高通蓝牙测试方法(支持BT4.0测试)

合集下载

蓝牙测试方案通用课件

蓝牙测试方案通用课件

蓝牙协议栈的主要功能是建立 设备间的无线连接,实现数据 传输和设备间的互操作性。
蓝牙协议栈的标准化保证了不 同厂商生产的设备之间的兼容性。
蓝牙协议栈的测试内容
测试蓝牙协议栈的连接功能
验证设备是否能够建立稳定可靠的连接,并 保证数据传输的实时性和可靠性。
测试蓝牙协议栈的功耗性能
评估蓝牙设备在各种工作模式下的功耗表现, 以确保设备的续航能力。
测试蓝牙协议栈的安全性能
验证蓝牙协议栈是否具备足够的安全机制, 防止数据被窃取或篡改。
测试蓝牙协议栈的互操作性
验证不同厂商生产的设备是否能够相互协作, 实现互操作功能。
蓝牙协议栈的测试方法
模拟器测试
使用模拟器模拟各种蓝牙设备 和场景,对蓝牙协议栈进行全
面测试。
实际设备测试
在实际的蓝牙设备和测试环境 中,对蓝牙协议栈进行实际测 试,以验证其性能和稳定性。
种环境下的表现。
传输速率测试 通过实际数据传输过程,测试蓝牙设 备的上传和下载速率,以评估其在数 据传输方面的性能。
功耗测试 通过测量蓝牙设备的待机时间和工作 时间功耗,评估其在节能方面的性能。
06
蓝牙安全测试
蓝牙安全问题分析
01
02
03
设备配对安全
蓝牙设备在配对过程中可 能存在安全漏洞,导致未 经授权的设备连接。
数据传输安全
蓝牙传输的数据可能被截 获或篡改,导致敏感信息 泄露或恶意攻击。
固件更新安全
蓝牙设备的固件更新过程 可能存在安全风险,如未 验证的更新来源或未正确 验证更新文件的完整性。
蓝牙安全测试方法
设备配对安全测试
测试蓝牙设备的配对过程, 确保只有经过授权的设备 能够成功配对。

蓝牙测试方案

蓝牙测试方案

蓝牙测试方案蓝牙技术作为一种无线通信技术,已经广泛应用于各种设备中,如手机、平板电脑、音频设备等。

为了确保蓝牙设备的质量和功能正常,蓝牙测试方案变得尤为重要。

本文将介绍一种蓝牙测试方案,用于测试蓝牙设备的性能和稳定性。

1. 概述蓝牙测试方案旨在评估蓝牙设备的性能,并确保其符合相关的技术标准和规范。

该方案涵盖了多个测试项目,包括蓝牙信号强度、传输速率、连接稳定性等方面的测试。

2. 测试流程2.1 准备测试设备在进行蓝牙测试之前,需要准备一些测试工具和设备。

这些设备包括蓝牙测试仪、测试手机和电脑等。

确保测试设备的更新和兼容性是非常重要的。

2.2 测试环境搭建在进行蓝牙测试之前,需要搭建一个标准的测试环境。

这包括一个封闭的房间,以避免外界干扰,以及一个稳定的电源供应和可靠的网络连接。

测试环境的稳定性对测试结果的准确性至关重要。

2.3 测试项目选择根据具体的测试需求,选择适合的测试项目进行测试。

例如,如果需要测试蓝牙信号强度,可以选择信号强度测试项目;如果需要测试传输速率,可以选择传输速率测试项目。

2.4 测试方法和步骤确定测试项目后,需要制定具体的测试方法和步骤。

例如,在进行蓝牙信号强度测试时,可以使用蓝牙测试仪测量设备之间的信号强度,并记录测试结果。

3. 测试指标和标准在进行蓝牙测试时,需要使用一些测试指标和标准来评估测试结果。

这些指标和标准可以根据不同的测试项目和需求来确定。

例如,对于蓝牙信号强度测试,可以使用信号强度指标来评估蓝牙设备的信号质量。

4. 数据收集和分析在完成蓝牙测试后,需要对测试数据进行收集和分析。

可以使用专门的数据分析软件来处理测试数据,并生成测试报告。

测试报告应包括测试结果、评估结果以及可能存在的问题和建议。

5. 解决问题和优化根据测试报告中的结果和问题,对蓝牙设备进行问题解决和优化。

可以通过软件更新、固件升级等方式来改善设备的性能和稳定性。

6. 重新测试和验证在进行问题解决和优化后,需要重新进行测试和验证。

蓝牙4.0低功耗测试规范

蓝牙4.0低功耗测试规范

THE SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, SATISFACTORY QUALITY, OR REASONABLE SKILL OR CARE, OR ANY WARRANTY ARISING OUT OF ANY COURSE OF DEALING, USAGE, TRADE PRACTICE, PROPOSAL, SPECIFICATION OR SAMPLE.
Use of the Specification by anyone who is not a member of Bluetooth SIG or a party to an Early Adopters Agreement (each such person or party, a “Member”) is prohibited. The legal rights and oerned by their applicable Membership Agreement, Early Adopters Agreement or Promoters Agreement. No license, express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.
2009-11-23 2009-11-25
2009-11-30 2009-10-11 2009-12-15 2009-12-15

蓝牙测试标准

蓝牙测试标准

蓝牙测试标准蓝牙技术作为一种无线通信技术,已经被广泛应用于各种设备中,如手机、耳机、音箱、智能手环等。

而蓝牙测试标准则是保证蓝牙设备性能和互操作性的重要保障,下面我们将对蓝牙测试标准进行介绍。

首先,蓝牙测试标准主要包括蓝牙核心规范、蓝牙认证和蓝牙互操作性测试。

蓝牙核心规范是蓝牙技术的基本规范,它规定了蓝牙设备的通信协议、频率、功率等技术参数,确保了蓝牙设备之间的兼容性和互操作性。

蓝牙认证是指蓝牙技术联盟对蓝牙设备进行的认证测试,通过认证测试的设备才能获得蓝牙标识,表明其符合蓝牙技术标准。

蓝牙互操作性测试则是指不同厂家生产的蓝牙设备之间进行的互操作性测试,确保它们能够正常地进行通信和数据交换。

其次,蓝牙测试标准对蓝牙设备的测试内容主要包括蓝牙通信距离测试、蓝牙通信稳定性测试、蓝牙数据传输速率测试、蓝牙功耗测试等。

蓝牙通信距离测试是测试蓝牙设备在不同环境下的通信距离,以及在不同距离下的通信质量。

蓝牙通信稳定性测试是测试蓝牙设备在长时间通信中的稳定性和可靠性。

蓝牙数据传输速率测试是测试蓝牙设备在不同条件下的数据传输速率和传输质量。

蓝牙功耗测试是测试蓝牙设备在不同工作模式下的功耗情况,以及在不同条件下的续航能力。

最后,蓝牙测试标准的重要性不言而喻。

只有通过严格的测试标准,才能保证蓝牙设备的性能和质量达到要求,确保用户能够获得稳定可靠的蓝牙通信体验。

同时,蓝牙测试标准也是蓝牙技术不断发展的动力之一,它促使厂家不断改进产品质量,推动蓝牙技术的进步和创新。

综上所述,蓝牙测试标准是保证蓝牙设备性能和互操作性的重要保障,它包括蓝牙核心规范、蓝牙认证和蓝牙互操作性测试,对蓝牙设备进行各种测试,确保其性能和质量达到要求。

蓝牙测试标准的重要性不言而喻,它不仅保障了用户的使用体验,也推动了蓝牙技术的不断发展和进步。

因此,我们应该重视蓝牙测试标准,确保蓝牙设备的质量和性能,为用户提供更好的使用体验。

bluetooth芯片测试原理

bluetooth芯片测试原理

bluetooth芯片测试原理1.引言1.1 概述蓝牙技术是一种无线通信技术,可以实现不同设备之间的数据传输和交互。

它广泛应用于手机、电脑、耳机、音箱等各种消费电子产品中,成为人们日常生活中不可或缺的一部分。

蓝牙芯片作为蓝牙设备的核心组成部分,起着关键的作用。

它集成了传输、解码和编码等功能,实现了蓝牙设备与其他设备之间的通信。

蓝牙芯片测试是确保蓝牙设备正常工作的重要环节,通过测试可以验证芯片的性能和稳定性,保证蓝牙设备在各种环境下都能正常工作。

蓝牙芯片测试涉及多个方面,包括信号强度测试、传输速率测试、兼容性测试等。

其中,信号强度测试是评估蓝牙设备的无线传输性能的关键指标之一,通过测量设备在不同距离下的接收信号强度来评估其通信能力。

传输速率测试则是评估设备在传输数据时的速度和效率,这对于音频和视频的传输特别重要。

兼容性测试则是验证设备与其他蓝牙设备的互通性,确保设备能够与其他设备无缝连接和交互。

通过对蓝牙芯片进行测试,可以发现并解决潜在的问题,提高设备的性能和质量。

同时,测试还可以为蓝牙芯片的优化和升级提供参考和指导。

随着蓝牙技术的不断发展和应用的不断扩大,蓝牙芯片测试也将在未来扮演更加重要的角色,为蓝牙设备的进一步发展提供支持和保障。

在本文中,我们将详细介绍蓝牙芯片测试的原理和方法,以及其在蓝牙设备中的重要性。

我们将探讨不同的测试指标和测试方案,并对未来蓝牙芯片测试的发展进行展望。

通过深入了解和研究蓝牙芯片测试,我们有望进一步提升蓝牙设备的性能,为用户提供更好的使用体验。

1.2 文章结构本文将按照以下结构进行展开:1. 引言:介绍本文的主题和背景,并简要概述蓝牙芯片测试的重要性。

2. 正文:2.1 蓝牙技术简介:对蓝牙技术进行概述,包括其起源、发展历程以及在现代社会中的应用领域。

2.2 蓝牙芯片测试的重要性:详细介绍蓝牙芯片测试在技术研发和产品市场推广中的必要性和价值。

3. 结论:3.1 总结蓝牙芯片测试原理:对前文的内容进行总结,回顾和归纳蓝牙芯片测试的原理和方法。

如何用CMW测试Qualcomm芯片的蓝牙4.0功能

如何用CMW测试Qualcomm芯片的蓝牙4.0功能

如何用CMW500测试Qualcomm芯片的蓝牙4.0功能蓝牙4.0及以上版本开发了低功耗(Low Energy)工作模式。

在此模式下,蓝牙模块有着极低的通信及待机功耗。

这项技术升级可以极大的拓展蓝牙的应用前景。

随着芯片方案商不断升级手机芯片的能力,蓝牙4.0版本也已经成为绝大多数智能手机的标准配置。

蓝牙射频测试规范在4.0版本增加了14个新的测试项目,详情可以参考下面表格。

手机设计人员需要依据规范对低功耗蓝牙功能进行必要的检测。

R&S公司的CMW射频综测仪可以在信令模式下进行蓝牙4.0版本的射频测试,即通过CMW控制被测手机打开发射、或进入环回模式回传数据,并进行测量。

信令测试可以获得相对更客观的测试结果(如接收机质量)。

Qualcomm公司是手机芯片的主流供应商,目前市场上大部分智能手机都在使用Qualcomm公司提供的全系列解决方案,其中就包括WLAN、蓝牙等无线连接技术的实现。

以下介绍使用CMW射频综测仪连接,并测试基于Qualcomm公司芯片的手机的低功耗(Low Energy)蓝牙功能。

需要使用的仪表、连接线缆及软件描述如下:▪CMW500或CMW270,配备有至少一个CMW-H200A通用信令单元,测试软件需要CMW-KS600,KS610,KS611,KM610,KM611各一个。

CMW蓝牙Firmware版本为v3.2.81及以上▪串口(Male)- USB(A)转换电缆一根。

CMW暂时只支持使用串口连接控制被测手机。

Qualcomm 的低功耗蓝牙控制软件则使用USB接口虚拟出来的RS232串口连接被测手机,手机上没有物理形式上的串口。

如果控制手机的电脑也没有RS232串口,则需要额外的一个串口(Female)到USB(A)的转换电缆将CMW和控制用电脑连接起来。

如下所示:▪Qualcomm公司的QDART芯片控制软件工具包,版本在4.2.83及以上▪控制电脑需安装ADB控制软件,以控制手机(默认智能手机使用Google公司的Android操作系统)▪USB控制线一根,用于连接控制电脑和被测手机▪射频电缆一个,用于连接CMW和被测手机开始连接之前,需要在CMW和控制电脑上安装串口转USB口的驱动软件。

蓝牙耳机测试方法和标准

蓝牙耳机测试方法和标准

蓝牙耳机测试方法和标准
蓝牙耳机测试方法和标准如下:
一、输出功率
二、载波漂移
三、单时隙灵敏度
指标初始载波容限,一般在40khz以内能正常连接通讯,频偏太大会导致搜到却连接不上,在0-78种信道中划分低中高频0、39、78等频道在该三项上的频偏),蓝牙3.0和2.0都用2.402GHz 到2.480GHz,每个信道1MHz,(手机也有平均偏移),通过调整频偏校准达到一个较好的频率;
指标PCBA板输出功率的通常出货标准为4-6dbm,发射功率越大会增大设备的耗电,在DUT模式下用测试设备连上后会以最大功率来发射信号,关系到蓝牙耳机连接距离的远近,输出功率越大可连接距离越远,rf箱子线材损耗大概在12db左右,通常在线损会补偿12db可以修改固定损耗来把输出功率修正到预想值;
指标单时隙灵敏度是作为连接上的是否卡顿的其中一项测试项目,ber传输误码率、fer传输丢包率等的参考测试参数,一般产测在-80dbm下最佳ber和fer都为0,最理想的情况为达到芯片最理想值(例如某些方案设计为-93dbm)ber误码率概念:
一段时间或数据包因在各种因素干扰下在传输过程中出现偏差,产生的误码,与原信号的比值为误码率表现在手机上就是音频播放的是杂音或音频失真、FER概念:一段时间或数据包因在各种
情况下出现传输数据丢失,丢失的数据与原数据的比值叫丢包率,在蓝牙机制中出现丢包情况会把数据重发一遍,表现在手机上就是音频卡顿。

蓝牙测试详解

蓝牙测试详解

下面介绍一些适用于蓝牙设备RF部分的测试。

功率──输出放大器是一个选件,有这种选件无疑可提升I类(+20dBm)输出放大器的输出功率。

虽然对电平精度指标不作要求,但应避免过大的功率输出,以免造成不必要的电池耗电。

无论设计提供的功率是+20dBm还是更低,接收器都需要有接收信号强度指示,RSSI信息允许不同功率设备间互相联系,这类设计中的功率斜率可由控制放大器的偏置电流实现。

与其它TDMA系统如DECT或GSM不同,蓝牙频谱测试并不限于单独的功率控制和调制误差测试,它的测量间隔时间必须足够长,以采集到斜率和调制造成的影响。

在实际中这不会影响认证,时间选通测量由于能迅速确定缺陷,具有很高的价值。

有些设计在调制开始前使用未经指定的周期,这通常用于接收器的准备。

频率误差──蓝牙规范中所有频率测量选取较短的4微秒或10微秒选通周期,这样会造成测量结果的不定性,可从不同的角度进行理解。

首先,窄的时间开口意味着测量带宽截止频率较高,会把各类噪声引入测量;其次应考虑误差机制,如在短间隔测量中,来自测量设备的量化噪声或振荡器边带噪声将占较大百分比,而较长测量间隔中这些噪声影响会被平均掉。

因此设计范围要考虑这一因素,它应超过参考晶振产生的静态误差。

频率漂移──漂移测量将短的10位相邻数据组和跨越脉冲的较长漂移结果结合在一起。

如果在发送器设计中用了采样-保持设计,就可能出现这一误差。

对其它类型设计,在波形图上可观察到像纹波一样的有害4kHz至100kHz调制成分或噪声,表明了它可作为另一个方法确保很好地将电源去耦合。

调制──在发送路径中,图1中的VCO被直接调制,为避免PLL剥离带宽内调制成分,可让传输器件开路或使用相位误差校正(两点调制)。

采样-保持技术应该是有效的,但需注意避免频率漂移。

除非使用数字技术调整合成器的分频比,否则应校准相位调制器,以免出现不同数据码型调制的响应平坦度低的问题。

蓝牙RF规范要检查11110000和10101010两种不同码型的峰值频率偏移,GMSK调制滤波器的输出在2.5bit后达到最大值,第一个码可检查这一点,GMSK滤波器的截止点和形状则由第二个码检查。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高通蓝牙测试方法(支持BT4.0测试)
1,将ADB文件copy到电脑上D盘根目录下
2,正常开机并用USB线连到PC,手机端注意”设置”->”应用程序”->”开发”->”USB调试”
打钩。

此时蓝牙不用打开,后续ADB指令能够控制蓝牙进入Slave模式。

3,开始菜单->运行->输入“cmd”进入Command窗口,输入“D:”后回车
4,在Command窗口中运行“CD platform-tools”进入ADB文件夹
5,在Command窗口中运行adb.exe,出现如下界面
6,输入“adb root”指令,进入root权限,会跳出如下窗口:
7,再输入“adb shell”,跳出一个“#”
8,依次输入如下指令(可逐行copy运行)
bdt
enable
dut_mode_configure 1
这时蓝牙便进入测试模式,可以用仪器对蓝牙发起呼叫,从而完成BT2.1的测试。

若需要测试BT4.0,还需在信道ch0和ch39上进行发射,包括调制信号和单载波的发射。

可通过如下指令实现:
1,重启手机后,输入“adb root”,进入root权限,会跳出如下窗口:
2,再输入“adb shell”,跳出一个“#”
3,输入“btconfig /dev/smd3 rawcmd 0x08 0x001E 0x00 0x25 0x00”,在信道0上进行BLE发射
4,输入“btconfig /dev/smd3 rawcmd 0x08 0x001F”,停止发射
5,输入“btconfig /dev/smd3 rawcmd 0x08 0x001E 0x27 0x25 0x00”,在信道39上进行BLE发射
6,输入“btconfig /dev/smd3 rawcmd 0x08 0x001F”,停止发射
7,输入“btconfig /dev/smd3 rawcmd 0x3F 0x0004 0x05 0x00 0x07 0x04 0x20 0x00 0x00 0x00 0x00”,在信道0上进行单载波发射
8,输入“btconfig /dev/smd3 rawcmd 0x03 0x0003”,停止发射
9,输入“btconfig /dev/smd3 rawcmd 0x3F 0x0004 0x05 0x27 0x07 0x04 0x20 0x00 0x00 0x00 0x00”,在信道39上进行单载波发射
10,输入“btconfig /dev/smd3 rawcmd 0x03 0x0003”,停止发射。

相关文档
最新文档