析:∵ AF 2=F 1F 2=2c =4,AF 2-AF 1=2,∴ AF 1=2,∴ a =3,∴ e =23. 9. -82+315 解析:由于α,β∈⎝⎛⎭⎫3π4,π,∴ 3π2<α+β<2π,∴ π2<β-π4<3π4,∴ cos (α+β)=45,cos ⎝⎛⎭⎫β-π4=-223,∴ cos ⎝⎛⎭⎫α+π4=cos [(α+β)-⎝⎛⎭⎫β-π4]=45×⎝⎛⎭⎫-232+⎝⎛⎭⎫-35×13=-82+315. 10. 10 解析:∵ DB →·DC →=3,∴ DB →·(BC →-BD →)=3,∴ DB →·BC →-DB →·BD →=3.又|BD →|=2,∴ BD →·BC →=1,∴ cos B =14,由余弦定理得AC =10.11. 2+3 解析:∵ V ABCD =V PBCD +V PACD ,正四面体ABCD 的高h =2,∴ x +y =2,∴ 3x +1y =⎝⎛⎭⎫3x +1y ⎝⎛⎭⎫x +y 2=12⎝⎛⎭⎫4+3y x +x y ≥2+3,当且仅当3y x =xy时等号成立. 12.n -12n 解析:当n =1时,得S 1=-a 1-⎝⎛⎭⎫120+1,即a 1=0;当n ≥2时,∵ S n =-a n -⎝⎛⎭⎫12n -1+1,∴ S n-1=-a n -1-⎝⎛⎭⎫12n -2+1,∴ a n =S n -S n -1=-a n +a n -1+⎝⎛⎭⎫12n -1,∴ 2a n=a n -1+⎝⎛⎭⎫12n -1,即2n a n =2n -1a n-1+1.令b n =2na n ,则当n ≥2时,b n =b n -1+1,即b n -b n -1=1.又b 1=2a 1=0,故数列{b n }是首项为0,公差为1的等差数列,于是b n =b 1+(n -1)·1=n -1.∵ b n =2n a n ,∴ a n =2-n b n =n -12n. 13. 4 解析:y =2x x -1-f(x)的零点即为2x x -1=f(x)的解,∴ y =2x x -1与y =f(x)有四个交点.∵ y =2x x -1=2+2x -1,∴ y =2x x -1的图象关于点(1,2)对称.又f(x)(x ∈R )的图象关于点(1,2)对称,∴ y =2xx -1与y =f (x )的四个交点关于(1,2)对称,∴ x 1+x 2+x 3+x 4=2+2=4.14. (0,1) 解析:由f(x)≥0及x>0,得a ≤e x e x 的解集恰为[m ,n],设 g(x)=e xe x ,则g′(x)=e (1-x )e x, 由g′(x)=0,得x =1,当0<x<1时,g ′(x)>0,g(x)单调递增; 当x>1时,g ′(x)<0,g(x)单调递减, 且g(1)=1,g(0)=0,当x>0时,g(x)>0,大体图象如图所示.由题意得方程a =e xex 有两不等的非零根,∴ a ∈(0,1).15. 证明:(1) ∵ MA 1=MC ,且N 是A 1C 的中点, ∴ MN ⊥A 1C.又MN ⊥AA 1,AA 1∩A 1C =A 1,A 1C ,AA 1⊂平面A 1ACC 1, 故MN ⊥平面A 1ACC 1. ∵ MN ⊂平面A 1MC ,∴ 平面A 1MC ⊥平面A 1ACC 1. (6分) (2) 如图,取AC 中点P ,连结NP ,BP. ∵ N 为A 1C 中点,P 为AC 中点, ∴ PN ∥AA 1,且PN =12AA 1.在三棱柱ABCA 1B 1C 1中,BB 1∥AA 1,且BB 1=AA 1. 又M 为BB 1中点,故BM ∥AA 1,且BM =12AA 1,∴ PN ∥BM ,且PN =BM ,于是四边形PNMB 是平行四边形, 从而MN ∥BP.又MN ⊄平面ABC ,BP ⊂平面ABC , ∴ 故MN ∥平面ABC.(14分)16. 解:(1) 由题意,得1+cos B =3sin B , ∴ 2sin ⎝⎛⎭⎫B -π6=1,∴ B -π6=π6或5π6(舍去),∴ B =π3.∵ A =5π12,则C =π4,由正弦定理c sin C =b sin B ,得c =63.(5分)(2) ∵ sin A =2sin C ,由正弦定理,得a =2c.由余弦定理,得b 2=a 2+c 2-2ac cos B, 将b =1,a =2c ,B =π3代入解得c =33,从而a=233, ∴ S △ABC =12ac sin B =12×233×33sin π3=36.(14分)17. 解:(1) 第一天选A 餐厅的学生在第二天仍选A 餐厅的学生有200(1-20%)=160(人),第一天选B 餐厅的学生在第二天改选A 餐厅的学生有(1000-200)×30%=240(人), 故开学第二天选择A 餐厅的人数为160+240=400.(4分) (2) 由题知b n +1=20%a n +b n (1-30%), 而a n +b n =1 000,∴ b n +1=12b n +200,∴ b n +1-400=12(b n -400).又b 1=1 000-200=800,∴ 数列{b n -400}是首项为400,公比为12的等比数列,∴ b n -400=400×⎝⎛⎫12n -1, ∴ b n =400+400×⎝⎛⎭⎫12n -1.当选B 餐厅用餐总人数低于学校用餐总数的920时, 有400+400×⎝⎛⎭⎫12n -1<920×1 000, 即⎝⎛⎭⎫12n -1<18,∴ n >4,∴ B 餐厅有整改的可能,且在开学第5天开始整改.(14分) 18. (1) 解:∵ 等轴双曲线的离心率为2,∴ 椭圆的离心率为e =22,∴ e 2=c 2a 2=a 2-b 2a 2=12,∴ a 2=2b 2.∵ 直线l :x -y +2=0与圆x 2+y 2=b 2相切,∴ b =1,∴ 椭圆C 的方程为x 22+y 2=1.(4分)(2) 证明:由(1)知M(0,1),∵ m =(k 1-2,1),n =(1,k 2-2),m ⊥n ,∴ k 1+k 2=4. ① 若直线AB 的斜率存在,设AB 方程为y =kx +m ,依题意m ≠±1. 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1,得 (1+2k 2)x 2+4kmx +2m 2-2=0, 则有x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-21+2k 2.由k 1+k 2=4,可得y 1-1x 1+y 2-1x 2=4,∴kx 1+m -1x 1+kx 2+m -1x 2=4, 即2k +(m -1)·x 1+x 2x 1x 2=4,将x 1+x 2,x 1x 2代入得k -km m +1=2,∴ m =k2-1,故直线AB 的方程为y =kx +k2-1,即y =k ⎝⎛⎭⎫x +12-1,∴ 直线AB 过定点⎝⎛⎭⎫-12,-1;(10分) ② 若直线AB 的斜率不存在,设方程为x =x 0,则点A (x 0,y 0),B (x 0,-y 0).由已知y 0-1x 0+-y 0-1x 0=4,得x 0=-12,此时AB 方程为x =x 0,显然过点⎝⎛⎭⎫-12,-1. 综上所述,直线AB 过定点⎝⎛⎭⎫-12,-1.(16分) 19. 解:(1) 设{a n }的公比为q , 由a 3a 6=a 22·q 5=116q 5=1512,得q =12, ∴ a n =a 2·qn -2=⎝⎛⎭⎫12n.(2分)b n =log 2a 2n 2·log 2a2n +12=log ⎝⎛⎭⎫122n -12·log ⎝⎛⎭⎫122n +12=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,∴ T n =12⎝⎛⎭⎫1-13+13-15+…+12n -1-12n +1=12⎝⎛⎭⎫1-12n +1=n 2n +1. (5分) (2) ① 当n 为偶数时,由λT n <n -2恒成立, 得λ<(n -2)(2n +1)n =2n -2n -3恒成立,即λ<⎝⎛⎭⎫2n -2n -3min,(6分) 而2n -2n-3随n 的增大而增大,∴ n =2时⎝⎛⎭⎫2n -2n -3min=0,∴ λ<0;(8分) ② 当n 为奇数时,由λT n <n +2恒成立得, λ<(n +2)(2n +1)n =2n +2n +5恒成立,即λ<⎝⎛⎭⎫2n +2n +5min.(12分) 而2n +2n +5≥22n ·2n+5=9,当且仅当2n =2n ,即n =1时等号成立,∴ λ<9.综上,实数λ的取值范围是(-∞,0).(16分) 20. (1) 解:由f(x)=ln x +2e x ,得f′(x)=1-2x -x ln xx e x,x ∈(0,+∞),(1分)∴ 曲线y =f(x)在点(1,f(1))处的切线斜率为 f ′(1)=-1e.∵ f(1)=2e ,∴ 曲线y =f(x)切线方程为y -2e =-1e (x -1),即y =-1e x +3e .(4分)(2) 解:由x e x f(x)>m ,得k>mx -ln x ,令F (x )=mx-ln x ,则k >F (x )max ,又F ′(x )=-m x 2-1x =-1x2(x +m ),x ∈[1,e].当m ≥0时,F ′(x )<0,F (x )在[1,e]上单调递减,∴ F (x )max =F (1)=m ,∴ k >m ;当m <0时,由F ′(x )=0,得x =-m ,在(0,-m )上F ′(x )>0,F (x )单调递增,在(-m ,+∞)上F ′(x )<0,F (x )单调递减.① 若-m ≤1即-1≤m <0,则F (x )在[1,e]上单调递减,k >F (x )max =F (1)=m ;② 若1<-m <e 即-e<m <-1,则F (x )在[1,-m ]上单调递增,在[-m ,e]上单调递减, k >F (x )max =F (-m )=-1-ln(-m );③ 若-m ≥e 即m ≤-e ,则F (x )在[1,e]上单调递增,k >F (x )max =F (e)=me -1,综上,当m ≥-1时,k ∈(m ,+∞);当-e<m <-1时,k ∈(-1-ln (-m ),+∞);当m ≤-e 时,k ∈⎝⎛⎭⎫m e -1,+∞.(8分)(3) 证明:由f ′(1)=0,得k =1. 令g (x )=(x 2+x )f ′(x ),∴ g (x )=x +1e x (1-x -x ln x ),x ∈(0,+∞),因此,对任意x >0,g (x )<e -2+1等价于1-x -x ln x <e x x +1(e -2+1).由h (x )=1-x -x ln x ,x ∈(0,+∞), 得h ′(x )=-ln x -2,x ∈(0,+∞),因此,当x ∈(0,e -2)时,h ′(x )>0,h (x )单调递增;当x ∈(e -2,+∞)时,h ′(x )<0,h (x )单调递减,∴ h (x )的最大值为h (e -2)=e -2+1,故1-x -x ln x ≤e -2+1. 设φ(x )=e x -(x +1),∵ φ′(x )=e x -1,所以x ∈(0,+∞)时φ′(x )>0, ∴ φ(x )单调递增,φ(x )>φ(0)=0,故x ∈(0,+∞)时,φ(x )=e x-(x +1)>0,即e xx +1>1,∴ 1-x -x ln x ≤e -2+1<e x x +1(e -2+1),故对任意x >0,f ′(x )<e -2+1x 2+x恒成立.(16分)2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(二)1. {x|-1<x ≤0} 解析:由题意可得,A ={x|-1<x<1},B ={y ∈R |y ≤0}={x |x ≤0}.故A ∩B ={x |-1<x ≤0}.2. 5 解析:∵ (z 1-z 2)i =(3-4i )i =4+3i , ∴ |(z 1-z 2)i |=5.3. 154. 18 解析:分数在[70,80)内的人数为[1-(0.005+0.010+0.015×2+0.025)×10]×60=18.5. -3 解析:AE →=AB →+BE →=AB →+13AD →,EF →=EC →+CF →=-12AB →+23AD →,又AB =4,AD =3,∠DAB =π3,∴ AE →·EF →=⎝⎛⎭⎫AB →+13AD →⎝⎛⎭⎫-12AB →+23AD →=-12AB →2+12AB →·AD →+29AD →2=-12×42+12×4×3×cos π3+29×32=-3.6. 13 解析:从1,2,4,8这四个数中一次随机地取2个数相乘,共有6个结果,其中乘积小于8的有2个,故所求概率为26=13.7. 1 解析:∵ f(x)+f(-x)=12x +1+12-x +1=1,∴ f(log 23)+f ⎝⎛⎭⎫log 213=f(log 23)+f(-log 23)=1.8.2425 解析:∵ 0<θ<π2,∴ π6<θ2+π6<5π12,∴ cos ⎝⎛⎭⎫θ2+π6=35,∴ sin ⎝⎛⎭⎫θ+π3=2425,∴ cos ⎝⎛⎭⎫π6-θ=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫θ+π3=sin ⎝⎛⎭⎫θ+π3=2425. 9. 充分不必要 解析:l 1⊥l 2 的充要条件是m(m -3)+1×2=0,即m =1或m =2,∴ “m =1”是“l 1⊥l 2”的充分不必要条件.10. 1 解析:∵ 函数y =f(x +2)的图象关于y 轴对称,∴ 函数y =f(x)的图象关于直线x =2对称.又函数f(x)的周期为4,∴ f(2 019)=f(3)=f(1)=1.11. 5 解析:不妨设P(x 0,y 0)(x 0>0,y 0>0),则y 20=4x 0,12x 0(2y 0)=2,∴ x 0=1,y 0=2.又y 0=b a x 0,∴ b a =2,∴ b 2a 2=4,∴ c 2-a 2a 2=4,∴ e = 5.12.36解析:∵ 3a -b +c =0,则b =3a +c ,设t =c a ,则t ∈(0,1],∴ ac b =ac 3a +c=ca 3+c a =t 3+t 2=13t+t .∵ 3t +t ≥23,∴ ac b ≤123=36,∴ ac b 的最大值为36. 13. 81 解析:设等差数列{a n }的公差为d ,∵ S 2≥4,S 4≤16,∴ 2a 1+d ≥4,4a 1+6d ≤16,即2a 1+d ≥4且2a 1+3d ≤8.又S 9=9a 1+9×82d =9(a 1+4d),由线性规划可知,当a 1=1,d =2时,S 9取得最大值81.14. 1或0 解析:f′(x)=3(x +1)(x -1),令f′(x)=0,则x =-1或x =1,则f(x)在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减.∵ a ≥0,x ∈[a -1,a +1],∴ a -1≥-1,a +1≥1.① 当a -1<1即a<2时,f(x)min =f(1)=-2,f(x)max =max {f(a -1),f(a +1)},又f(x)max-f(x)min =4,f(x)max =2,∴ ⎩⎪⎨⎪⎧f (a -1)=2f (a +1)≤f (a -1)或⎩⎪⎨⎪⎧f (a +1)=2,f (a -1)≤f (a +1),∴ a 的值为1或0;② 当a -1≥1即a ≥2时,f(x)min =f(a -1),f(x)max =f(a +1), ∴ f(a +1)-f(a -1)=4,无解. 综上,a 的值为1或0.15. 证明:(1) 如图,取为PC 中点N ,连结MN ,BN , ∵ M 为PD 的中点,N 为PC 中点,∴ MN ∥CD ,MN =12CD.又AB ∥CD ,AB =12CD ,∴ MN ∥AB ,MN =AB ,∴ 四边形ABNM 为平行四边形, ∴ AM ∥BN.又AM ⊄平面PBC ,BN ⊂平面PBC , ∴ AM ∥平面PBC.(7分)(2) 如图,在等腰中梯形ABCD 中,取CD 中点T ,连结AT ,BT. ∵ AB =12CD ,AB ∥CD ,∴ AB =DT ,AB ∥DT ,∴ 四边形ABTD 为平行四边形.又AB =AD ,∴ 四边形ABTD 为菱形, ∴ AT ⊥BD.同理,四边形ABCT 为菱形,∴ AT ∥BC. ∵ AT ⊥BD ,∴ BC ⊥BD.∵ 平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,CP ⊥CD ,CP ⊂平面PCD , ∴ CP ⊥平面ABCD ,又BD ⊂平面ABCD , ∴ CP ⊥BD.∵ BC ⊥BD ,BC ∩CP =C ,∴ BD ⊥平面PBC. 又BD ⊂平面BDP ,∴平面BDP ⊥平面PBC.(14分) 16. 解:(1) 由题知,c =3,sin A =6sin C.由正弦定理a sin A =c sin C ,得a =csin C ·sin A =3 2.(6分)(2) ∵ cos 2A =1-2sin 2A =-13,且0<A<π,∴ sin A =63. 由于角A 为锐角,得cos A =33. 由余弦定理,a 2=b 2+c 2-2bc cos A ,∴ b 2-2b -15=0, 解得b =5或b =-3(舍去), 所以S △ABC =12bc sin A =522.(14分)17. 解:(1) 由P 在圆O :x 2+y 2=b 2上得b =3, 又点Q 在椭圆C 上,得(-4)2a 2+(-1)232=1,解得a 2=18,∴ 椭圆C 的方程是x 218+y 29=1.(6分)(2) 由⎩⎪⎨⎪⎧y =kx +b ,x 2+y 2=b 2,得x =0或x P =-2kb 1+k 2;由⎩⎪⎨⎪⎧y =kx +b ,x 2a 2+y 2b 2=1,得x =0或x Q =-2kba 2a 2k 2+b 2.∵ AP →=3PQ → ,∴ AP →=34AQ →,∴ 2kba 2k 2a 2+b 2·34=2kb 1+k 2,即a 2a 2k 2+b 2·34=11+k2,∴ k 2=3a 2-4b 2a 2=4e 2-1. ∵ k 2>0,∴ 4e 2>1,即e>12.又0<e<1,∴ 12<e<1,即离心率e 的取值范围是(12,1).(14分)18. 解:(1) 因为当x =4时,y =21, 代入关系式y =m x -2+4(x -6)2,得m2+16=21,解得m =10. (6分)(2) 由(1)可知,产品每日的销售量为 y =10x -2+4(x -6)2, 所以每日销售产品所获得的利润为f(x)=(x -2)·⎣⎡⎦⎤10x -2+4(x -6)2=10+4(x -6)2(x -2)=4x 3-56x 2+240x -278(2<x<6),从而f′(x)=12x 2-112x +240=4(3x -10)(x -6)(2<x<6).令f′(x)=0,得x =103,且在⎝⎛⎭⎫2,103上,f ′(x)>0,函数f(x)单调递增;在⎝⎛⎭⎫103,6上,f ′(x)<0,函数f(x)单调递减,所以当x =103≈3.3时,函数f(x)取得最大值,故当销售价格约为3.3元/件时,该公司每日销售产品所获得的利润最大.(16分) 19. (1) 证明:设b n =a 2n -32,因为b n +1b n =a 2n +2-32a 2n -32=13a 2n +1+(2n +1)-32a 2n -32=13(a 2n -6n )+(2n +1)-32a 2n -32=13a 2n -12a 2n -32=13,所以数列{a 2n -32}是以a 2-32即-16为首项,以13为公比的等比数列.(6分)(2) 解:由(1)得b n =a 2n -32=-16·⎝⎛⎭⎫13n -1=-12·⎝⎛⎭⎫13n ,即a 2n =-12·⎝⎛⎭⎫13n +32,由a 2n =13a 2n -1+(2n -1),得a 2n -1=3a 2n -3(2n -1)=-12·⎝⎛⎭⎫13n -1-6n +152,所以 a 2n -1+a 2n =-12·⎣⎡⎦⎤⎝⎛⎭⎫13n -1+⎝⎛⎭⎫13n -6n +9=-2·⎝⎛⎭⎫13n -6n +9, 所以S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n ) =-2⎣⎡⎦⎤13+⎝⎛⎭⎫132+…+⎝⎛⎭⎫13n -6(1+2+…+n)+9n =-2·13⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13-6·n (n +1)2+9n=⎝⎛⎭⎫13n -1-3n 2+6n =⎝⎛⎭⎫13n -3(n -1)2+2, 显然当n ∈N *时,{S 2n }单调递减,又当n =1时,S 2=73>0,当n =2时,S 4=-89<0,所以当n ≥2时,S 2n <0;S 2n -1=S 2n -a 2n =32·⎝⎛⎭⎫13n -52-3n 2+6n ,同理,当且仅当n =1时,S 2n -1>0.综上,满足S n >0的所有正整数n 为1和2.(16分) 20. 解:(1) 函数g(x)的定义域为(-1,+∞), g ′(x)=ln (x +1)+1,则g(0)=0,g ′(0)=1,∴ 直线l :y =x.联立⎩⎪⎨⎪⎧y =12x 2+kx +1,y =x ,消去y ,得x 2+2(k -1)x +2=0.∵ l 与函数f(x)的图象相切,∴ Δ=4(k -1)2-8=0⇒k =1±2.(4分)(2) 由题意知,h(x)=12x 2+kx +1+ln (x +1)+1,h ′(x)=x +k +1x +1.令φ(x)=x +k +1x +1,∵ φ′(x)=1-1(x +1)2=x (x +2)(x +1)2>0对x ∈[0,2]恒成立, ∴ φ(x)=x +k +1x +1,即h′(x)在[0,2]上为增函数,∴ h ′(x)max =h′(2)=k +73.∵ h(x)在[0,2]上单调递减,∴ h ′(x)≤0对x ∈[0,2]恒成立, 即h′(x)max =k +73≤0,∴ k ≤-73,即k 的取值范围是(-∞,-73].(8分)(3) 当x ∈[0,e -1]时,g ′(x )=ln(x +1)+1>0,∴ g (x )=(x +1)ln(x +1)在区间[0,e -1]上为增函数, ∴ x ∈[0,e -1]时,0≤g (x )≤e 2. ∵ f (x )=12x 2+kx +1的对称轴为直线x =-k ,∴ 为满足题意,必须-1<-k <4, 此时f (x )min =f (-k )=1-12k 2,f (x )的值恒小于f (-1)和f (4)中最大的一个. ∵ 对于∀t ∈[0,e -1],总存在x 1,x 2∈(-1,4), 且x 1≠x 2满足f (x i )=g (t )(i =1,2), ∴ ⎣⎡⎦⎤0,e 2⊆(f (x )min ,min{f (-1),f (4)}), ∴ ⎩⎪⎨⎪⎧-1<-k <4,f (x )min<0,e2<f (4),e 2<f (-1)⇒⎩⎪⎨⎪⎧-4<k <1,1-12k 2<0,e 2<4k +9,e 2<32-k ,∴e 8-94<k <-2, 即k 的取值范围是(e 8-94,-2).(16分)2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(三)1. ⎝⎛⎦⎤12,1 解析:A ={x|0≤x ≤1},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x>12,A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪12<x ≤1. 2.22 解析:z =1-i 2+i =12+12i ,∴ |z|=22. 3. 220 解析:设全校总共抽取x 人,则x 700+700+800=80800,∴ x =220.4. 充分不必要 解析:由1a <12,得a<0或a>2,∴ “a>2”是“1a <12”的充分不必要条件.5. 16 解析:从1,2,4,8这四个数中一次随机地取2个数,有6个结果,绝对值小于2的只有一个,即取2个数差的绝对值小于2的概率是16.6. 10 解析:当n =1时,S =0;当n =2时,S =3;当n =3时,S =5;当n =4时,S=10.7. 2x -y -π2=0 解析:f ⎝⎛⎭⎫π2=π2,f ′⎝⎛⎭⎫π2=1+sin π2=2,切线方程为y -π2=2⎝⎛⎭⎫x -π2,即2x -y -π2=0.8. [2,+∞) 解析:由题知,k>0且k ×1-1≥2×1-12,∴ k ≥2.9. -7 解析:∵ sin α=35且α是第二象限角,∴ cos α=-45,∴ tan α=-34,∴ tan⎝⎛⎭⎫α-π4=-7.10. 4-13 解析:k AC =b2a ,AC 中点为P ⎝⎛⎭⎫-a 2,b 4,k FP =b 4c -a2,由题知,k AC ·k FP =-1,∴ 3a 2-8ac +c 2=0,∴ e 2-8e +3=0,∴ e =4±13,又0<e<1,∴ e =4-13.11. (-6,-5) 解析:a n =a +n -1,b n =1+2a +n -1=1+2n +a -1,由y =1x 的图象可得6<1-a<7,∴ -6<a<-5.12. 18 解析:∵ 2x +y +6=xy ,∴ xy -6=2x +y ≥22xy ,令t =2xy ,则12t 2-6≥2t即t 2-4t -12≥0,∴ t ≥6,∴ xy ≥18,当且仅当2x =y =6时“=”成立,∴ xy 的最小值为18.13.55解析:设a =(1,0),b =(0,1),将c 的起点放在原点,则|c -a |+|c -2b |的几何意义是c 的终点到向量a ,2b 的终点M (1,0),N (0,2)的距离之和,由于点(1,0),(0,2)的距离为5,故c 的终点在线段MN 上,∴ |c -b |的最小值即为点(0,1)到直线MN 的距离,即55. 14. (1,ln 2e)∪⎝⎛⎭⎫32,2 解析:显然x =0不是方程f (x )-g (x )=0的解,由f (x )-g (x )=0,得k =h (x )=⎩⎨⎧x +1x +4,x <0,ln x +1x ,x >0,由图象可得实数k 的取值范围是(1,ln 2e)∪⎝⎛⎭⎫32,2.15. 证明:(1) 如图,在平面PAB 内过点P 作PH ⊥AB 于H , 因为平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD =AB ,PH ⊂平面PAB , 所以PH ⊥平面ABCD.(4分)而BC ⊂平面ABCD ,所以PH ⊥BC. 由∠PBC =90°得PB ⊥BC.又PH ∩PB =P ,PH ,PB ⊂平面PAB , 所以BC ⊥平面PAB.(8分)(2) 因为AB ⊂平面PAB ,故BC ⊥AB, 由∠BAD =90°,得AD ⊥AB , 故在平面ABCD 中,AD ∥BC.(11分) 又AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC.(14分)16. 解:(1) 在△ABC 中,S =23,S =12bc sin A ,∴ 12·4·c sin π3=23,∴ c =2, ∴ a 2=b 2+c 2-2bc cos A =12,∴ a =2 3.(6分) (2) ∵a sin A =b sin B ,∴ 23sinπ3=4sin B,∴ sin B =1. 又0<B<π,∴ B =π2,C =π6,∴ f(x)=2(cos C sin x -cos A cos x)=2sin ⎝⎛⎭⎫x -π6,将f(x)图象上所有点的横坐标变为原来的12,得g(x)=2sin ⎝⎛⎭⎫2x -π6,由2k π-π2≤2x -π6≤2k π+π2,得k π-π6≤x ≤k π+π3(k ∈Z ),∴ g (x )的单调增区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ).(14分)17. 解:(1) 由∠EOF =π4,可得∠COF +∠AOE =π4, 由题意有tan ∠COF =x 4,tan ∠AOE =y5,则tan (∠COF +∠AOE)=x 4+y51-xy 20=1,即有y =20-5x 4+x,由0≤y ≤4⇒49≤x ≤4,则函数的解析式为y =20-5x 4+x ⎝⎛⎭⎫49≤x ≤4.(6分)(2) 三角形池塘OEF 的面积S =S 矩形OABC -S △AOE -S △BEF -S △COF =4×5-5y 2-4x 2-(4-y )(5-x )2=10+5x 2-20x 2(x +4)⎝⎛⎭⎫49≤x ≤4, 令t =x +4⎝⎛⎭⎫409≤t ≤8, 即有S =10+12⎝⎛⎭⎫5t +160t -60≥202-20, 当且仅当5t =160t,即t =42时取“=”,此时x =(42-4)m ,∴ 当x =(42-4)m 时,△OEF 的面积取得最小值,且为(202-20)m 2.(14分) 18. 解:(1) 由e =32可得b a =12. 设椭圆方程为x 24b 2+y 2b 2=1,代入点⎝⎛⎭⎫1,32,得b =1,故椭圆方程为x 24+y 2=1.(4分)(2) ① 由条件知OP :y =x 2,设A(x 1,y 1),B(x 2,y 2),则满足x 214+y 21=1,x 224+y 22=1, 两式作差,得x 21-x 224+y 21-y 22=0, 化简得x 1+x 24+(y 1+y 2)y 1-y 2x 1-x 2=0.因为AB 被OP 平分,故y 1+y 2=x 1+x 22, 当x 1+x 2≠0即直线l 不过原点时,y 1+y 2≠0,所以y 1-y 2x 1-x 2=-12;当x 1+x 2=0即直线l 过原点时,y 1+y 2=0,y 1-y 2x 1-x 2为任意实数,但y 1-y 2x 1-x 2=12时l 与OP 重合;综上,直线l 的斜率为除12以外的任意实数.(8分)② 当x 1+x 2=0时,y 1+y 2=0,故PA →·PB →=(x 1-2)·(x 2-2)+(y 1-1)(y 2-1)=5-x 21-y 21=0,得x 21+y 21=5,联立x 214+y 21=1,得y 21=-13<0,舍去; 当x 1+x 2≠0时,设直线l 为y =-12x +t ,代入椭圆方程x 24+y 2=1可得x 2-2tx +2(t 2-1)=0 (*),所以x 1+x 2=2t ,x 1x 2=2(t 2-1),y 1+y 2=⎝⎛⎭⎫-12x 1+t +⎝⎛⎭⎫-12x 2+t =-12(x 1+x 2)+2t =t , y 1y 2=⎝⎛⎭⎫-12x 1+t ⎝⎛⎭⎫-12x 2+t =14x 1x 2-t 2(x 1+x 2)+t 2=12(t 2-1),(13分) 故PA →·PB →=(x 1-2)(x 2-2)+(y 1-1)(y 2-1) =x 1x 2-2(x 1+x 2)+4+y 1y 2-(y 1+y 2)+1 =52(t 2-2t +1)=0 , (15分) 解得t =1,此时方程(*)中Δ>0,故所求直线方程为 y =-12x +1.(16分)19. 解:(1) ∵ a 1,a 3+2,a 5-5成等差数列, ∴ 2(a 3+2)=a 1+a 5-5.又a 1=1,公比为q ,∴ 2(q 2+2)=1+q 4-5, 即q 4-2q 2-8=0,∴ q 2=4,∴ q =±2.∵ a n >0,∴ q =2,∴ a n =2n -1.(4分)(2) ∵ a 2a 4n -2=a 4n ,数列{a n }是首项为a ,公比为q 的等比数列,∴ a 22n =a 4n.又a n >0,∴ a 2n =a 2n ,∴ a ·q 2n -1=a 2n , ∴ q =a ,∴ a n =a n .(6分)① 假设{a n }中存在三项a r ,a q ,a p (p>q>r)成等差数列,则2a q =a p +a r .∵ a =2,∴ 2·2q =2p +2r ,∴ 2q -r +1=2p -r +1.∵ q -r ≥1,p -r ≥2,q -r ,p -r 均为正整数,∴ 2q -r +1为偶数,2p -r +1为奇数,∴ 2q -r +1≠2p -r +1,矛盾,故{a n }中不存在三项成等差数列.(10分) ② ∵ a n =a n ,∴ b n =a n lg a n =na n lg a. ∵ b n +1>b n 恒成立,∴ (n +1)a n +1lg a>na n lg a 恒成立,显然a ≠1.当0<a<1时,由(n +1)a n +1lg a>na n lg a , 得a<1-1n +1恒成立,∴ 0<a<12;当a>1时,由(n +1)a n +1lg a>na n lg a ,得a>1-1n +1恒成立,∴ a>1.综上所述,a 的取值范围是(0,12)∪(1,+∞).(16分)20. (1) 解:举例:函数f(x)=1是“超导函数”, 因为f(x)=1,f ′(x)=0,满足f(x)≥f′(x)对任意实数x 恒成立, 故f(x)=1是“超导函数”. (4分)(注:答案不唯一,必须有证明过程才能给分,无证明过程的不给分) (2) 证明:∵ F(x)=g(x)h(x),∴ F ′(x)=g′(x)h(x)+g(x)h ′(x),∴ F(x)-F′(x)=g(x)h(x)-g′(x)h(x)-g(x)·h ′(x)=[g(x)-g′(x)][h(x)-h′(x)]-g′(x)h′(x). ∵ 函数g(x)与h(x)都是“超导函数”,∴ 不等式g(x)≥g′(x)与h(x)≥h′(x)对任意实数x 都恒成立, 故g(x)-g′(x)≥0,h(x)-h′(x)≥0 ①,而g(x)与h(x)一个在R 上单调递增,另一个在R 上单调递减,故g ′(x )h ′(x )≤0 ②, 由①②得F (x )-F ′(x )≥0对任意实数x 都恒成立, ∴ 函数F (x )=g (x )h (x )是“超导函数”.(10分) (3) 解:∵ φ(1)=e , ∴ 方程φ(-x -ln x )=e-x -ln x可化为φ(-x -ln x )e -x -ln x=φ(1)e 1, 设函数G (x )=φ(x )e x,x ∈R ,则原方程即为G (-x -ln x )=G (1) ③.∵ y =φ(x )是“超导函数”,∴ φ(x )≥φ′(x )对任意实数x 恒成立,而方程φ(x )=φ′(x )无实根,故G ′(x )=φ′(x )-φ(x )e x<0恒成立,∴ G (x )在R 上单调递减,故方程③等价于-x -ln x =1,即x +1+ln x =0, 设H (x )=x +1+ln x ,x ∈(0,+∞), 则H ′(x )=1+1x >0在(0,+∞)上恒成立,故H (x )在(0,+∞)上单调递增, 而H ⎝⎛⎭⎫1e 2=1e 2-1<0,H ⎝⎛⎭⎫1e =1e>0, 且函数H (x )的图象在⎣⎡⎦⎤1e 2,1e 上连续不间断,故H (x )=x +1+ln x 在⎣⎡⎦⎤1e 2,1e 上有且仅有一个零点,从而原方程有且仅有唯一实数根.(16分)2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(四)1.102 解析: 2+i 1+i =3-i 2,⎪⎪⎪⎪⎪⎪2+i 1+i =⎪⎪⎪⎪3-i 2=94+14=102. 2. (-1,2) 解析:由题知⎩⎪⎨⎪⎧2-x>0,x +1>0,解得-1<x<2.3. 6 解析:461 200+6 000+2 000×1 200=6.4. 2 解析:由程序框图可知,第一次运行时,输入x =5,不满足x ≤0,故x =5-3=2;第二次运行时,x =2不满足x ≤0,故x =2-3=-1;第三次运行时,x =-1满足x ≤0,故y =⎝⎛⎭⎫12-1=2,输出y =2.5. 49 解析:当余弦值为正数时,x =0,π6, π4, π3,概率为49. 6. 充分不必要 解析:由cos 2α=0,得2α=k π+π2,α=k π2+π4(k ∈Z ),∴ “α=π4”是“cos 2α=0”的充分不必要条件. 7. 13 解析:∵ β∈⎝⎛⎭⎫π2,π,cos β=-13,∴ sin β=1-cos 2β=1-⎝⎛⎭⎫-132=223.又α∈⎝⎛⎭⎫0,π2,故α+β∈⎝⎛⎭⎫π2,3π2,从而cos (α+β)=-1-sin 2(α+β)=-1-⎝⎛⎭⎫792=-429, ∴ sin α=sin [(α+β)-β]=79×⎝⎛⎭⎫-13-⎝⎛⎭⎫-429×223=13.8. [2,3] 解析:由题知⎩⎪⎨⎪⎧k 2≥1,k -1≤2,∴ 2≤k ≤3.9. 6 解析:V A 1AED =VEA 1AD =13S △A 1AD ·AB =16SA 1ADD 1·AB =16×36=6.10.258 解析:|2a +b|5=5,且a>0,b>0,从而2a +b =5,∴ 5=2a +b ≥22ab ,∴ ab ≤258,当且仅当2a =b ,即a =54,b =52时等号成立,从而ab 的最大值为258. 11. 4 解析:∵ a 1a 3a 5a 7a 9=32,a n >0,∴ a 5=2,∴ a 2+a 8≥2a 2a 8=4.12. ⎣⎡⎭⎫-π2,-π6∪⎝⎛⎦⎤π6,π2 解析:函数f(x)=x 2-cos x ,x ∈⎣⎡⎦⎤-π2,π2为偶函数,其图象关于y 轴对称,故考虑函数在区间⎣⎡⎦⎤0,π2上的情形,利用导数可得函数在⎣⎡⎦⎤0,π2上单调递增,故在⎣⎡⎦⎤0,π2上f(x 0)>f ⎝⎛⎭⎫π6的x 0的取值范围是⎝⎛⎦⎤π6,π2,利用对称性质知,在⎣⎡⎦⎤-π2,π2上, x 0的取值范围是[-π2,-π6)∪⎝⎛⎦⎤π6,π2. 13. 20-10 解析:设OA →=a =(1,0),OB →=b =(0,1),OP →=c =(x ,y ),则由|c -2b |=2|c -a |,得x 2+(y -2)2=2[(x -1)2+y 2],即(x -2)2+(y +2)2=10.又|c +2a |=(x +2)2+y 2,∴ |c +2a |min =20-10.14. (-∞,e -2] 解析:f ′(x )=e x-a ,依题意,设切点为(x 0,0),则⎩⎪⎨⎪⎧f (x 0)=0,f ′(x 0)=0,即⎩⎪⎨⎪⎧e x 0-a (x 0+1)=0,e x 0-a =0.又a ≠0,∴ ⎩⎪⎨⎪⎧x 0=0,a =1,f (x )=e x -x -1.由题意,得e x -x -1>mx 2,即e x -x -1x 2>m 在(1,+∞) 上恒成立.设h (x )=e x -x -1x 2,x >1,则h ′(x )=(x -2)e x +x +2x 3,x >1.设s (x )=(x -2)e x +x +2,x >1, ∴ s ′(x )=(x -1)e x +1,x >1,∴ s ′(x )>0在(1,+∞)上恒成立,∴ s (x )在(1,+∞)上单调递增.∵ s (1)=3-e>0,∴ s (x )>0即h ′(x )>0在(1,+∞)上恒成立,故h (x )在(1,+∞)上单调递增.∵ h (1)=e -2,∴ m ≤e -2,即实数m 的取值范围是(-∞,e -2].15. 证明:(1) 因为平面EFG ∥平面BCD ,平面ABD ∩平面EFG =EG ,平面ABD ∩平面BCD =BD ,所以EG ∥BD.又G 为AD 的中点,故E 为AB 的中点,同理可得F 为AC 的中点,所以EF =12BC.(7分)(2) 因为AD =BD ,由(1)知,E 为AB 的中点, 所以AB ⊥DE.又∠ABC =90°,即AB ⊥BC. 由(1)知,EF ∥BC ,所以AB ⊥EF.又DE ∩EF =E ,DE ,EF ⊂平面EFD , 所以AB ⊥平面EFD.又AB ⊂平面ABC ,故平面EFD ⊥平面ABC.(14分) 16. 解:(1) 由题意,得f(x)=sin 2x -3sin x cos x =1-cos 2x 2-32sin 2x =12-sin ⎝⎛⎭⎫2x +π6.∵ -π3≤2x +π6≤π2,∴ f(x)∈⎣⎢⎡⎦⎥⎤-12,1+32, ∴ f(x)max =1+32.(7分)(2) 由(1)知g(x)=12-f(x)=sin ⎝⎛⎭⎫2x +π6,∵ sin ⎝⎛⎭⎫2θ-π6=13,0<θ<π4,∴ -π6<2θ-π6<π3,∴ cos ⎝⎛⎭⎫2θ-π6=223,∴ g (θ)=sin ⎝⎛⎭⎫2θ+π6=sin ⎝⎛⎭⎫2θ-π6+π3=26+16.(14分)17. 解:(1) 过O 作OG ⊥BC 于G ,则OG =1,OF =OG sin θ=1sin θ,EF =1+1sin θ,AE ︵=θ,∴ T (θ)=AE ︵5v +EF 6v =θ5v +16v sin θ+16v ,θ∈⎣⎡⎦⎤π4,3π4.(6分)(2) ∵ T(θ)=θ5v +16v sin θ+16v,∴T ′(θ)=15v -cos θ6v sin 2θ=6sin 2θ-5cos θ30v sin 2θ=-(2cos θ+3)(3cos θ-2)30v sin 2θ, 记cos θ0=23,θ0∈[π4,3π4],-+故当cos θ=23时,时间T 最短.(14分)18. 解:(1) 由题意得2c =26,且4a 2+4b 2=1.又c 2=a 2-b 2,故a 2=12,b 2=6, 所以椭圆C 的方程为x 212+y 26=1.(6分)(2) 设点P(x 0,y 0),其中x 0∈(2,23],且x 2012+y 206=1,又设A(0,m),B(0,n),不妨令m>n, 则直线PA 的方程为(y 0-m)x -x 0y +x 0m =0,则圆心(1,0)到直线PA 的距离为|y 0-m +x 0m|(y 0-m )2+x 20=1, 化简得(x 0-2)m 2+2y 0m -x 0=0,(8分) 同理,(x 0-2)n 2+2y 0n -x 0=0,所以m ,n 为方程(x 0-2)x 2+2y 0x -x 0=0的两根,则(m -n)2=(2y 0)2+4x 0(x 0-2)(x 0-2)2,又△PAB 的面积为S =12(m -n)x 0,所以S 2=y 20+x 0(x 0-2)(x 0-2)2x 20=(x 0-2)2+82(x 0-2)2x 20,令t =x 0-2∈(0,23-2],记f(t)=(t 2+8)(t +2)22t 2,则f′(t)=t (t +2)(t 3-16)t 4<0在(0,23-2]上恒成立,所以f(t)在(0, 23-2]上单调递减,故t =23-2,即x 0=23时,f(t)最小,此时△PAB 的面积最小,当x 0=23时,y 0=0,即P(23,0).(16分) 19. 证明:(1) 当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1, 所以a n =2n -1,n ∈N *,则{a n }是“容数列”⇔存在非零常数p ,使得(2n +1)2=(2n -1)(2n +3)+p , 显然p =4满足题意,所以{a n }是“容数列”.(4分) (2) ① 假设{a n }是等差数列,设a n =a 1+(n -1)d ,则由a 2n +1=a n a n +2+p ,得(a 1+nd )2=[a 1+(n -1)·d ][a 1+(n +1)d ]+p ,解得p =d 2≥0,这与p <0矛盾,故假设不成立,从而{a n }不是等差数列.(10分) ② 因为a 2n +1=a n a n +2+p (p >0), 所以a 2n =a n -1a n +1+p (n ≥2),两式相减得a 2n +1-a 2n =a n a n +2-a n -1a n +1(n ≥2).因为{a n }的各项均不为0,所以a n +1+a n -1a n =a n +a n +2a n +1(n ≥2),从而⎩⎨⎧⎭⎬⎫a n +1+a n -1a n (n ≥2)是常数列.因为a 1,a 2,a 3成等差数列,所以a 3+a 1a 2=2,从而a n +1+a n -1a n=2(n ≥2),即a n +1+a n -1=2a n (n ≥2),即证.(16分) 20. 解:(1) ∵ f(8)=1,∴ a =2. 又b =0,∴ f(0)=1, ∴ f ′(0)=-14,∴ f(x)在x =0处的切线方程为x +4y -4=0.(4分) (2) ∵ y =⎝⎛⎭⎫12x是减函数,且f(x)是R 上的单调函数, ∴ 在y =a (log 4x -1)中,应该有y ′=ax ln 4≤0,故a <0.(5分) 在y =ax 3+(b -4a )x 2-⎝⎛⎭⎫4b +14x +1中,其中a +b =0, y ′=3ax 2-10ax +4a -14,导函数的对称轴为x =53,故Δ=100a 2-12a ⎝⎛⎭⎫4a -14≤0,解得-352≤a <0, 即a 的取值范围是[-352,0).(8分)(3) 函数f (x )=⎩⎪⎨⎪⎧2-x ,x <0,x 3+(b -4)x 2-⎝⎛⎭⎫4b +14x +1,0≤x ≤4,log 4x -1,x >4,则f ′(x )=3x 2+2(b -4)x -⎝⎛⎭⎫4b +14(0≤x ≤4), 其判别式Δ=4b 2+16b +67>0,记f ′(x )=0的两根为x 1,x 2(x 1<x 2), 列表:+-+当b >0时,⎝⎛⎭⎫12x+b =0无解,log 4x =1-b 无解,又f (0)+b =1+b >0, f (4)+b =b >0,f (2)+b =8+4(b -4)-2⎝⎛⎭⎫4b +14+1+b =-152-3b <0, 方程在(0,4)上有两解,方程一共有两个解;(10分)当b <-1时,⎝⎛⎭⎫12x +b =0有一解x =log 0.5(-b ),log 4x -1+b =0有一解x =41-b,又f (0)+b =1+b <0,f (4)+b =b <0,f ⎝⎛⎭⎫12+b =18+14(b -4)-12⎝⎛⎭⎫4b +14+1+b =-34b >0, 故方程在(0,4)上有两解,方程共有4个解;(12分) 当-1<b <0时,⎝⎛⎭⎫12x+b =0无解,log 4x -1+b =0有一解, 又f (0)+b =1+b >0,f (4)+b =b <0,方程在(0,4)内只有一解,方程共两解;(14分)当b =0时,有x =4和x =12两解,当b =-1时,有x =0,x =5-102,x =16三个解,综上,当b >-1时,g (x )有2个零点;当b =-1时,g (x )有3个零点;当b <-1时,g (x )有4个零点.(16分)2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(五)1. {x|1<x ≤2} 解析:A ={x|0<x ≤2},B ={x|x>1},∴ A ∩B ={x|1<x ≤2} .2. 23 解析:标号之积为0时,必含标号为0的卡片,只有两种情况,而基本事件总数为3,故概率是23.3. 1 解析:∵ |z 1|=|z 2|,∴ 4+a 2=5,∴ a =±1.又a>0,∴ a =1.4. 80 解析:400×0.010×2×10=80.5. (1,+∞) 解析:∵ 2x >0,∴ 2x +2>2,故函数y =log 2(2x +2)的值域是(1,+∞).6. [-8,0] 解析:∀x ∈R ,ax 2-ax -2≤0是真命题,∴ a =0或⎩⎪⎨⎪⎧a <0,Δ≤0,∴ -8≤a ≤0.7. -2 解析:∵ a ∥b ,∴ 3cos α=(sin α-m )×1,∴ m =sin α-3cos α=2sin⎝⎛⎭⎫α-π3∈[-2,2],∴ m 的最小值为-2.8. [0,1] 解析:当k =0时,结论成立;当k ≠0时,由题意得,⎩⎪⎨⎪⎧k>0,1k ≥1,2-k ≤2,解得0<k ≤1.综上所述,0≤k ≤1.9. -142 解析:cos 2αsin ⎝⎛⎭⎫α-π4=cos 2α-sin 2α22(sin α-cos α)=-2(sin α+cos α).又sin α=12+cos α,∴ sin α-cos α=12,∴ 2sin αcos α=34.又α∈⎝⎛⎭⎫0,π2,∴ sin α+cos α=1+2sin αcos α=72,∴ cos 2αsin ⎝⎛⎭⎫α-π4=-142.10.33 解析:∵ NF 1+MN +MF 1=4a ,MF 1=a ,NF 1=MN ,∴ NF 1=MN =32a ,∴ NF 2MF 2=12.又M(0,-b),∴ N ⎝⎛⎭⎫32c ,b 2,代入x 2a 2+y 2b 2=1,得e =33.11. 4 解析:∵ a 3-a 1=1,∴ a 1(q 2-1)=1,即a 1=1q 2-1>0,∴ q>1,∴ a 5=a 1q 4=q 4q 2-1.设t =q 2-1,则t>0,q 2=t +1,∴ a 5=(t +1)2t =t +1t+2≥4,当且仅当t =1,即q =2时取等号,故a 5的最小值是4.12. 2 解析:f(x)=4cos 2x2cos ⎝⎛⎭⎫π2-x -2sin x -|ln (x +1)|=2(1+cos x)sin x -2sin x -|ln (x +1)|=sin 2x -|ln (x +1)|.问题转化为y =sin 2x 与y =|ln (x +1)|图象的交点, 如图,零点有两个.13. (e ,+∞) 解析:∵ f (x )>e x -e ,∴f (x )e x >1e e .设g (x )=f (x )ex ,∵ f (e)=1,∴ g (e)=f (e )e e =1e e ,∴ f (x )e x >1ee ,即g (x )>g (e). 又g ′(x )=f ′(x )-f (x )e x>0,∴ g (x )在R 上单调递增,∴ f (x )>e x -e 的解集为(e ,+∞). 14. 13 解析:∵ PA →+3PB →+4PC →=0,∴ PA →+PC →+3(PB →+PC →)=0.设AC ,BC 中点分别为D ,E ,则PD →+3PE →=0, ∴ P 为DE 的四等分点(靠近点E), ∴ S △PBC =14S △BDC =18S △ABC ,∴ S △PAC =34S △AEC =38S △ABC ,∴ S △PBC S △PAC =13.15. 解:(1) 因为f(x)=m·n =12cos 2x -32sin 2x +2sin 2x =1-12cos 2x -32sin 2x =1-sin ⎝⎛⎭⎫2x +π6,所以其最小正周期为T =2π2=π.(6分)(2) 由(1)知f (x )=1-sin ⎝⎛⎭⎫2x +π6.因为x ∈⎣⎡⎦⎤0,π2,所以2x +π6∈⎣⎡⎦⎤π6,7π6,所以sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, 所以f (x )=1-sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤0,32. 因为f (x )≤t 恒成立,所以t ≥32,所以最小正整数t 的值为2.(14分) 16. 证明:(1) 如图,连结OE ,∵ 四边形ABCD 是正方形,AC 与BD 交于点O , ∴ O 为BD 中点.又E 为PB 的中点,∴ PD ∥OE. ∵ PD ⊄平面ACE ,OE ⊂平面ACE , ∴ PD ∥平面ACE.(6分)(2) 在四棱锥PABCD 中,AB =2PC , 又四边形ABCD 是正方形,∴ OC =22AB , 即AB =2OC ,∴ PC =OC.∵ F 为PO 中点,∴ CF ⊥PO.(8分) 又PC ⊥底面ABCD ,BD ⊂底面ABCD , ∴ PC ⊥BD.而四边形ABCD 是正方形,∴ AC ⊥BD. ∵ AC ,PC ⊂平面PAC ,AC ∩PC =C , ∴ BD ⊥平面PAC.∵ CF ⊂平面PAC ,∴ BD ⊥CF.∵ PO ,BD ⊂平面PBD ,PO ∩BD =O , ∴ CF ⊥平面PBD. (14分)17. 解:(1) 因为点C 在以AB 为直径的半圆周上, 所以△ABC 为直角三角形. 因为AB =8 m ,∠ABC =π6,所以∠BAC =π3,AC =4 m.在△ACE 中,由余弦定理,得CE 2=AC 2+AE 2-2AC ·AE cos ∠EAC ,又AE =1 m ,所以CE 2=16+1-2×1×4×12=13,即CE =13 m .(6分)(2) 因为∠ACB =π2,∠ECF =π6,所以∠ACE =α∈⎣⎡⎦⎤0,π3,所以∠AFC =π-∠CAE -∠ACF =π-π3-⎝⎛⎭⎫α+π6=π2-α.在△ACF 中,由正弦定理,得CF sin ∠CAF =AC sin ∠CF A =AC sin ⎝⎛⎭⎫π2-α=AC cos α,所以CF =23cos α. 在△ACE 中,由正弦定理,得CE sin ∠CAE =AC sin ∠AEC =AC sin ⎝⎛⎭⎫π3+α,所以CE =23sin ⎝⎛⎭⎫π3+α.若产生最大经济效益,则△CEF 的面积S △ECF 最大, S △ECF =12CE ·CF sin ∠ECF=3sin ⎝⎛⎭⎫π3+αcos α=122sin ⎝⎛⎭⎫2α+π3+3.因为α∈⎣⎡⎦⎤0,π3,所以0≤sin ⎝⎛⎭⎫2α+π3≤1,所以当α=π3时,S △ECF 取最大值为4 3 m 2,此时该地块产生的经济价值最大.(14分)18. (1) 证明:∵ 0<m<3,∴ a =1m ,b =13,∴ c =1m 2-19. ∵ e =223,∴ m =1,∴ 椭圆C 的方程为9x 2+y 2=1. 设A(x 1,y 1),P(x 0,y 0),则B(-x 1,-y 1),9x 21+y 21=1,9x 20+y02=1,∴ k 1k 2=y 1-y 0x 1-x 0·-y 1-y 0-x 1-x 0=y 20-y 21x 20-x 21=1-9x 20-1+9x 21x 20-x 21=-9(定值).(6分) (2) 解:四边形OAQB 能为平行四边形.理由如下:设直线l 的斜率为k ,由l 过点⎝⎛⎭⎫13,1而不过原点且与椭圆C 有两个交点,得k>0,k ≠3.设A(x 1,y 1),B(x 2,y 2),。

2019年数学高考一模试卷附答案

2019年数学高考一模试卷附答案

2019年数学高考一模试卷附答案一、选择题1.已知回归直线方程中斜率的估计值为1.23,样本点的中心()4,5,则回归直线方程为( )A . 1.2308ˆ.0yx =+ B .0.0813ˆ.2yx =+ C . 1.234ˆyx =+ D . 1.235ˆyx =+ 2.定义运算()()a ab a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ).A .B .C .D .3.某学校开展研究性学习活动,某同学获得一组实验数据如下表: x 1.99 3 4 5.16.12 y1.54.04 7.51218.01对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( ) A .22y x =-B .1()2xy =C .2y log x =D .()2112y x =- 4.设集合(){}2log 10M x x =-<,集合{}2N x x =≥-,则M N ⋃=( ) A .{}22x x -≤<B .{}2x x ≥-C .{}2x x <D .{}12x x ≤<5.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( )A .①③④B .②④C .②③④D .①②③6.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .22y x =±C .3y x =±D .2y x =±7.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=,22MF NF =,则双曲线C 的离心率为( ). A .2B .3C .5D .68.函数f (x )=2sin(ωx +φ)(ω>0,-2π<φ<2π)的部分图象如图所示,则ω、φ的值分别是( )A .2,-3πB .2,-6π C .4,-6πD .4,3π 9.在ABC 中,若 13,3,120AB BC C ==∠=,则AC =( )A .1B .2C .3D .410.不等式2x 2-5x -3≥0成立的一个必要不充分条件是( ) A .1x <-或4x >B .0x 或2x -C .0x <或2x >D .12x -或3x 11.已知锐角三角形的边长分别为2,3,x ,则x 的取值范围是( ) A 513x << B 135x < C .25x <<D 55x <<12.设双曲线22221x y a b-=(0a >,0b >)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( ) A .3B .2C .6D .5二、填空题13.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m= _________ . 14.设25a b m ==,且112a b+=,则m =______. 15.若x ,y 满足约束条件x y 102x y 10x 0--≤⎧⎪-+≥⎨⎪≥⎩,则xz y 2=-+的最小值为______.16.若函数3211()232f x x x ax =-++ 在2,3⎡⎫+∞⎪⎢⎣⎭上存在单调增区间,则实数a 的取值范围是_______.17.371()x x+的展开式中5x 的系数是 .(用数字填写答案)18.已知点()0,1A ,抛物线()2:0C y ax a =>的焦点为F ,连接FA ,与抛物线C 相交于点M ,延长FA ,与抛物线C 的准线相交于点N ,若:1:3FM MN =,则实数a 的值为__________.19.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________. 20.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 .三、解答题21.选修4-5:不等式选讲 设函数()|2||1|f x x x =-++.(1)求()f x 的最小值及取得最小值时x 的取值范围; (2)若集合{|()10}x f x ax +->=R ,求实数a 的取值范围.22.已知矩形ABCD 的两条对角线相交于点20M (,),AB 边所在直线的方程为360x y --=,点11T -(,)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.23.四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,3BAD π∠=,PAD ∆是等边三角形,F 为AD 的中点,PD BF ⊥.(1)求证:AD PB ⊥; (2)若E 在线段BC 上,且14EC BC =,能否在棱PC 上找到一点G ,使平面DEG ⊥平面ABCD ?若存在,求四面体D CEG -的体积. 24.选修4-5:不等式选讲:设函数()13f x x x a =++-. (1)当1a =时,解不等式()23f x x ≤+;(2)若关于x 的不等式()42f x x a <+-有解,求实数a 的取值范围.25.2016年某市政府出台了“2020年创建全国文明城市简称创文”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:调查对象为本市市民,被调查者各自独立评分;采用百分制评分,内认定为满意,80分及以上认定为非常满意;市民对公交站点布局的满意率不低于即可进行验收;用样本的频率代替概率.求被调查者满意或非常满意该项目的频率;若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率; 已知在评分低于60分的被调查者中,老年人占,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记为群众督查员中老年人的人数,求随机变量的分布列及其数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】 【分析】由题意得在线性回归方程ˆy bx a =+中 1.23b =,然后根据回归方程过样本点的中心得到a 的值,进而可得所求方程.【详解】设线性回归方程ˆy bx a =+中,由题意得 1.23b =, ∴ 1.23ˆy x a =+.又回归直线过样本点的中心()4,5, ∴5 1.234a =⨯+, ∴0.08a =,∴回归直线方程为 1.2308ˆ.0yx =+. 故选A . 【点睛】本题考查线性回归方程的求法,其中回归直线经过样本点的中心时解题的关键,利用这一性质可求回归方程中的参数,也可求样本数据中的未知参数,属于基础题.2.A解析:A 【解析】 【分析】 【详解】由已知新运算a b ⊕的意义就是取得,a b 中的最小值, 因此函数()1,0122,0xxx f x x >⎧=⊕=⎨≤⎩, 只有选项A 中的图象符合要求,故选A.3.D解析:D 【解析】 【分析】根据,x y 的数值变化规律推测二者之间的关系,最贴切的是二次关系. 【详解】根据实验数据可以得出,x 近似增加一个单位时,y 的增量近似为2.5,3.5,4.5,6,比较接近()2112y x =-,故选D.【点睛】本题主要考查利用实验数据确定拟合曲线,求解关键是观察变化规律,侧重考查数据分析的核心素养.4.B解析:B 【解析】 【分析】求解出集合M ,根据并集的定义求得结果. 【详解】(){}{}{}2log 1001112M x x x x x x =-<=<-<=<< {}2M N x x ∴⋃=≥-本题正确选项:B 【点睛】本题考查集合运算中的并集运算,属于基础题.5.A解析:A 【解析】 【分析】分别当截面平行于正方体的一个面时,当截面过正方体的两条相交的体对角线时,当截面既不过体对角线也不平行于任一侧面时,进行判定,即可求解. 【详解】由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得②.故选A. 【点睛】本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.6.A解析:A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =,所以12||F F ==c ⇒=因为2521a x a =-=⇒=,所以b =所以双曲线的渐近线方程为by x a=±=±. 【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.7.B解析:B 【解析】 【分析】本道题设2MF x =,利用双曲线性质,计算x ,结合余弦定理,计算离心率,即可. 【详解】结合题意可知,设22,,,MF x NF x MN ===则则结合双曲线的性质可得,21122,2MF MF a MF MN NF a -=+-=代入,解得x =,所以122,NF a NF =+=,01245F NF ∠= 对三角形12F NF 运用余弦定理,得到()()()()()22202222cos45a c a ++-=+⋅,解得ce a== 故选B. 【点睛】本道题考查了双曲线的性质,考查了余弦定理,关键利用余弦定理,解三角形,进而计算x ,即可,难度偏难.8.A解析:A 【解析】 【分析】由函数f (x )=2sin (ωx+φ)的部分图象,求得T 、ω和φ的值. 【详解】由函数f (x )=2sin (ωx+φ)的部分图象知,3T 5π412=-(π3-)3π4=, ∴T 2πω==π,解得ω=2; 又由函数f (x )的图象经过(5π12,2),∴2=2sin (25π12⨯+φ), ∴5π6+φ=2kππ2+,k∈Z, 即φ=2kππ3-, 又由π2-<φπ2<,则φπ3=-; 综上所述,ω=2、φπ3=-. 故选A . 【点睛】本题考查了正弦型函数的图象与性质的应用问题,是基础题.9.A解析:A 【解析】余弦定理2222?cos AB BC AC BC AC C =+-将各值代入 得2340AC AC +-=解得1AC =或4AC =-(舍去)选A.10.C解析:C 【解析】 【分析】根据题意,解不等式2x 2-5x-3≥0可得x≤-12或x≥3,题目可以转化为找x≤-12或x≥3的必要不充分条件条件,依次分析选项即可得答案. 【详解】根据题意,解不等式2x 2-5x-3≥0可得x≤-12或x≥3,则2x 2-5x-3≥0⇔x≤12-或3x ,所以可以转化为找x≤-12或x≥3的必要不充分条件; 依次选项可得:x 1<-或x 4>是12x ≤-或x≥3成立的充分不必要条件; x 0≥或x 2≤-是12x ≤-或x≥3成立的既不充分也不必要条件x 0<或x 2>是12x ≤-或x≥3成立的必要不充分条件;x≤-12或x≥3是12x ≤-或x≥3成立的充要条件;【点睛】本题考查了充分必要条件,涉及一元二次不等式的解答,关键是正确解不等式2x 2-5x-3≥0.11.A解析:A 【解析】试题分析:因为三角形是锐角三角形,所以三角形的三个内角都是锐角,则设边3对的锐角为角α,根据余弦定理得22223cos 04x xα+-=>,解得x >x 边对的锐角为β,根据余弦定理得22223cos 012x β+-=>,解得0x <<x 的取值范x << A. 考点:余弦定理.12.D解析:D 【解析】由题意可知双曲线的渐近线一条方程为b y x a =,与抛物线方程组成方程组2,1b y xa y x ⎧=⎪⎨⎪=+⎩消y 得,2210,()40b b x x a a -+=∆=-=,即2()4b a =,所以e == D. 【点睛】双曲线22221x y a b-=(0a >,0b >)的渐近线方程为b y x a =±.直线与抛物线交点问题,直线与抛物线方程组方程组,当直线与抛物线对称轴平行时,直线与抛物线相交,只有一个交点.当直线与抛物线对称轴不平行时,当>0∆时,直线与抛物线相交,有两个交点. 当0∆=时,直线与抛物线相切,只有一个交点. 当∆<0时,直线与抛物线相离,没有交点.二、填空题13.3【解析】【分析】【详解】如图区间长度是6区间﹣24上随机地取一个数x 若x 满足|x|≤m 的概率为若m 对于3概率大于若m 小于3概率小于所以m=3故答案为3解析:3 【解析】【详解】如图区间长度是6,区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,若m 对于3概率大于,若m 小于3,概率小于,所以m=3. 故答案为3.14.【解析】【分析】变换得到代入化简得到得到答案【详解】则故故答案为:【点睛】本题考查了指数对数变换换底公式意在考查学生的计算能力 10【解析】 【分析】变换得到2log a m =,5log b m =,代入化简得到11log 102m a b+==,得到答案. 【详解】25a b m ==,则2log a m =,5log b m =,故11log 2log 5log 102,10m m m m a b+=+==∴= 10 【点睛】本题考查了指数对数变换,换底公式,意在考查学生的计算能力.15.-1【解析】【分析】画出约束条件表示的平面区域由图形求出最优解再计算目标函数的最小值【详解】画出约束条件表示的平面区域如图所示由图形知当目标函数过点A 时取得最小值由解得代入计算所以的最小值为故答案为解析:-1 【解析】 【分析】画出约束条件表示的平面区域,由图形求出最优解,再计算目标函数1z x y 2=-+的最小值. 【详解】画出约束条件102100x y x y x --≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域如图所示,由图形知,当目标函数1z x y 2=-+过点A 时取得最小值,由{x 0x y 10=--=,解得()A 0,1-,代入计算()z 011=+-=-,所以1z x y 2=-+的最小值为1-. 故答案为1-.【点睛】本题考查了线性规划的应用问题,也考查了数形结合的解题方法,是基础题.16.【解析】【分析】【详解】试题分析:当时的最大值为令解得所以a 的取值范围是考点:利用导数判断函数的单调性 解析:1(,)9-+∞ 【解析】【分析】【详解】 试题分析:2211()2224f x x x a x a ⎛⎫=-++=--++ ⎪⎝⎭'.当23x ⎡⎫∈+∞⎪⎢⎣⎭,时,()f x '的最大值为22239f a ⎛⎫=+ ⎪⎝⎭',令2209a +>,解得19a >-,所以a 的取值范围是1,9⎛⎫-+∞ ⎪⎝⎭. 考点:利用导数判断函数的单调性.17.【解析】由题意二项式展开的通项令得则的系数是考点:1二项式定理的展开式应用解析:35【解析】 由题意,二项式371()x x +展开的通项372141771()()r r r r r r T C x C x x--+==,令2145r -=,得4r =,则5x 的系数是4735C =. 考点:1.二项式定理的展开式应用.18.【解析】依题意可得焦点的坐标为设在抛物线的准线上的射影为连接由抛物线的定义可知又解得点睛:本题主要考查的知识点是抛物线的定义以及几何性质的应用考查了学生数形结合思想和转化与化归思想设出点在抛物线的准【解析】依题意可得焦点F 的坐标为04a ⎛⎫ ⎪⎝⎭,, 设M 在抛物线的准线上的射影为K ,连接MK 由抛物线的定义可知MF MK =13FM MN =∶∶KN KM ∴=∶又01404FN K a a--==-,FN KN K KM ==-4a-∴=-a =点睛:本题主要考查的知识点是抛物线的定义以及几何性质的应用,考查了学生数形结合思想和转化与化归思想,设出点M 在抛物线的准线上的射影为K ,由抛物线的定义可知MF MK =,再根据题设得到KN KM =∶,然后利用斜率得到关于a 的方程,进而求解实数a 的值19.【解析】【分析】由圆的几何性质得圆心在的垂直平分线上结合题意知求出的垂直平分线方程令可得圆心坐标从而可得圆的半径进而可得圆的方程【详解】由圆的几何性质得圆心在的垂直平分线上结合题意知的垂直平分线为令 解析:22(2)10x y -+=.【解析】【分析】由圆的几何性质得,圆心在AB 的垂直平分线上,结合题意知,求出AB 的垂直平分线方程,令0y =,可得圆心坐标,从而可得圆的半径,进而可得圆的方程.【详解】由圆的几何性质得,圆心在AB 的垂直平分线上,结合题意知,AB 的垂直平分线为24y x =-,令0y =,得2x =,故圆心坐标为(2,0),所以圆的半径=22(2)10x y -+=.【点睛】本题主要考查圆的性质和圆的方程的求解,意在考查对基础知识的掌握与应用,属于基础题.20.【解析】试题分析:设等比数列的公比为由得解得所以于是当或时取得最大值考点:等比数列及其应用解析:64【解析】试题分析:设等比数列的公比为q ,由132410{5a a a a +=+=得,2121(1)10{(1)5a q a q q +=+=,解得18{12a q ==.所以2(1)1712(1)22212118()22n n n n n n n n a a a a q --++++-==⨯=,于是当3n =或4时,12na a a 取得最大值6264=.考点:等比数列及其应用三、解答题21.(1)min ()3f x =,此时x ∈[]1,2-(2)()1,2-【解析】【分析】(1)利用绝对值不等式公式进行求解;(2)集合(){}10x f x ax R +-=表示x R ∀∈,()1f x ax >-+,令()1g x ax =-+, 根据几何意义可得()y f x =的图像恒在()y g x =图像上方,数形结合解决问题.【详解】解(1)因为()()21213x x x x -++≥--+=,当且仅当()()210x x -+≤,即12x -≤≤时,上式“=”成立,故函数()21f x x x =++-的最小值为3,且()f x 取最小值时x 的取值范围是[]1,2-.(2)因为(){}10x f x ax R +-=,所以x R ∀∈,()1f x ax >-+. 函数()21f x x x =-++化为()21,13,1221,2x x f x x x x -+<-⎧⎪=-≤≤⎨⎪->⎩.令()1g x ax =-+,其图像为过点()0,1P ,斜率为a -的一条直线.如图,()2,3A ,()1,3B -.则直线PA 的斜率131120k -==-, 直线PB 的斜率231210k -==---. 因为()()f x g x >,所以21a -<-<,即12a -<<,所以a 的范围为()1,2-.【点睛】本题考查了绝对值不等式问题与不等式恒成立问题,不等式恒成立问题往往可以借助函数的图像来研究,数形结合可以将抽象的问题变得更为直观,解题时应灵活运用.22.(1)3x +y +2=0;(2)(x -2)2+y 2=8.【解析】【分析】(1) 直线AB 斜率确定,由垂直关系可求得直线AD 斜率,又T 在AD 上,利用点斜式求直线AD 方程;(2)由AD 和AB 的直线方程求得A 点坐标,以M 为圆心,以AM 为半径的圆的方程即为所求.【详解】(1)∵AB 所在直线的方程为x -3y -6=0,且AD 与AB 垂直,∴直线AD 的斜率为-3. 又∵点T (-1,1)在直线AD 上,∴AD 边所在直线的方程为y -1=-3(x +1), 即3x +y +2=0.(2)由360320x y x y --=⎧⎨++=⎩,得02x y =⎧⎨=-⎩, ∴点A 的坐标为(0,-2),∵矩形ABCD 两条对角线的交点为M (2,0),∴M 为矩形ABCD 外接圆的圆心,又|AM |()()22200222-++= ∴矩形ABCD 外接圆的方程为(x -2)2+y 2=8.【点睛】本题考查两直线的交点,直线的点斜式方程和圆的方程,考查计算能力,属于基础题.23.(1)证明见解析;(2)112. 【解析】【分析】(1)连接PF ,BD 由三线合一可得AD ⊥BF ,AD ⊥PF ,故而AD ⊥平面PBF ,于是AD ⊥PB ;(2)先证明PF ⊥平面ABCD ,再作PF 的平行线,根据相似找到G ,再利用等积转化求体积.【详解】连接PF ,BD,∵PAD ∆是等边三角形,F 为AD 的中点,∴PF ⊥AD ,∵底面ABCD 是菱形,3BAD π∠=,∴△ABD 是等边三角形,∵F 为AD 的中点,∴BF ⊥AD ,又PF ,BF ⊂平面PBF ,PF ∩BF =F ,∴AD ⊥平面PBF ,∵PB ⊂平面PBF ,∴AD ⊥PB .(2)由(1)得BF ⊥AD ,又∵PD ⊥BF ,AD ,PD ⊂平面PAD ,∴BF ⊥平面PAD ,又BF ⊂平面ABCD ,∴平面PAD ⊥平面ABCD ,由(1)得PF ⊥AD ,平面PAD ∩平面ABCD =AD ,∴PF ⊥平面ABCD ,连接FC 交DE 于H,则△HEC 与△HDF 相似,又1142EC BC FD ==,∴CH=13CF , ∴在△PFC 中,过H 作GH //PF 交PC 于G ,则GH⊥平面ABCD ,又GH ⊂面GED ,则面GED⊥平面ABCD ,此时CG=13CP, ∴四面体D CEG -的体积111311223382312D CEG G CED CED V V S GH PF --==⋅=⨯⨯⨯⨯⨯=. 所以存在G 满足CG=13CP, 使平面DEG ⊥平面ABCD ,且112D CEG V -=. 【点睛】 本题考查了线面垂直的判定与性质定理,面面垂直的判定及性质的应用,考查了棱锥的体积计算,属于中档题.24.(1)15[,]42(2)(5,3)-【解析】【分析】(1)通过讨论x 的范围,求出不等式的解集即可;(2)问题等价于关于x 的不等式14x x a ++-<有解,()min 14x x a++-<,求出a的范围即可.【详解】解:(1)()1323f x x x a x =++-≤+可转化为 14223x x x ≥⎧⎨-≤+⎩或114223x x x -<<⎧⎨-≤+⎩或12423x x x ≤-⎧⎨-≤+⎩, 解得512x ≤≤或114x ≤<或无解. 所以不等式的解集为15,42⎡⎤⎢⎥⎣⎦. (2)依题意,问题等价于关于x 的不等式14x x a ++-<有解,即()min 14x x a ++-<,又111x x a x x a a ++-≥+-+=+,当()()10x x a +-≤时取等号.所以14a +<,解得53a -<<,所以实数a 的取值范围是()5,3-.【点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用。

2019届全国高考高三模拟考试卷数学(理)试题(三)(解析版)

2019届全国高考高三模拟考试卷数学(理)试题(三)(解析版)

5 6
A.1 个
(2)190 是数列 an 中的项
(4)当 n 7 时, an 21 取最小值 n
B.2 个
C.3 个
D.4 个
第Ⅱ卷
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.
2x y 0
13.[2019·深圳期末]已知不等式组

x

2
y

0
所表示的平面区域为
该多面体的表面积为( )
A. 28 4 5
B. 28 8 2
C.16 4 2 8 5
D.16 8 2 4 5
10.[2019·汕尾质检]已知 A ,B ,C ,D 是球 O 的球面上四个不同的点,若 AB AC DB DC BC 2 ,
且平面 DBC 平面 ABC ,则球 O 的表面积为( )
图1
图2
(1)证明: AF 平面 MEF ;
(2)求二面角 M AE F 的大小.
20.(12 分)[2019·临沂质检]已知抛物线 C : y2 2 px p 0 的焦点为 F , P 为抛物线上一点,
O 为坐标原点, △OFP 的外接圆与抛物线的准线相切,且外接圆的周长为 3π . (1)求抛物线 C 的方程; (2)设直线 l 交 C 于 A , B 两点, M 是 AB 的中点,若 AB 12 ,求点 M 到 y 轴的距离的最小值,并求 此时 l 的方程.
B. 2 3
C. 9 4
D. 4 9
12.[2019·江西九校联考]设 x 为不超过 x 的最大整数, an 为 xx x 0,n 可能取到所有值的
个数,
Sn
是数列

2019届普通高等学校招生全国统一考试模拟试题答案

2019届普通高等学校招生全国统一考试模拟试题答案

普通高等学校招生全国统一考试模拟试题英语参考答案第Ⅰ卷第一部分听力答案:1--5 BACBA6--7 CA 8--9 BA 10--12 CBC 13--16 BCBA 17--20 ACBA听力材料:Text 1W:What’s the weather forecast for the weekend?M:It’s going to be cold tonight and freezing on Saturday.W:What about on Sunday?M:It’s getting worse; it’s going to be windy and maybe even snowy.材料来源:http://wwwText 2M: Hey ,Mei Hong! How are you getting to Xi’an next week?W: I’m not sure yet. I may take the train but then again I might take the bus.M:Yeah, but the bus takes a long time. You could fly --- it’s not so expensive these days.材料来源:http://www.tmlText 3W:How was your morning jog?M:Very good. I feel quite refreshed now! You should come with me sometime---exercise is good for you!W:To be honest, I’d rather watch television! Where did you go?M:I just ran alongside the main road.材料来源:http://www.tmlText 4M: what kind of person do you consider yourself to be?W: I think I’m polite, careful, relaxed and shy.M: oh, I don’t think you’re shy! You are always chatting with new people when we go to a party. http://www.eText 5W:Can I help you?M:Yes,I’d like to know if you have got any story books in English?W:Of course,we have. which one do you want to borrow?M:“A garden party”.材料来源:http://www.ehtmltext 6W: Hi, Geoff. What do you do in your free time?M: I like to play piano, go bowling, and chat online with my friends. And you?W: I like to hang out with friends, play games, and go swimming.M: Would you like to go out sometime?W: Sure, that’d be great. Where would you like to go?M: Anywhere with you!材料来源:Text 7M: May I ask you how much is the tour fee?W: It is two thousand two hundred Yuan per capita.M: What about children?W: The fee for children is one thousand one hundred, namely it is half-price for children.M: Can you give me a discount?W: I'm afraid it is busy season. How many people do you have?M: Four adults and one child.W: OK, we can give you ten percent of the price off.材料来源:http://www.mlText 8M:Where are you going this weekend?W:I’m going to Hainan.M:Oh really? It’ll be nice and warm there. Are you traveling alone?W: No, I will go there with my parents. We haven’t been together for years.M: Have you been there before?W:Yes, actually it’s my second visit. I was there alone on business last October.M:I see. What’s it like there?W:Well, the lifestyle is much more relaxed than here in the city. And the seafood is tastier!M:Well, have a great time!材料来源:http://www.-1.htmlText 9M: Hello, Gabrielle!W: Hello!M: How are you doing today?W: Good thanks.M: Now, Grabrielle, I hear that you are going back home to New ZealandW: That's right. I'm going home for summer vacation.M: OK. What are your plans?W: Probably a week relaxing ,going camping in North Island ,visiting some of my friends and then I'm going back to work.M: Oh, OK. Where do you work?W: I teach as an English teacher in Christchurch, in New Zealand.M: Oh, OK. And that's where you're from, naturally.W: That's right. I spent my childhood there and there are happy memories I can’t forget.M: Were you born there?W: I was, yeah!材料来源:http:lLuckily, you can do a few things to make homework less work.First, be sure you understand the assignment. Write it down in your notebook or day planner if you need to, and don't be afraid to ask questions about what's expected. It's much easier to take a minute to ask the teacher during or after class than to struggle to remember later that night! If you want, you can also ask how long the particular homework assignment should take to complete so you can budget your time.Second, use any extra time you have in school to work on your homework. Many schools have study halls that are specifically designed to allow students to study or get homework done. The more work you can get done in school, the less you'll have to do that night.Third, pace yourself. If you don't finish your homework during school, think about how much you have left and what else is going on that day, and then budget your time. It's a good idea to come up with some kind of homework schedule, especially if you are involved in sports or activities or have an after-school job.材料来源:第二部分阅读理解【文章大意】本文是一篇广告类说明文。

2019届全国高校统一招生考试数学模拟试卷(含解析)【精品】

2019届全国高校统一招生考试数学模拟试卷(含解析)【精品】

2019届全国高校统一招生考试模拟试卷数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知{}lg 0A x x =>,{}12B x x =-<,则A B =( )A .{}11x x x <-≥或B .{}13x x <<C .{}3x x >D .{}1x x >-【答案】D【解析】{}{}lg 01A x x x x =>=>,{}{}1213B x x x x =-<=-<<,则{}1A B xx =>-.故选D .2.已知复数312iz =-(i 是虚数单位),则z 的实部为( ) A .35-B .35C .15-D .15【答案】B 【解析】∵()()()312i 336i 12i 12i 12i 55z +===+--+,∴z 的实部为35.故选B . 3.函数e4xy x=的图象可能是( )A .B .C .D .【答案】C【解析】函数为奇函数,图象关于原点对称,排除B , 当1x =时,e14y =<,排除A ; 当x →+∞时,e4xx→+∞,排除D .故选C .4.已知向量(1,=a ,()0,2=-b ,则a 与b 的夹角为( ) A .π6B .π3C .5π6D .2π3【答案】A【解析】设向量a 与向量b 的夹角为[]()0,πθθ∈,则cos θ⋅=a b a b ,∴π6θ=.故选A . 5.直线0ax by -=与圆220x y ax by +-+=的位置关系是( )A .相交B .相切C .相离D .不能确定【答案】B【解析】将圆的方程化为标准方程得2222224a b a b x y +⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,∴圆心坐标为,22a b ⎛⎫- ⎪⎝⎭,半径r =∵圆心到直线0ax by -=的距离22a b d r +===, 则圆与直线的位置关系是相切.故选B .6.在ABC △中,a ,b ,c 分别是角A ,B ,C 的对边,()()3a b c a c b ac +++-=,则角B =( ) A .2π3B .π3C .5π6D .π6【答案】B【解析】由()()3a b c a c b ac +++-=,可得222a c b ac +-=,根据余弦定理得2221cos 22a cb B ac +-==,∵()0,πB ∈,∴π3B =.故选B . 7.执行如图所示程序框图,输出的S =( )此卷只装订不密封班级 姓名 准考证号 考场号 座位号A .25B .9C .17D .20【答案】C【解析】按照程序框图依次执行为1S =,0n =,0T =;9S =,2n =,044T =+=; 17S =,4n =,41620T S =+=>,退出循环,输出17S =.故选C .8.将一颗质地均匀的骰子(一种各个面分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和为大于8的偶数的概率为( ) A .112B .19C .16D .14【答案】B【解析】将先后两次的点数记为有序数实数对(),x y ,则共有6636⨯=个基本事件,其中点数之和为大于8的偶数有()4,6,()6,4,()5,5,()6,6共4种,则满足条件的概率为41369=.故选B . 9.长方体1111ABCD A B C D -,1AB =,2AD =,13AA =,则异面直线11A B 与1AC 所成角的余弦值为( ) ABCD .13【答案】A【解析】∵1111C D A B ∥,∴异面直线11A B 与1AC 所成的角即为11C D 与1AC 所成的角11AC D ∠. 在11Rt AC D △中,111C D =,1AD1AC∴11111cos C D AC D AC ∠===.故选A . 10.设函数()ππsin 2cos 244f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则( )A .()y f x =在π0,2⎛⎫⎪⎝⎭单调递增,其图象关于直线π4x =对称B .()y f x =在π0,2⎛⎫⎪⎝⎭单调递增,其图象关于直线π2x =对称C .()y f x =在π0,2⎛⎫⎪⎝⎭单调递减,其图象关于直线π4x =对称D .()y f x =在π0,2⎛⎫⎪⎝⎭单调递减,其图象关于直线π2x =对称【答案】D【解析】∵()πππsin 2cos 222442f x x x x x ⎛⎫⎛⎫⎛⎫=+++=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 由于cos y x =的对称轴为()πx k k =∈Z ,∴y x =的对称轴方程是()π2k x k =∈Z ,∴A ,C 错误;y x =的单调递减区间为()2π2π2πk x k k ≤≤+∈Z , 即()πππ2k x k k ≤≤+∈Z ,函数()y f x =在π0,2⎛⎫⎪⎝⎭上单调递减,∴B 错误,D 正确.故选D . 11.已知函数()()lg 4, 02, 0ax x f x x x ⎧+>⎪=⎨+≤⎪⎩,且()()033f f +=,则实数a 的值是( )A .1B .2C .3D .4【答案】B【解析】由题意知,()02f =,又()()033f f +=,则()31f =, 又()()3lg 341f a =+=,解得2a =.故选B .12.已知椭圆和双曲线有共同的焦点1F ,2F ,P 是它们的一个交点,且122π3F PF ∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则221231e e +=( ) A .4B.C .2D .3【答案】A【解析】设椭圆的长半轴长为1a ,双曲线的实半轴长为2a ,则根据椭圆及双曲线的定义:1212PF PF a +=,1222PF PF a -=,∴112PF a a =+,212PF a a =-,设122F F c =,122π3F PF ∠=, 则在12PF F △中由余弦定理得,()()()()222121212122π42cos3c a a a a a a a a =++--+-, ∴化简得2221234a a c +=,该式可变成2212314e e +=.故选A . 第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知函数()2ln 24f x x x x =+-,则函数()f x 的图象在1x =处的切线方程为__________. 【答案】30x y --=【解析】∵()2ln 24f x x x x =+-,∴()144f x x x'=+-,∴()11f '=, 又()12f =-,∴所求切线方程为()21y x --=-,即30x y --=.14.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则2z x y =+的最小值为__________.【答案】11-【解析】画出可行域如图所示,可知目标函数过点()4,3A --时取得最小值,()()min 24311z =⨯-+-=-. 15.已知sin 2cos αα=,则cos 2α=__________. 【答案】35-【解析】由已知得tan 2α=,22222222cos sin 1tan 143cos2cos sin sin cos tan 1415ααααααααα---=-====-+++.16.直三棱柱111ABC A B C -的底面是直角三角形,侧棱长等于底面三角形的斜边长,若其外接球的体积为32π3,则该三棱柱体积的最大值为__________.【答案】【解析】设三棱柱底面直角三角形的直角边为a ,b,则棱柱的高h , 设外接球的半径为r ,则3432ππ33r =,解得2r =,∵上下底面三角形斜边的中点连线的中点是该三棱柱的外接球的球心,24r ==.∴h =22282a b h ab +==≥,∴4ab ≤.当且仅当2a b ==时“=”成立.∴三棱柱的体积12V Sh abh ===≤三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(12分)已知正项等比数列{}n a 满足126a a +=,324a a -=.(1)求数列{}n a 的通项公式; (2)记2211log log n n n b a a +=,求数列{}n b 的前n 项和n T .【答案】(1)2n n a =;(2)1n nT n =+. 【解析】(1)设数列{}n a 的公比为q ,由已知0q >, 由题意得1121164a a q a q a q +=⎧⎪⎨-=⎪⎩, ∴23520q q --=. 解得2q =,12a =. 因此数列{}n a 的通项公式为2n n a =. (2)由(1)知,()2211111log log 11n n n b a a n n n n +===-++,∴11111111223111n nT n n n n =-+-++-=-=+++L .18.(12分)经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:其中:1221ˆni ii nii x yn x y bxn x ==-⋅⋅=-⋅∑∑,ˆˆay bx =-,82117232i i x ==∑,8147384i i i x y ==∑;(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆˆy bx a =+;(ˆa ,ˆb 的值精确到0.01)(3)若规定,一个人的收缩压为标准值的0.9 1.06~倍,则为血压正常人群;收缩压为标准值的1.06 1.12~倍,则为轻度高血压人群;收缩压为标准值的1.12 1.20~倍,则为中度高血压人群;收缩压为标准值的1.20倍及以上,则为高度高血压人群.一位收缩压为180mmHg 的70岁的老人,属于哪类人群?【答案】(1)见解析;(2)ˆ0.9188.05yx =+;(3)收缩压为180mmHg 的70岁老人为中度高血压人群. 【解析】(1).(2)2832384248525862458x +++++++==,1141181221271291351401471298y +++++++==.∴818222147384845129118ˆ0.91172328451298i ii ii x ynx ybxx ==-⋅-⨯⨯===≈-⨯-⋅∑∑.ˆˆ1290.914588.05ay bx =-=-⨯=.∴回归直线方程为ˆ0.9188.05y x =+. (3)根据回归直线方程的预测,年龄为70岁的老人标准收缩压约为()0.917088.05151.75mmHg ⨯+=,∵1801.19151.75≈.∴收缩压为180mmHg 的70岁老人为中度高血压人群. 19.(12分)已知抛物线2:2C y px =过点()1,1A . (1)求抛物线C 的方程;(2)过点()3,1P -的直线与抛物线C 交于M ,N 两个不同的点(均与点A 不重合).设直线AM ,AN 的斜率分别为1k ,2k ,求证:1k ,2k 为定值.【答案】(1)2y x =;(2)见解析.【解析】(1)由题意得21p =,∴抛物线方程为2y x =.(2)设()11,M x y ,()22,N x y ,直线MN 的方程为()13x t y =++,代入抛物线方程得230y ty t ---=.∴()2280t ∆=++>,12y y t +=,123y y t =--, ∴()()121212221212121212111111111111111312y y y y k k x x y y y y y y y y t t ----⋅=⋅=⋅====-----+++++--++, ∴1k ,2k 是定值.20.(12分)如图,三棱柱111ABC A B C -的所有棱长都是2,1AA ⊥平面ABC ,D ,E 分别是AC ,1CC 的中点.(1)求证:AE ⊥平面1A BD ;(2)求二面角1D BE B --的余弦值. 【答案】(1)见解析;(2). 【解析】(1)∵AB BC CA ==,D 是AC 的中点,∴BD AC ⊥, ∵1AA ⊥平面ABC ,∴平面11AA C C ⊥平面ABC ,∴BD ⊥平面11AA C C ,∴BD AE ⊥.又∵在正方形11AA C C 中,D ,E 分别是AC ,1CC 的中点,∴1A D AE ⊥. 又1A DBD D =,∴AE ⊥平面1A BD .(2)取11AC 中点F ,以DF ,DA ,DB 为x ,y ,z 轴建立空间直角坐标系,()0,0,0D ,()1,1,0E -,(B,(1B ,(DB =,()1,1,0DE =-,()12,0,0BB =,(1EB =,设平面DBE 的一个法向量为(),,x y z =m,则0000DB x y DE ⎧⋅==⎪⇒⎨-=⎪⋅=⎪⎩⎩m m ,令1x =,则()1,1,0=m ,设平面1BB E 的一个法向量为(),,a b c =n,则1120000a BB a b EB ⎧=⎧⋅=⎪⎪⇒⎨⎨+=⎪⋅=⎪⎩⎩n n ,令c =,则(0,=-n ,设二面角1D BE B --的平面角为θ,观察可知θ为钝角,cos ,⋅==m n m n m n∴cos θ=,故二面角1D BE B --的余弦值为.21.(12分)已知函数()()e xf x ax x -=-∈R ,()()ln 1g x x m ax =+++.(1)当1a =-时,求函数()f x 的最小值;(2)若对任意(),x m ∈-+∞,恒有()()f x g x -≥成立,求实数m 的取值范围. 【答案】(1)1;(2)(],1-∞.【解析】(1)当1a =-时,()e xf x x -=+,则()11e xf x '=-+. 令()0f x '=,得0x =.当0x <时,()0f x '<;当0x >时,()0f x '>. ∴函数()f x 在区间(),0-∞上单调递减,在区间()0,+∞上单调递增.∴当0x =时,函数()f x 取得最小值,其值为()01f =.(2)由(1)得:e 1x x ≥+恒成立.()()()()ln 1e ln 1x xf xg x e ax x m ax x m -≥⇒+≥+++⇒≥++①当()1ln 1x x m +≥++恒成立时,即e x m x ≤-恒成立时,条件必然满足.设()e x G x x =-,则()e 1xG x '=-,在区间(),0-∞上,()0G x '<,()G x 是减函数,在区间()0,+∞上,()0G x '>,()G x 是增函数,即()G x 最小值为()01G =.于是当1m ≤时,条件满足.②当1m >时,()01f =,()0ln 11g m =+>,即()()00f g <,条件不满足. 综上所述,m 的取值范围为(],1-∞.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】已知直线l的参数方程为142x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1)求曲线C 的直角坐标方程与直线l 的极坐标方程; (2)若直线()π6θρ=∈R 与曲线C 交于点A (不同于原点),与直线l 交于点B ,求AB 的值. 【答案】(1)22:20C x y x +-=,cos sin l θρθ-=2)【解析】(1)∵2cos ρθ=,∴22cos ρρθ=,∴曲线C 的直角坐标方程为2220x y x +-=. ∵直线l的参数方程为142x t y ⎧=+⎪⎪⎨⎪=⎪⎩(ty -=∴直线lcos sin θρθ-= (2)将π6θ=代入曲线C 的极坐标方程2cos ρθ=得ρ=A点的极坐标为π6⎫⎪⎭.将π6θ=代入直线l的极坐标方程得3122ρρ-=ρ=.∴B点的极坐标为π6⎛⎫ ⎪⎝⎭,∴AB =23.(10分)【选修4-5:不等式选讲】 已知函数()2f x x a x =-++.(1)当1a =时,求不等式()3f x ≤的解集;(2)0x ∃∈R ,()03f x ≤,求a 的取值范围.【答案】(1){}21x x -≤≤;(2)[]5,1-. 【解析】(1)当1a =时,()12f x x x =-++,①当2x ≤-时,()21f x x =--,令()3f x ≤,即213x --≤,解得2x =-,②当21x -<<时,()3f x =,显然()3f x ≤成立,∴21x -<<,③当1x ≥时,()21f x x =+,令()3f x ≤,即213x +≤,解得1x ≤, 综上所述,不等式的解集为{}21x x -≤≤.(2)∵()()()222f x x a x x a x a =-++≥--+=+,∵0x ∃∈R ,有()3f x ≤成立,∴只需23a +≤,解得51a -≤≤,∴a 的取值范围为[]5,1-.。

2019年高考数学一模试卷含解析

2019年高考数学一模试卷含解析

2019年高考数学一模试卷含解析一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合A={﹣1,0,1},B=(﹣∞,0),则A∩B= .2.设复数z满足(1+i)z=2,其中i为虚数单位,则z的虚部为.3.已知样本数据x1,x2,x3,x4,x5的方差s2=3,则样本数据2x1,2x2,2x3,2x4,2x5的方差为.4.如图是一个算法流程图,则输出的x的值是.5.在数字1、2、3、4中随机选两个数字,则选中的数字中至少有一个是偶数的概率为.6.已知实数x,y满足,则的最小值是.7.设双曲线的一条渐近线的倾斜角为30°,则该双曲线的离心率为.8.设{an }是等差数列,若a4+a5+a6=21,则S9= .9.将函数的图象向右平移φ()个单位后,所得函数为偶函数,则φ=.10.将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC=2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,则三棱锥O﹣EFG体积的最大值是.11.在△ABC中,已知,,则的最大值为.12.如图,在平面直角坐标系中,分别在x轴与直线上从左向右依次取点Ak、Bk ,k=1,2,…,其中A1是坐标原点,使△AkBkAk+1都是等边三角形,则△A10B10A11的边长是.13.在平面直角坐标系xOy中,已知点P为函数y=2lnx的图象与圆M:(x﹣3)2+y2=r2的公共点,且它们在点P处有公切线,若二次函数y=f(x)的图象经过点O,P,M,则y=f(x)的最大值为.14.在△ABC中,A、B、C所对的边分别为a、b、c,若a2+b2+2c2=8,则△ABC 面积的最大值为.二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)15.如图,在直三棱柱ABC﹣A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.(1)求证:B1C1∥平面A1DE;(2)求证:平面A1DE⊥平面ACC1A1.16.在△ABC中,a,b,c分别为内角A,B,C的对边,且bsin2C=csinB.(1)求角C;(2)若,求sinA的值.17.在平面直角坐标系xOy中,已知圆O:x2+y2=b2经过椭圆(0<b<2)的焦点.(1)求椭圆E的标准方程;(2)设直线l:y=kx+m交椭圆E于P,Q两点,T为弦PQ的中点,M(﹣1,0),N(1,0),记直线TM,TN的斜率分别为k1,k2,当2m2﹣2k2=1时,求k1•k2的值.18.如图所示,某街道居委会拟在EF地段的居民楼正南方向的空白地段AE上建一个活动中心,其中AE=30米.活动中心东西走向,与居民楼平行.从东向西看活动中心的截面图的下部分是长方形ABCD,上部分是以DC为直径的半圆.为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE不超过2.5米,其中该太阳光线与水平线的夹角θ满足.(1)若设计AB=18米,AD=6米,问能否保证上述采光要求?(2)在保证上述采光要求的前提下,如何设计AB与AD的长度,可使得活动中心的截面面积最大?(注:计算中π取3)19.设函数f(x)=lnx,g(x)=ax+﹣3(a∈R).(1)当a=2时,解关于x的方程g(e x)=0(其中e为自然对数的底数);(2)求函数φ(x)=f(x)+g(x)的单调增区间;(3)当a=1时,记h(x)=f(x)•g(x),是否存在整数λ,使得关于x的不等式2λ≥h(x)有解?若存在,请求出λ的最小值;若不存在,请说明理由.(参考数据:ln2≈0.6931,ln3≈1.0986).20.若存在常数k(k∈N*,k≥2)、q、d,使得无穷数列{a n}满足则称数列{a n}为“段比差数列”,其中常数k、q、d分别叫做段长、段比、段差.设数列{b n}为“段比差数列”.(1)若{b n}的首项、段长、段比、段差分别为1、3、q、3.①当q=0时,求b xx;②当q=1时,设{b n}的前3n项和为S3n,若不等式对n∈N*恒成立,求实数λ的取值范围;(2)设{b n}为等比数列,且首项为b,试写出所有满足条件的{b n},并说明理由.数学附加题部分(本部分满分0分,考试时间30分钟)[选做题](在21、22、23、24四小题中只能选做2题,每小题0分,计20分)[选修4-1:几何证明选讲]21.如图,AB是半圆O的直径,点P为半圆O外一点,PA,PB分别交半圆O 于点D,C.若AD=2,PD=4,PC=3,求BD的长.[选修4-2:矩阵与变换]22.设矩阵M=的一个特征值λ对应的特征向量为,求m与λ的值.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线为参数).现以坐标原点O为极点,以x轴非负半轴为极轴建立极坐标系,设圆C的极坐标方程为ρ=2cosθ,直线l与圆C交于A,B两点,求弦AB的长.[选修4-5:不等式选讲]24.若实数x,y,z满足x+2y+z=1,求x2+y2+z2的最小值.[必做题](第25、26题,每小题0分,计20分.请把答案写在答题纸的指定区域内)25.某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程.(1)求这两个班“在星期一不同时上综合实践课”的概率;(2)设这两个班“在一周中同时上综合实践课的节数”为X,求X的概率分布表与数学期望E(X).26.设n∈N*,n≥3,k∈N*.(1)求值:k﹣1;①kC n k﹣nC n﹣1②k2C n k﹣n(n﹣1)C n﹣2k﹣2﹣nC n﹣1k﹣1(k≥2);(2)化简:12C n0+22C n1+32C n2+…+(k+1)2C n k+…+(n+1)2C n n.参考答案与试题解析一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合A={﹣1,0,1},B=(﹣∞,0),则A∩B={﹣1} .【考点】交集及其运算.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={﹣1,0,1},B=(﹣∞,0),∴A∩B={﹣1},故答案为:{﹣1}2.设复数z满足(1+i)z=2,其中i为虚数单位,则z的虚部为﹣1.【考点】复数代数形式的乘除运算.【分析】把给出的等式两边同时乘以,然后运用复数的除法进行运算,分子分母同时乘以1﹣i.整理后可得复数z的虚部.【解答】解:由(1+i)z=2,得:.所以,z的虚部为﹣1.故答案为﹣1.3.已知样本数据x1,x2,x3,x4,x5的方差s2=3,则样本数据2x1,2x2,2x3,2x4,2x5的方差为12.【考点】极差、方差与标准差.【分析】利用方差性质求解.【解答】解:∵样本数据x1,x2,x3,x4,x5的方差s2=3,∴样本数据2x1,2x2,2x3,2x4,2x5的方差为:22s2=4×3=12.故答案为:12.4.如图是一个算法流程图,则输出的x的值是9.【考点】程序框图.【分析】模拟执行程序,即可得出结论.【解答】解:由题意,x=1,y=9,x<y,第1次循环,x=5,y=7,x<y,第2次循环,x=9,y=5,x>y,退出循环,输出9.故答案为9.5.在数字1、2、3、4中随机选两个数字,则选中的数字中至少有一个是偶数的概率为.【考点】列举法计算基本事件数及事件发生的概率.【分析】基本事件总数n=,选中的数字中至少有一个是偶数的对立事件是选中的两个数字都是奇数,由此能求出选中的数字中至少有一个是偶数的概率.【解答】解:在数字1、2、3、4中随机选两个数字,基本事件总数n=,选中的数字中至少有一个是偶数的对立事件是选中的两个数字都是奇数,∴选中的数字中至少有一个是偶数的概率为p=1﹣=.故答案为:.6.已知实数x,y满足,则的最小值是.【考点】简单线性规划.【分析】先作出不等式组所表示的平面区域,由于可以看做平面区域内的点与原点的连线的斜率,结合图形可求斜率最大值【解答】解:作出不等式组所表示的平面区域如图所示:由于可以看做平面区域内的点与原点的连线的斜率,结合图形可知,当直线过OA时斜率最小.由于可得A(4,3),此时k=.故答案为:.7.设双曲线的一条渐近线的倾斜角为30°,则该双曲线的离心率为.【考点】双曲线的简单性质.【分析】求出双曲线的渐近线方程,可得a=,则c==2,再由离心率公式,即可得到双曲线的离心率.【解答】解:双曲线的渐近线方程为y=±x,则tan30°=即为a=,则c==2,即有e=.故答案为.8.设{a n}是等差数列,若a4+a5+a6=21,则S9=63.【考点】等差数列的前n项和.【分析】由等差数列的通项公式求出a5=7,再由等差数列的前n项和公式得,由此能求出结果.【解答】解:∵{a n}是等差数列,a4+a5+a6=21,∴a4+a5+a6=3a5=21,解得a5=7,∴=63.故答案为:63.9.将函数的图象向右平移φ()个单位后,所得函数为偶函数,则φ=.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】若所得函数为偶函数,则﹣2φ=+kπ,k∈Z,进而可得答案.【解答】解:把函数f(x)=3sin(2x+)的图象向右平移φ个单位,可得函数y=3sin[2(x﹣φ)+]=3sin(2x+﹣2φ)的图象,若所得函数为偶函数,则﹣2φ=+kπ,k∈Z,解得:φ=﹣+kπ,k∈Z,当k=1时,φ的最小正值为.故答案为:.10.将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC=2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,则三棱锥O﹣EFG体积的最大值是4.【考点】棱柱、棱锥、棱台的体积.【分析】三棱锥O﹣EFG的高为圆柱的高,即高为ABC,当三棱锥O﹣EFG体积取最大值时,△EFG的面积最大,当EF为直径,且G在EF的垂直平分线上时,)max=,由此能求出三棱锥O﹣EFG体积的最大值.(S△EFG【解答】解:∵将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC=2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,∴三棱锥O﹣EFG的高为圆柱的高,即高为ABC,∴当三棱锥O﹣EFG体积取最大值时,△EFG的面积最大,当EF为直径,且G在EF的垂直平分线上时,)max=,(S△EFG∴三棱锥O﹣EFG体积的最大值V max==.故答案为:4.11.在△ABC中,已知,,则的最大值为.【考点】平面向量数量积的运算.【分析】可先画出图形,对的两边平方,进行数量积的运算即可得到,根据不等式a2+b2≥2ab即可得到,这样便可求出的最大值.【解答】解:如图,;∴;∴;即;∴=;∴的最大值为.故答案为:.12.如图,在平面直角坐标系中,分别在x轴与直线上从左向右依次取点A k、B k,k=1,2,…,其中A1是坐标原点,使△A k B k A k都是等边三角形,则△A10B10A11+1的边长是512.【考点】数列的求和.【分析】设直线与x轴交点坐标为P,由直线的倾斜角为300,又△A1B1A2是等边三角形,求出△A2B2A3、…找出规律,就可以求出△A10B10A11的边长.【解答】解:∵直线的倾斜角为300,且直线与x轴交点坐标为P(﹣,0),又∵△A1B1A2是等边三角形,∴∠B1A1A2=600,B1A1=,PA2=2,∴△A2B2A3的边长为PA2=2,同理B2A2=PA3=4,…以此类推B10A10=PA10=512,∴△A10B10A11的边长是512,故答案为:512.13.在平面直角坐标系xOy中,已知点P为函数y=2lnx的图象与圆M:(x﹣3)2+y2=r2的公共点,且它们在点P处有公切线,若二次函数y=f(x)的图象经过点O,P,M,则y=f(x)的最大值为.【考点】利用导数研究曲线上某点切线方程.【分析】设P(x0,y0),求得y=2lnx的导数,可得切线的斜率和切线方程;求得圆上一点的切线方程,由直线重合的条件,可得二次函数y=x(3﹣x),满足经过点P,O,M,即可得到所求最大值.【解答】解:设P(x0,y0),函数y=2lnx的导数为y′=,函数y=2lnx在点P处的切线方程为y﹣y0=(x﹣x0),即为x﹣y+y0﹣2=0;圆M:(x﹣3)2+y2=r2的上点P处的切线方程为(x0﹣3)(x﹣3)+yy0=r2,即有(x0﹣3)x+yy0+9﹣3x0﹣r2=0;由切线重合,可得==,即x0(3﹣x0)=2y0,则P为二次函数y=x(3﹣x)图象上的点,且该二次函数图象过O,M,则当x=时,二次函数取得最大值,故答案为:.14.在△ABC中,A、B、C所对的边分别为a、b、c,若a2+b2+2c2=8,则△ABC 面积的最大值为.【考点】余弦定理.【分析】由三角形面积公式,同角三角函数基本关系式,余弦定理可求S2=a2b2﹣,进而利用基本不等式可求S2≤﹣=﹣+c,从而利用二次函数的性质可求最值.【解答】解:由三角形面积公式可得:S=absinC,可得:S2=a2b2(1﹣cos2C)=a2b2[1﹣()2],∵a2+b2+2c2=8,∴a2+b2=8﹣2c2,∴S2=a2b2[1﹣()2]=a2b2[1﹣()2]=a2b2﹣≤﹣=﹣+c,当且仅当a=b时等号成立,∴当c=时,﹣ +c取得最大值,S的最大值为.故答案为:.二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)15.如图,在直三棱柱ABC﹣A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.(1)求证:B1C1∥平面A1DE;(2)求证:平面A1DE⊥平面ACC1A1.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)证明B1C1∥DE,即可证明B1C1∥平面A1DE;(2)证明DE⊥平面ACC1A1,即可证明平面A1DE⊥平面ACC1A1.【解答】证明:(1)因为D,E分别是AB,AC的中点,所以DE∥BC,…又因为在三棱柱ABC﹣A1B1C1中,B1C1∥BC,所以B1C1∥DE…又B1C1⊄平面A1DE,DE⊂平面A1DE,所以B1C1∥平面A1DE…(2)在直三棱柱ABC﹣A1B1C1中,CC1⊥底面ABC,又DE⊂底面ABC,所以CC1⊥DE…又BC⊥AC,DE∥BC,所以DE⊥AC,…又CC1,AC⊂平面ACC1A1,且CC1∩AC=C,所以DE⊥平面ACC1A1…又DE⊂平面A1DE,所以平面A1DE⊥平面ACC1A1…16.在△ABC中,a,b,c分别为内角A,B,C的对边,且bsin2C=csinB.(1)求角C;(2)若,求sinA的值.【考点】余弦定理;正弦定理.【分析】(1)根据正弦定理化简已知等式得2sinBsinCcosC=sinCsinB,结合sinB >0,sinC>0,可求,结合范围C∈(0,π),可求C的值.(2)由角的范围利用同角三角函数基本关系式可求cos(B﹣)的值,由于A=﹣(B﹣),利用两角差的正弦函数公式即可计算求值得解.【解答】解:(1)由bsin2C=csinB,根据正弦定理,得2sinBsinCcosC=sinCsinB,…因为sinB>0,sinC>0,所以,…又C∈(0,π),所以.…(2)因为,所以,所以,又,所以.…又,即,所以=sin[﹣(B﹣)]…=.…17.在平面直角坐标系xOy中,已知圆O:x2+y2=b2经过椭圆(0<b<2)的焦点.(1)求椭圆E的标准方程;(2)设直线l:y=kx+m交椭圆E于P,Q两点,T为弦PQ的中点,M(﹣1,0),N(1,0),记直线TM,TN的斜率分别为k1,k2,当2m2﹣2k2=1时,求k1•k2的值.【考点】椭圆的简单性质.【分析】(1)椭圆E的焦点在x轴上,圆O:x2+y2=b2经过椭圆E的焦点,所以椭圆的半焦距c=b,所以2b2=4,即b2=2,即可求出椭圆E的方程;(2)求出T的坐标,利用斜率公式,结合条件,即可求k1•k2的值.【解答】解:(1)因0<b<2,所以椭圆E的焦点在x轴上,又圆O:x2+y2=b2经过椭圆E的焦点,所以椭圆的半焦距c=b,…所以2b2=4,即b2=2,所以椭圆E的方程为.…(2)设P(x1,y1),Q(x2,y2),T(x0,y0),联立,消去y,得(1+2k2)x2+4kmx+2m2﹣4=0,所以,又2m2﹣2k2=1,所以x1+x2=,所以,,…则.…18.如图所示,某街道居委会拟在EF地段的居民楼正南方向的空白地段AE上建一个活动中心,其中AE=30米.活动中心东西走向,与居民楼平行.从东向西看活动中心的截面图的下部分是长方形ABCD,上部分是以DC为直径的半圆.为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE不超过2.5米,其中该太阳光线与水平线的夹角θ满足.(1)若设计AB=18米,AD=6米,问能否保证上述采光要求?(2)在保证上述采光要求的前提下,如何设计AB与AD的长度,可使得活动中心的截面面积最大?(注:计算中π取3)【考点】直线和圆的方程的应用.【分析】(1)以点A为坐标原点,AB所在直线为x轴,建立平面直角坐标系.设太阳光线所在直线方程为,利用直线与圆相切,求出直线方程,令x=30,得EG=1.5米<2.5米,即可得出结论;(2)方法一:设太阳光线所在直线方程为,利用直线与圆相切,求出直线方程,令x=30,得h≤25﹣2r,即可求出截面面积最大;方法二:欲使活动中心内部空间尽可能大,则影长EG恰为2.5米,即可求出截面面积最大【解答】解:如图所示,以点A为坐标原点,AB所在直线为x轴,建立平面直角坐标系.(1)因为AB=18,AD=6,所以半圆的圆心为H(9,6),半径r=9.设太阳光线所在直线方程为,即3x+4y﹣4b=0,…则由,解得b=24或(舍).故太阳光线所在直线方程为,…令x=30,得EG=1.5米<2.5米.所以此时能保证上述采光要求…(2)设AD=h米,AB=2r米,则半圆的圆心为H(r,h),半径为r.方法一:设太阳光线所在直线方程为,即3x+4y﹣4b=0,由,解得b=h+2r或b=h﹣2r(舍)…故太阳光线所在直线方程为,令x=30,得,由,得h≤25﹣2r…所以=.当且仅当r=10时取等号.所以当AB=20米且AD=5米时,可使得活动中心的截面面积最大…方法二:欲使活动中心内部空间尽可能大,则影长EG恰为2.5米,则此时点G 为(30,2.5),设过点G的上述太阳光线为l1,则l1所在直线方程为y﹣=﹣(x﹣30),即3x+4y﹣100=0…由直线l1与半圆H相切,得.而点H(r,h)在直线l1的下方,则3r+4h﹣100<0,即,从而h=25﹣2r…又=.当且仅当r=10时取等号.所以当AB=20米且AD=5米时,可使得活动中心的截面面积最大…19.设函数f(x)=lnx,g(x)=ax+﹣3(a∈R).(1)当a=2时,解关于x的方程g(e x)=0(其中e为自然对数的底数);(2)求函数φ(x)=f(x)+g(x)的单调增区间;(3)当a=1时,记h(x)=f(x)•g(x),是否存在整数λ,使得关于x的不等式2λ≥h(x)有解?若存在,请求出λ的最小值;若不存在,请说明理由.(参考数据:ln2≈0.6931,ln3≈1.0986).【考点】利用导数研究函数的单调性.【分析】(1)当a=2时,求出g(x)=0的解,即可解关于x的方程g(e x)=0(其中e为自然对数的底数);(2)φ(x)=f(x)+g(x)=lnx+ax+﹣3,φ′(x)=,分类讨论,利用导数的正负,求函数φ(x)=f(x)+g(x)的单调增区间;(3)判断h(x)不存在最小值,即可得出结论.【解答】解:(1)当a=2时,g(x)=0,可得x=1,g(e x)=0,可得e x=或e x=1,∴x=﹣ln2或0;(2)φ(x)=f(x)+g(x)=lnx+ax+﹣3,φ′(x)=①a=0,φ′(x)=>0,函数的单调递增区间是(0,+∞);②a=1,φ′(x)=•x>0,函数的单调递增区间是(0,+∞);③0<a <1,x=<0,函数的单调递增区间是(0,+∞);④a >1,x=>0,函数的单调递增区间是(,+∞);⑤a <0,x=>0,函数的单调递增区间是(0,);(3)a=1,h (x )=(x ﹣3)lnx ,h′(x )=lnx ﹣+1,h″(x )=+>0恒成立,∴h′(x )在(0,+∞)上单调递增, ∴存在x 0,h′(x 0)=0,即lnx 0=﹣1+,h (x )在(0,x 0)上单调递减,(x 0,+∞)上单调递增,∴h (x )min =h (x 0)=﹣(x 0+)+6,∵h′(1)<0,h′(2)>0,∴x 0∈(1,2),∴h (x )不存在最小值,∴不存在整数λ,使得关于x 的不等式2λ≥h (x )有解.20.若存在常数k (k ∈N *,k ≥2)、q 、d ,使得无穷数列{a n }满足则称数列{a n }为“段比差数列”,其中常数k 、q 、d 分别叫做段长、段比、段差.设数列{b n }为“段比差数列”.(1)若{b n }的首项、段长、段比、段差分别为1、3、q 、3. ①当q=0时,求b xx ;②当q=1时,设{b n }的前3n 项和为S 3n ,若不等式对n ∈N *恒成立,求实数λ的取值范围;(2)设{b n }为等比数列,且首项为b ,试写出所有满足条件的{b n },并说明理由.【考点】数列的应用;等比数列的性质.【分析】(1)①方法一:由{b n }的首项、段长、段比、段差可得b xx =0×b xx =0,再由b xx =b xx +3,b xx =b xx +3即可;方法二:根据{b n }的首项、段长、段比、段差,⇒b 1=1,b 2=4,b 3=7,b 4=0×b 3=0,b 5=b 4+3=3,b 6=b 5+3=6,b 7=0×b 6=0,…⇒b n }是周期为3的周期数列即可; ②方法一:由{b n }的首项、段长、段比、段差,⇒b 3n +2﹣b 3n ﹣1=(b 3n +1+d )﹣b 3n ﹣1=(qb 3n +d )﹣b 3n ﹣1=[q (b 3n ﹣1+d )+d ]﹣b 3n ﹣1=2d=6,⇒{b 3n ﹣1}是等差数列,又∵b3n+b3n﹣1+b3n=(b3n﹣1﹣d)+b3n﹣1+(b3n﹣1+d)=3b3n﹣1,即可求S3n ﹣2方法二:由{b n}的首项、段长、段比、段差⇒b3n+1=b3n,∴b3n+3﹣b3n=b3n+3﹣=2d=6,∴{b3n}是首项为b3=7、公差为6的等差数列即可,b3n+1(2)方法一:设{b n}的段长、段比、段差分别为k、q、d,⇒等比数列的通项公式有,﹣b km+1=d,即bq km+1﹣bq km=bq km(q﹣1)=d恒成立,①若q=1,当m∈N*时,b km+2则d=0,b n=b;②若q≠1,则,则q km为常数,则q=﹣1,k为偶数,d=﹣2b,;方法二:设{b n}的段长、段比、段差分别为k、q、d,①若k=2,则b1=b,b2=b+d,b3=(b+d)q,b4=(b+d)q+d,由,得b+d=bq;由,得(b+d)q2=(b+d)q+d,求得得d 即可②若k≥3,则b1=b,b2=b+d,b3=b+2d,由,求得得d 即可.【解答】(1)①方法一:∵{b n}的首项、段长、段比、段差分别为1、3、0、3,∴b xx=0×b xx=0,∴b xx=b xx+3=3,∴b xx=b xx+3=6.…方法二:∵{b n}的首项、段长、段比、段差分别为1、3、0、3,∴b1=1,b2=4,b3=7,b4=0×b3=0,b5=b4+3=3,b6=b5+3=6,b7=0×b6=0,…∴当n≥4时,{b n}是周期为3的周期数列.∴b xx=b6=6.…②方法一:∵{b n}的首项、段长、段比、段差分别为1、3、1、3,∴b3n﹣b3n﹣1=(b3n+1+d)﹣b3n﹣1=(qb3n+d)﹣b3n﹣1=[q(b3n﹣1+d)+d]﹣b3n﹣1=2d=6,+2}是以b2=4为首项、6为公差的等差数列,∴{b3n﹣1又∵b3n+b3n﹣1+b3n=(b3n﹣1﹣d)+b3n﹣1+(b3n﹣1+d)=3b3n﹣1,∴S3n=(b1+b2+b3)﹣2+(b4+b5+b6)+…+(b3n﹣2+b3n﹣1+b3n)=,…∵,∴,设,则λ≥(c n)max,又,当n=1时,3n2﹣2n﹣2<0,c1<c2;当n≥2时,3n2﹣2n﹣2>0,c n+1<c n,∴c1<c2>c3>…,∴(c n)max=c2=14,…∴λ≥14,得λ∈[14,+∞).…方法二:∵{b n }的首项、段长、段比、段差分别为1、3、1、3,∴b 3n +1=b 3n ,∴b 3n +3﹣b 3n =b 3n +3﹣b 3n +1=2d=6,∴{b 3n }是首项为b 3=7、公差为6的等差数列, ∴,易知{b n }中删掉{b 3n }的项后按原来的顺序构成一个首项为1公差为3的等差数列,∴,∴,…以下同方法一.(2)方法一:设{b n }的段长、段比、段差分别为k 、q 、d , 则等比数列{b n }的公比为,由等比数列的通项公式有,当m ∈N *时,b km +2﹣b km +1=d ,即bq km +1﹣bq km =bq km (q ﹣1)=d 恒成立,… ①若q=1,则d=0,b n =b ;②若q ≠1,则,则q km 为常数,则q=﹣1,k 为偶数,d=﹣2b ,; 经检验,满足条件的{b n }的通项公式为b n =b 或.… 方法二:设{b n }的段长、段比、段差分别为k 、q 、d , ①若k=2,则b 1=b ,b 2=b +d ,b 3=(b +d )q ,b 4=(b +d )q +d , 由,得b +d=bq ;由,得(b +d )q 2=(b +d )q +d , 联立两式,得或,则b n =b 或,经检验均合题意.… ②若k ≥3,则b 1=b ,b 2=b +d ,b 3=b +2d ,由,得(b +d )2=b (b +2d ),得d=0,则b n =b ,经检验适合题意. 综上①②,满足条件的{b n }的通项公式为b n =b 或.…数学附加题部分(本部分满分0分,考试时间30分钟)[选做题](在21、22、23、24四小题中只能选做2题,每小题0分,计20分)[选修4-1:几何证明选讲]21.如图,AB 是半圆O 的直径,点P 为半圆O 外一点,PA ,PB 分别交半圆O 于点D ,C .若AD=2,PD=4,PC=3,求BD 的长.【考点】与圆有关的比例线段.【分析】由切割线定理得:PD•PA=PC•PB,求出BC,利用勾股定理,求BD的长.【解答】解:由切割线定理得:PD•PA=PC•PB则4×(2+4)=3×(3+BC),解得BC=5,…又因为AB是半圆O的直径,故,…则在三角形PDB中有.…[选修4-2:矩阵与变换]22.设矩阵M=的一个特征值λ对应的特征向量为,求m与λ的值.【考点】特征向量的定义.【分析】推导出,由此能求出结果.【解答】解:∵矩阵M=的一个特征值λ对应的特征向量为,∴,…解得m=0,λ=﹣4.…[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线为参数).现以坐标原点O为极点,以x轴非负半轴为极轴建立极坐标系,设圆C的极坐标方程为ρ=2cosθ,直线l与圆C交于A,B两点,求弦AB的长.【考点】简单曲线的极坐标方程.【分析】直线为参数)化为普通方程,圆C的极坐标方程ρ=2cosθ化为直角坐标方程,求出圆C的圆心到直线l的距离,即可求弦AB的长.【解答】解:直线为参数)化为普通方程为4x﹣3y=0,…圆C的极坐标方程ρ=2cosθ化为直角坐标方程为(x﹣1)2+y2=1,…则圆C的圆心到直线l的距离为,…所以.…[选修4-5:不等式选讲]24.若实数x,y,z满足x+2y+z=1,求x2+y2+z2的最小值.【考点】基本不等式.【分析】利用条件x+2y+z=1,构造柯西不等式(x+y+z)2≤(x2+y2+z2)(12+22+12)进行解题即可.【解答】解:由柯西不等式,得(x+2y+z)2≤(12+22+12)•(x2+y2+z2),即,…又因为x+2y+z=1,所以,当且仅当,即时取等号.综上,.…[必做题](第25、26题,每小题0分,计20分.请把答案写在答题纸的指定区域内)25.某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程.(1)求这两个班“在星期一不同时上综合实践课”的概率;(2)设这两个班“在一周中同时上综合实践课的节数”为X,求X的概率分布表与数学期望E(X).【考点】离散型随机变量的期望与方差.【分析】(1)利用对立事件的概率关系求解;(2)两个班“在一星期的任一天同时上综合实践课”的概率为,一周中5天是5次独立重复试验,服从二项分布.【解答】解:(1)这两个班“在星期一不同时上综合实践课”的概率为.…(2)由题意得,.…所以X的概率分布表为:X012345P…所以,X的数学期望为.…26.设n∈N*,n≥3,k∈N*.(1)求值:k﹣1;①kC n k﹣nC n﹣1②k2C n k﹣n(n﹣1)C n﹣2k﹣2﹣nC n﹣1k﹣1(k≥2);(2)化简:12C n0+22C n1+32C n2+…+(k+1)2C n k+…+(n+1)2C n n.【考点】组合及组合数公式.【分析】(1)利用组合数的计算公式即可得出.(2)方法一:由(1)可知当k≥2时=.代入化简即可得出.方法二:当n≥3时,由二项式定理,有,两边同乘以x,得,两边对x求导,得,两边再同乘以x,得,两边再对x求导,得(1+x)n+n(1+x)n﹣1x+n(n﹣1)(1+x)n﹣2x2+2n(1+x)n ﹣1x=.令x=1,即可得出.【解答】解:(1)①=.…②==.…(2)方法一:由(1)可知当k≥2时=.故==(1+4n)+n(n﹣1)2n﹣2+3n(2n﹣1﹣1)+(2n﹣1﹣n)=2n﹣2(n2+5n+4).…方法二:当n≥3时,由二项式定理,有,两边同乘以x,得,两边对x求导,得,…两边再同乘以x,得,两边再对x求导,得(1+x)n+n(1+x)n﹣1x+n(n﹣1)(1+x)n﹣2x2+2n(1+x)n ﹣1x=.…令x=1,得2n+n2n﹣1+n(n﹣1)2n﹣2+2n2n﹣1=,即=2n﹣2(n2+5n+4).…xx2月1日24926 615E 慞# 35558 8AE6 諦36366 8E0E 踎26989 696D 業h40385 9DC1 鷁o39492 9A44 驄34218 85AA 薪32794 801A 耚31093 7975 祵。

2019年高考数学模拟考试题含答案解析

2019年高考数学模拟考试题含答案解析

2019 年高考数学模拟试题(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的XX、XX号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并收回。

一.选择题:本大题共12 个小题,每小题 5 分,共60 分。

在每小题给出的四个选项中只有一项是符合题目要求的1.已知集合A {x x2230},B{ 2,3,4},则(C R A) B= xA.{ 2,3 }B.{ 2,3,4}C.{2} D.2.已知i是虚数单位,z 1 ,则 z z =3 iA.5 B.10 C.1D.110 5 3.执行如图所示的程序框图,若输入的点为P(1,1),则输出的n 值为A. 3 B.4C.5D. 6ED CF AB(第 3题)(第 4题)4.如图,ABCD 是边长为8的正方形,若DE1 EC ,且F为BC的中点,则EA EF3专业技术 . 整理分享A. 10B.12C.16D. 20x y 25.若实数x, y满足y x 1 ,则 z 2 x 8 y的最大值是y 0A. 4 B.8 C.16D. 3 26.一个棱锥的三视图如右图,则该棱锥的表面积为A.16 5 8 232B.32 5 32C.16 2 32D.16 5 16 2 327. 5X卡片上分别写有0, 1, 2, 3, 4,若从这 5 X卡片中随机取出 2 X,则取出的2 X卡片上的数字之和大于5 的概率是A.1B.1 C .3 D .410 5 10 58.设S n是数列{ a n}的前n项和,且a1 1 , a n 1 S n S n 1,则 a5=A .1B. 1 C .1 D . 130 30 20 209. 函数 f x ln 1x 的大致图像为1 x10.底面为矩形的四棱锥P ABCD 的体积为8,若PA平面 ABCD, 且 PA3 ,则四棱锥P ABCD 的外接球体积最小值是专业技术 . 整理分享A.25 B . 125 C. 125 D . 256 611 .已知抛物线y2 2 px p 0 ,过焦点且倾斜角为30°的直线交抛物线于A,B 两点,以 AB 为直径的圆与抛物线的准线相切,切点的纵坐标是3,则抛物线的准线方程为A.x1 B.x3C. x3D . x 32 312 .已知函数 f( x) x2ln x ( x 2 ),函数 g( x)x 1 ,直线 y t 分别与两函数交于2 2A, B 两点,则AB 的最小值为A.1B.1 C .3D.22 2二.填空题:本大题共 4 小题,每小题5 分,共 20 分.13 . 设样本数据 x1,x2,...,x2018的方差是5,若y i3x i1( i1,2,...,2018 ),则 y1,y2,...,y2018的方差是________14 . 已知函数 f( x)sin x 3 cosx(0 ),若3,则方程 f( x) 1在 (0, ) 的实数根个数是_____15 . 我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9 填入 3 3 的方格内,使三行、三列、两对角线的三个数之和都等于15( 如图) . 一般地,将连续的正整数1,2,3,⋯,n2填入 nn 的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记 n 阶幻方的一条对角线上数的和为N n( 如:在 3 阶幻方中,N315 ),则 N 5=_______16. 已知ABC 中,内角A,B,C所对的边分别为a ,b, c ,且c 1 , C π.3专业技术 . 整理分享若 sin C sin( A B) sin 2B ,则ABC 的面积为三、解答题:本大题共6 小题,其中17-21 小题为必考题,每小题12 分,第 22— 23 题为选考题,考生根据要求做答,每题10 分.17.( 本小题满分12 分)设数列 { a n } 是公差为d的等差数列.(Ⅰ )推导数列 { a n} 的通项公式;(Ⅱ )设 d0 ,证明数列{ a n1} 不是等比数列.18. ( 本小题满分12 分)某中学为了解全校学生的上网情况,在全校随机抽取了40 名学生 ( 其中男、女生各占一半 )进行问卷调查,并进行了统计,按男、女分为两组,再将每组学生的月上网次数分为5 组:[0 ,5), [5 , 10) , [10 , 15) , [15 ,20) , [20 , 25] ,得到如图所示的频率分布直方图.( Ⅰ ) 写出女生组频率分布直方图中a 的值;( Ⅱ ) 在抽取的40 名学生中从月上网次数不少于20 的学生中随机抽取 2 人,并用X 表示随机抽取的 2 人中男生的人数,求X 的分布列和数学期望.19.( 本小题满分12 分)在直三棱柱 ABC A1B1C1中, AB AC AA1 2 ,BACA 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019届普通高等学校招生全国统一考试模拟卷文科数学本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则( )A.A⫋BB.B⫋AC.A=BD.A∩B=⌀2.复数z=-3+i2+i的共轭复数是( )A.2+iB.2-IC.-1+iD.-1-i3.在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=12x+1上,则这组样本数据的样本相关系数为( )A.-1B.0C.12D.14.设F1、F2是椭圆E:x 2a2+y2b2=1(a>b>0)的左、右焦点,P为直线x=3a2上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A.12B.23C.34D.455.已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是( )A.(1-√3,2)B.(0,2)C.(√3-1,2)D.(0,1+√3)6.如果执行如图的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输出A,B,则( )A.A+B为a1,a2,…,a N的和B.A+B2为a 1,a 2,…,a N 的算术平均数C.A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D.A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.188.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为√2,则此球的体积为( )A.√6πB.4√3πC.4√6πD.6√3π9.已知ω>0,0<φ<π,直线x=π4和x=5π4是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=( ) A.π4B.π3C.π2D.3π410.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A,B 两点,|AB|=4√3,则C 的实轴长为( ) A.√2 B.2√2 C.4D.811.当0<x≤12时,4x<log a x,则a 的取值范围是( ) A.(0,√22) B.(√22,1)C.(1,√2)D.(√2,2)12.数列{a n }满足a n+1+(-1)na n =2n-1,则{a n }的前60项和为( ) A.3 690B.3 660C.1 845D.1 830第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.曲线y=x(3ln x+1)在点(1,1)处的切线方程为 .14.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q= . 15.已知向量a,b 夹角为45°,且|a|=1,|2a-b|=√10,则|b|= . 16.设函数f(x)=(x+1)2+sinxx 2+1的最大值为M,最小值为m,则M+m= .三、解答题(解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知a,b,c 分别为△ABC 三个内角A,B,C 的对边,c=√3asin C-ccos A. (Ⅰ)求A;(Ⅱ)若a=2,△ABC 的面积为√3,求b,c.18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 0 频数110(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数; (ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.(本小题满分12分)AA1,D是棱AA1的中点.如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=12(Ⅰ)证明:平面BDC1⊥平面BDC;(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.20.(本小题满分12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l.A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.(Ⅰ)若∠BFD=90°,△ABD的面积为4√2,求p的值及圆F的方程;(Ⅱ)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(本小题满分12分)设函数f(x)=e x-ax-2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x-k)f '(x)+x+1>0,求k的最大值.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.(本小题满分10分) 选修4—1:几何证明选讲如图,D,E 分别为△ABC 边AB,AC 的中点,直线DE 交△ABC 的外接圆于F,G 两点.若CF∥AB,证明: (Ⅰ)CD=BC; (Ⅱ)△BCD∽△GBD.23.(本小题满分10分) 选修4—4:坐标系与参数方程已知曲线C 1的参数方程是{x =2cosφ,y =3sinφ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A,B,C,D 依逆时针次序排列,点A 的极坐标为(2,π3). (Ⅰ)求点A,B,C,D 的直角坐标;(Ⅱ)设P 为C 1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x+a|+|x-2|.(Ⅰ)当a=-3时,求不等式f(x)≥3的解集;(Ⅱ)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.答案详解一、选择题1.B A={x|-1<x<2},B={x|-1<x<1},则B ⫋A,故选B. 评析 本题考查了集合的关系以及二次不等式的解法.2.D z=-3+i 2+i =(-3+i )(2-i )(2+i )(2-i )=-5+5i5=-1+i,z =-1-i,故选D.评析 本题考查了复数的运算,易忽略共轭复数而错选. 3.D 所有点均在直线上,则样本相关系数最大即为1,故选D.评析 本题考查了线性回归,掌握线性回归系数的含义是解题关键,本题易错选C. 4.C 设直线x=32a 与x 轴交于点Q,由题意得∠PF 2Q=60°,|F 2P|=|F 1F 2|=2c,|F 2Q|=32a-c,∴32a-c=12×2c,e=c a =34,故选C.评析 本题考查了椭圆的基本性质,考查了方程的思想,灵活解三角形对求解至关重要. 5.A 由题意知区域为△ABC(不含边界).当直线-x+y-z=0过点C(1+√3,2)时,z min =1-√3; 当过点B(1,3)时,z max =2.故选A.评析 本题考查了简单的线性规划,考查了数形结合的思想.正确理解直线的斜率、截距的几何意义是求解的关键.6.C 不妨令N=3,a 1<a 2<a 3,则有k=1,A=a 1,B=a 1;x=a 2,A=a 2;x=a 3,A=a 3,故输出A=a 3,B=a 1,选C. 评析 本题考查了流程图,考查了由一般到特殊的转化思想.7.B 由三视图可得,该几何体为三棱锥S-ABC,其中底面△ABC 为等腰三角形,底边AC=6,AC 边上的高为3,SB⊥底面ABC,且SB=3,所以该几何体的体积V=13×12×6×3×3=9.故选B.评析 本题考查了三视图和三棱锥的体积,考查了空间想象能力.由三视图正确得到该几何体的直观图是求解的关键.8.B 如图,设平面α截球O 所得圆的圆心为O 1,则|OO 1|=√2,|O 1A|=1,∴球的半径R=|OA|=√2+1=√3.∴球的体积V=43πR 3=4√3π.故选B.评析 本题考查了球的基础知识,利用勾股定理求球的半径是关键. 9.A 由题意得2πω=2(54π-π4),∴ω=1,∴f(x)=sin(x+φ),则π4+φ=kπ+π2(k∈Z),φ=kπ+π4(k∈Z),又0<φ<π,∴φ=π4,故选A. 评析 本题考查了三角函数的图象和性质,掌握相邻对称轴的距离为周期的一半是关键.10.C 由题意可得A(-4,2√3).∵点A 在双曲线x 2-y 2=a 2上,∴16-12=a 2,a=2,∴双曲线的实轴长2a=4.故选C.评析 本题考查了双曲线和抛物线的基础知识,考查了方程的数学思想,要注意双曲线的实轴长为2a.11.B 易知0<a<1,则函数y=4x与y=log a x 的大致图象如图,则只需满足log a 12>2,解得a>√22,故选B.评析 本题考查了利用数形结合解指数、对数不等式.12.D 当n=2k时,a2k+1+a2k=4k-1,当n=2k-1时,a2k-a2k-1=4k-3,∴a2k+1+a2k-1=2,∴a2k+1+a2k+3=2,∴a2k-1=a2k+3,∴a1=a5=…=a61.∴a1+a2+a3+…+a60=(a2+a3)+(a4+a5)+…+(a60+a61)=3+7+11+…+(2×60-1)=30×(3+119)2=30×61=1 830.评析本题考查了数列求和及其综合应用,考查了分类讨论及等价转化的数学思想.二、填空题13.答案y=4x-3解析y'=3ln x+1+x·3x=3ln x+4,k=y'|x=1=4,切线方程为y-1=4(x-1),即y=4x-3.评析本题考查了导数的几何意义,考查了运算求解能力.14.答案-2解析由S3+3S2=0得4a1+4a2+a3=0,有4+4q+q2=0,解得q=-2.评析本题考查了等比数列的运算,直接利用定义求解可达到事半功倍的效果.15.答案3√2解析把|2a-b|=√10两边平方得4|a|2-4|a|·|b|·cos 45°+|b|2=10.∵|a|=1,∴|b|2-2√2|b|-6=0.∴|b|=3√2或|b|=-√2(舍去).评析本题考查了向量的基本运算,考查了方程的思想.通过“平方”把向量问题转化为数量问题是求解的关键.16.答案 2解析f(x)=x 2+1+2x+sinxx2+1=1+2x+sinxx2+1,令g(x)=2x+sinxx2+1,则g(x)为奇函数,有g(x)max+g(x)min=0,故M+m=2.评析本题考查了函数性质的应用,运用了奇函数的值域关于原点对称的特征,考查了转化与化归的思想方法.三、解答题17.解析(Ⅰ)由c=√3asin C-c·cos A及正弦定理得√3·sin A·sin C-cos A·sin C-sin C=0.由于sin C≠0,所以sin (A -π6)=12. 又0<A<π,故A=π3.(Ⅱ)△ABC 的面积S=12bcsin A=√3,故bc=4. 而a 2=b 2+c 2-2bccos A,故b 2+c 2=8. 解得b=c=2.评析 本题考查了正、余弦定理和三角公式,考查了方程的思想,灵活利用正、余弦定理是求解关键,正确的转化是本题的难点.18.解析 (Ⅰ)当日需求量n≥17时,利润y=85. 当日需求量n<17时,利润y=10n-85. 所以y 关于n 的函数解析式为 y={10n -85, n <17,85,n ≥17(n∈N). (Ⅱ)(i)这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的日利润的平均数为1100(55×10+65×20+75×16+85×54)=76.4.(ii)利润不低于75元当且仅当日需求量不少于16枝.故当天的利润不少于75元的概率为P=0.16+0.16+0.15+0.13+0.1=0.7.评析 本题考查概率统计,考查运用样本频率估计总体概率及运算求解能力. 19.解析 (Ⅰ)证明:由题设知BC⊥CC 1,BC⊥AC,CC 1∩AC=C,所以BC⊥平面ACC 1A 1. 又DC 1⊂平面ACC 1A 1,所以DC 1⊥BC.由题设知∠A 1DC 1=∠ADC=45°,所以∠CDC 1=90°,即DC 1⊥DC. 又DC∩BC=C,所以DC 1⊥平面BDC. 又DC 1⊂平面BDC 1,故平面BDC 1⊥平面BDC. (Ⅱ)设棱锥B-DACC 1的体积为V 1,AC=1. 由题意得V 1=13×1+22×1×1=12.又三棱柱ABC-A 1B 1C 1的体积V=1,所以(V-V 1)∶V 1=1∶1. 故平面BDC 1分此棱柱所得两部分体积的比为1∶1.评析 本题考查了线面垂直的判定,考查了体积问题,同时考查了空间想象能力,属中档难度.20.解析 (Ⅰ)由已知可得△BFD 为等腰直角三角形,|BD|=2p,圆F 的半径|FA|=√2p. 由抛物线定义可知A 到l 的距离d=|FA|=√2p.因为△ABD 的面积为4√2,所以12|BD|·d=4√2,即12·2p·√2p=4√2,解得p=-2(舍去),p=2.所以F(0,1),圆F 的方程为x 2+(y-1)2=8.(Ⅱ)因为A,B,F 三点在同一直线m 上,所以AB 为圆F 的直径,∠ADB=90°.由抛物线定义知|AD|=|FA|=12|AB|,所以∠ABD=30°,m 的斜率为√33或-√33.当m 的斜率为√33时,由已知可设n:y=√33x+b,代入x 2=2py 得x 2-2√33px-2pb=0. 由于n 与C 只有一个公共点,故Δ=43p 2+8pb=0.解得b=-p 6. 因为m 的截距b 1=p 2,|b 1||b |=3,所以坐标原点到m,n 距离的比值为3. 当m 的斜率为-√33时,由图形对称性可知,坐标原点到m,n 距离的比值为3.评析 本题考查了直线、圆、抛物线的位置关系,考查了分类讨论的方法和数形结合的思想.21.解析 (Ⅰ)f(x)的定义域为(-∞,+∞), f '(x)=e x -a.若a≤0,则f '(x)>0,所以f(x)在(-∞,+∞)上单调递增.若a>0,则当x∈(-∞,ln a)时, f '(x)<0;当x∈(ln a,+∞)时, f '(x)>0,所以, f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.(Ⅱ)由于a=1,所以(x-k)f '(x)+x+1=(x-k)(e x -1)+x+1.故当x>0时,(x-k)f '(x)+x+1>0等价于k<x+1e -1+x(x>0).①令g(x)=x+1e x -1+x,则g'(x)=-xe x -1(e x -1)2+1=e x (e x -x -2)(e x -1)2. 由(Ⅰ)知,函数h(x)=e x -x-2在(0,+∞)上单调递增.而h(1)<0,h(2)>0,所以h(x)在(0,+∞)上存在唯一的零点.故g'(x)在(0,+∞)上存在唯一的零点.设此零点为α,则α∈(1,2). 当x∈(0,α)时,g'(x)<0;当x∈(α,+∞)时,g'(x)>0.所以g(x)在(0,+∞)上的最小值为g(α).又由g'(α)=0,可得e α=α+2,所以g(α)=α+1∈(2,3).由于①式等价于k<g(α),故整数k 的最大值为2.评析 本题考查了函数与导数的综合应用,判断出导数的零点范围是求解第(Ⅱ)问的关键.22.证明 (Ⅰ)因为D,E 分别为AB,AC 的中点,所以DE∥BC.又已知CF∥AB,故四边形BCFD 是平行四边形,所以CF=BD=AD.而CF∥AD,连结AF,所以四边形ADCF 是平行四边形,故CD=AF.因为CF∥AB,所以BC=AF,故CD=BC.(Ⅱ)因为FG∥BC,故GB=CF.由(Ⅰ)可知BD=CF,所以GB=BD.而∠DGB=∠EFC=∠DBC,故△BCD∽△GBD.评析 本题考查了直线和圆的位置关系,处理好平行的关系是关键.23.解析 (Ⅰ)由已知可得A (2cos π3,2sin π3), B 2cos π3+π2,2sin π3+π2, C 2cos π3+π,2sin π3+π, D 2cos π3+3π2,2sin π3+3π2, 即A(1,√3),B(-√3,1),C(-1,-√3),D(√3,-1).(Ⅱ)设P(2cos φ,3sin φ),令S=|PA|2+|PB|2+|PC|2+|PD|2,则S=16cos 2φ+36sin 2φ+16=32+20sin 2φ.因为0≤sin 2φ≤1,所以S 的取值范围是[32,52].评析 本题考查了曲线的参数方程和极坐标方程.考查了函数的思想方法,正确“互化”是关键,难点是建立函数S=f(φ).24.解析 (Ⅰ)当a=-3时,f(x)={-2x +5, x ≤2,1,2<x <3,2x -5,x ≥3.当x≤2时,由f(x)≥3得-2x+5≥3,解得x≤1;当2<x<3时, f(x)≥3无解;当x≥3时,由f(x)≥3得2x-5≥3,解得x≥4.所以f(x)≥3的解集为{x|x≤1或x≥4}.(Ⅱ)f(x)≤|x -4|⇔|x-4|-|x-2|≥|x+a|.当x∈[1,2]时,|x-4|-|x-2|≥|x+a|⇔4-x-(2-x)≥|x+a|⇔-2-a≤x≤2-a.由条件得-2-a≤1且2-a≥2,即-3≤a≤0.故满足条件的a 的取值范围为[-3,0].评析 本题考查了含绝对值不等式的解法,运用零点法分类讨论解含绝对值的不等式,考查了运算求解能力.。

相关文档
最新文档