指数函数PPT课件(新)

合集下载

《指数函数的概念》课件

《指数函数的概念》课件
2023
REPORTING
《指数函数的概念》 ppt课件
2023
目录
• 引言 • 指数函数的概念 • 指数函数的图像 • 指数函数的运算 • 指数函数与其他数学概念的联系 • 总结与回顾
2023
PART 01
引言
REPORTING
课程背景
数学的重要性
数学是现代科学的基础,而指数 函数在数学和实际生活中有着广 泛的应用。

人口增长模型
在生物学和人口统计学中,人口增 长通常使用指数函数来描述。通过 指数函数,可以预测未来人口数量 。
放射性物质衰变
在物理学中,放射性物质衰变通常 使用指数函数来描述。通过指数函 数,可以预测未来放射性物质的数 量。
2023
PART 03
指数函数的图像
REPORTING
指数函数的图像特点
2023
PART 04
指数函数的运算
REPORTING
指数函数的四则运算
01
02
03
04
指数加法
$a^m^n = a^{m+n}$
指数减法
$a^m / a^n = a^{m-n}$
指数乘法
$a^m * a^n = a^{m+n}$
指数除法
$frac{a^m}{a^n} = a^{mn}$
指数函数的复合运算
指数函数与一次函数的复合
$y = a^x * k$,其中k为常数
指数函数与二次函数的复合
$y = a^x * x^2$,其中a、x为变量
指数函数与对数函数的关系
对数函数的定义
如果 $y = a^x$,则 $x = log_a y$
对数函数的性质

高一数学指数函数ppt课件

高一数学指数函数ppt课件

图像法
运算性质法
利用指数函数的运算性质,如乘法公 式和指数法则,推导出奇偶性的判断 方法。例如,若f(x)和g(x)都是奇函数, 则f(x)*g(x)也是奇函数。
通过观察指数函数的图像,判断其是 否关于原点对称或关于y轴对称,从而 确定函数的奇偶性。
06 典型例题解析与 课堂互动环节
典型例题选讲及思路点拨
指数函数的图像关于y轴对称。
当a>1时,函数在定义域内单调递增,图 像上升;当0<a<1时,函数在定义域内单 调递减,图像下降。
指数函数图像特点 函数图像过定点(0,1)。
指数函数性质探讨
指数函数的单调性
01
当a>1时,函数在R上单调递增;当0<a<1时,函数在R上单调
递减。
指数函数的周期性
02
指数函数不是周期函数。
应用举例
$3^4 = (frac{3}{2})^4 times 2^4$
对数转换
当底数不同且难以直接 计算时,可通过对数转 换为相同底数进行计算。
应用举例
比较 $7^{10}$ 和 $10^7$ 的大小,可转 换为比较 $10 times
log7$ 和 $7 times log10$。
复杂表达式化简技巧
利用指数函数构建可持续增长模型,可以预测未来经济发展的趋势和可能遇到的问 题,帮助学生了解经济增长的复杂性和不确定性。
05 指数函数图像变 换与性质变化规 律
平移、伸缩变换对图像影响
平移变换
指数函数图像沿x轴或y轴平移,不改 变函数的形状和周期性,只改变函数 的位置。
伸缩变换
通过改变函数的参数,实现对指数函 数图像的横向或纵向伸缩,从而改变 函数的周期和振幅。

指数函数优秀课件

指数函数优秀课件

•指数函数基本概念•指数函数运算规则•指数函数在生活中的应用•指数函数与对数函数关系目•指数方程和不等式求解方法•指数函数在高级数学中的应用录指数函数的定义底数a的取值范围函数的单调性函数的值域函数的周期性030201指数函数的图像是一条从y轴上的点(0,1)出发的曲线。

当a>1时,曲线向上增长;当0<a<1时,曲线向下减少。

指数函数的图像关于y轴对称,即对于任意x值,f(-x)=f(x)。

指数函数的图像具有渐近线y=0,即当x趋近于负无穷大时,y趋近于0。

同时,当x趋近于正无穷大时,y趋近于正无穷大(a>1)或0(0<a<1)。

指数函数图像与特征同底数指数法则乘法法则除法法则幂的乘方法则不同底数指数法则乘法公式除法公式指数运算优先级01020304括号指数乘除加减复利计算复利公式A = P(1 + r/n)^(nt),其中A表示未来值,P表示本金,r表示年利率,n表示每年计息次数,t表示时间(年)。

该公式用于计算投资或存款在定期计息的情况下的未来值。

连续复利当计息次数趋于无穷大时,复利公式变为A = Pe^(rt),其中e是自然对数的底数,约等于2.71828。

连续复利更精确地描述了资金在连续时间内的增长情况。

放射性物质衰变衰变公式半衰期细菌繁殖模型细菌增长公式N = N₀e^(kt),其中N表示经过时间t后的细菌数量,N₀表示初始数量,k表示细菌增长率,t表示时间。

该公式用于描述在理想条件下细菌数量的指数增长。

细菌繁殖周期细菌从一个分裂成两个所需的时间称为繁殖周期。

在理想条件下,细菌数量每经过一个繁殖周期就会翻倍。

因此,细菌数量的增长与繁殖周期和经过的时间密切相关。

对数函数的定义:对于任意正实数a(a≠1),如果N (N>0)的a次幂等于X,那么X叫做以a 为底N的对数,记作X=logaN。

其中,a 叫做对数的底数,N 叫做真数。

对数函数的性质底数大于1时,函数是增函数;底数小于1时,函数是减函数。

指数函数图像和性质_完整ppt课件

指数函数图像和性质_完整ppt课件

-1.5
-1
-0.5
-0.2
-0.4
0.5
1
1.5
2
2.5
3.2
3
2.8
2.6
2.4
2.2
2 1.8
f x = 0.9 x
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
-0.5 -0.2
-0.4
0.5
1
1.5
2
2.5
3
3.5
4
13
练习: 1、已知下列不等式,试比较m、n的大小:
(2)m (2)n
ppt精选版
1
y y=x3
y=x
y=x2
1
y=x1/2
0
1
X
a>0
y y=x-2
y=x-1
1
y=x-1/2
0
1
X
a<0
(1)图象都过(0,0)点和 (1,1)点;
(2)在第一象限内,函数值 随x 的增大而增大,即
在(0,+∞)上是增函
数。
(1)图象都过(1,1)点;
(2)在第一象限内,函数值随 x 的增大而减小,即在
解 :根据指数函数的性质, 由图像得,
1.70.3 1 且 0.93.1 1 从而有
1.70.3 > 0.93.1
或者
1.70.3 > 1.7 0 > 0.90 > 0.93.1
ppt精选版
f x = 1.7
3.2
3
2.8
2.6
2.4
2.2
2
1.8
x
1.6

指数函数ppt课件

指数函数ppt课件

04
指数函数的应用
在金融领域的应用
复利计算
股票和期货价格预测
在金融领域,复利计算是评估投资回 报的重要方式。指数函数用于计算复 利,通过复利公式,可以计算出投资 的未来价值。
在股票和期货市场中,指数函数常用 于价格预测模型。通过分析历史数据 ,利用指数函数可以预测未来的价格 走势。
保险精算
在保险行业中,指数函数用于精算模 型,例如生命表和风险评估。通过指 数函数,保险公司可以预测未来的风 险和损失。
指数函数和三角函数在某些方面具有 相似性,例如在周期性和对称性方面 。
三角函数的图像具有对称性,例如正 弦函数和余弦函数的图像关于y轴对称 ,而指数函数的图像则关于y=1对称 。
三角函数具有周期性,而指数函数在 形式上也可以表示为具有周期性的形 式。
06
练习题与答案解析
基础练习题
定义域和值域
指数函数的定Leabharlann 域和值域分别是什么?指数函数的起源与历史
起源
指数概念最早可以追溯到古代数学家和天文学家的著作中,但现代意义上的指 数函数则是在17世纪由数学家约翰·纳皮斯和费马等人提出。
历史发展
随着数学和科学技术的不断发展,指数函数的概念和应用范围也在不断扩展和 深化。在复数、微积分、线性代数等领域中,指数函数都扮演着重要的角色。
02
指数函数与幂函数的关系
指数函数和幂函数具有相似的 形式,即y=a^x和y=x^a。
当a>0时,指数函数和幂函数 的图像都是单调递增的;当 a<0时,指数函数和幂函数的 图像都是单调递减的。
指数函数和幂函数的定义域都 是全体实数集R,值域都是正 实数集(0,+infty)。
指数函数与三角函数的关系

《指数函数》PPT课件

《指数函数》PPT课件

商的乘方
商的乘方等于乘方的商。 如:$(a/b)^n = a^n div b^n$。
指数函数的极限与连续
极限性质
当底数大于1时,指数函数随着指 数的增大而趋于无穷大;当底数 在0到1之间时,指数函数随着指 数的增大而趋于0。
连续性
指数函数在其定义域内是连续的, 即对于任意两个相邻的点,函数值 之间的差可以无限小。

工程学
在工程学中,指数函数可用于 描述材料疲劳、信号处理等问
题。
计算机科学
在计算机科学中,指数函数可 用于算法分析、图像处理等领
域。
THANKS
感谢观看
02 指数函数的运算 性质
指数函数的四则运算
加法运算
同底数指数相加,指数 不变,底数相乘。如:
$a^m + a^m = 2a^m$。
减法运算
同底数指数相减,指数 不变,底数相除。如: $a^m - a^m = 0$。
乘法运算
同底数指数相乘,指数 相加,底数不变。如:
$a^m times a^n = a^{m+n}$。
级数展开的定义
将指数函数表示为无穷级数的形式,便于分析和 计算。
泰勒级数展开
通过泰勒公式将指数函数展开为幂级数,适用于 函数在某点的局部逼近。
麦克劳林级数展开
特殊形式的泰勒级数,用于在原点处展开指数函 数。
指数函数的傅里叶变换
傅里叶变换的概念
01
将时间域的函数转换为频域的函数,便于分析信号的频率特性
指数函数在生物学中的应用
细菌增长模型
指数函数可以描述细菌在适宜环 境下的增长情况,用于预测细菌
数量。
药物代谢动力学
指数函数可以模拟药物在体内的 代谢过程,用于计算药物浓度随

指数函数的概念图象及性质PPT课件

指数函数的概念图象及性质PPT课件
栏目 导引
第4章 指数函数、对数函数和幂函数
(4)y=(a2+2)-x=a2+1 2x,底数a2+1 2∈0,12,前面系数为 1, 指数为自变量 x,故它是指数函数. (5)y=2×3x+a(a≠0),3x 前面系数为 2≠1,故它不是指数函 数. 故(1)(3)(4)为指数函数.
栏目 导引
第4章 指数函数、对数函数和幂函数
指数式的比较大小问题 比较下列各组数的大小. (1)1.8-π,1.8-3;(2)1.7-0.3,1.9-0.3; (3)0.80.6,0.60.8.
栏目 导引
第4章 指数函数、对数函数和幂函数
【解】 (1)构造函数 f(x)=1.8x. 因为 a=1.8>1,所以 f(x)=1.8x 在 R 上是增函数. 因为-π<-3,所以 1.8-π<1.8-3. (2)因为 y=11..79x在 R 上是减函数, 所以11..79--00..33=11..79-0.3>11..790=1. 又因为 1.7-0.3 与 1.9-0.3 都大于 0, 所以 1.7-0.3>1.9-0.3.
栏目 导引
第4章 指数函数、对数函数和幂函数
(3)取中间值 0.80.8. 因为 y=0.8x 在 R 上单调递减,而 0.6<0.8, 所以 0.80.6>0.80.8. 又因为00..6800..88=00..860.8>00..680=1,且 0.60.8>0, 0.80.8>0,所以 0.80.8>0.60.8.所以 0.80.6>0.60.8.
x=0 时,__y_=__1___; 质 y值
x<0 时__0_<_y_<_1__
x>0 时,_0_<__y_<_1__; x=0 时,_y_=__1____;

指数函数及其性质PPT课件

指数函数及其性质PPT课件

05 指数函数与其他函数的比 较
与线性函数的比较
线性函数
y=kx+b,表示的是一种 匀速变化,增加或减少的 趋势。
指数函数
y=a^x,表示的是一种爆 炸式增长或衰减的趋势。
比较
线性函数的变化速率是恒 定的,而指数函数的变化 速率会随着x的增大或减小 而快速增大或减小。
与幂函数的比较
01
幂函数
y=x^n,当n>0时,表示的是一种增长趋势;当n<0时,表示的是一种
包括单调性、奇偶性、周期性等。
指数函数的应用
在数学、物理、工程等领域都有广泛的应用。
练习与思考
练习题
根据指数函数的性质,判断下列哪些是指数函数,哪些不是,并说明理由。
思考题
指数函数在生活和生产中有哪些应用?请举例说明。
THANKS FOR WATCHING
感谢您的观看
指数函数的运算性质
01
基本运算性质
02
$a^m times a^n = a^{m+n}$
03
$(a^m)^n = a^{mn}$
04
$frac{a^m}{a^n} = a^{m-n}$
05
复合运算性质:如果 $u(x) = b^x$ 且 $b > 0$ 且 $b neq 1$,则 $y = a^{u(x)}$ 也是指数函数。
04
05
指数函数的值域为 $(0, +infty)$。
指数函数的图像
当 $a > 1$ 时,图像位于第一象限和第四象限 ;
绘制方法:选择一个 $a$ 值,例如 $y = 2^x$ 或 $y = frac{1}{2}^x$,然后使用计算器或数学软件绘制图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
f 3
1
1

3 1.函数是y | a 2 | a x 指数函数,则 a =________
(0,4) 2.函数y a 3(a 0且a 1)的图像过定点 ________
x
3.函数 y (2m 1) 是减函数,求 m 的取值范围.
x
4.当 x>0 时,函数 f(x)=(a -1) 的值总大于 1, 则实数 a 的取值范围是( A.1<|a|<2 C.|a|>1 ) B.|a|<1 D.|a|> 2
(3)当 x<0 时,由指数函数的性质知 0<2x<1, 1 -1<2 -1<0,∴ x <-1. 2 -1
x
1 1 1 ∴ x + <- ,∴x<0 时, 2 2 -1 2 1 1 f(x)=( x + )x>0,由 f(x)为偶函数, 2 -1 2 ∴当 x>0 时,f(x)>0. 总之,当 x∈R,且 x≠0 时,函数 f(x)>0.
-3<x<1 1≤x<3
迁移变式 1 化简:
a b
2
4 b a 3. a b
3
迁移变式 3 已知
=3, 求
的值.
迁移变式 4 对于正质数 a,b,c(a≤b≤c)和非零实数 x,y,z,w. 若 a =b =c
x y z
=70w≠1,
1 1 1 1 = + + , w x y z
1 w
-2x+b 已知定义域为 R 的函数 f(x)= x+1 是个奇函数. 2 +a (1)求 a、b 的值; (2)若对任意的 t∈R,不等式 f(t2-2t)+f(2t2-k)<0 恒成立, 求 k 的取值范围.
b-1 解:(1)∵f(x)是奇函数,∴f(0)=0,∴ =0 a+2 1-2x ∴b=1 ∴f(x)= a+2x+1 1 1- 1-2 2 又 f(1)=-f(-1)则 =- , a+4 a+1 解得 a=2
1 x
求 a,b,c 的值.
解:因为 a =70w,所以 a =70 ≠1,
x
1 1 1 1 又因为 + + = ,所以 abc=70=2×5×7, x y z w 所以 a=2,b=5,c=7.
小结:
1.指数幂的运算性质适应于实数指数幂. 2.对根式的运算,应先化为分数指数幂,再 根据运算性质进行计算,计算结果一般用分 数指数幂表示.
迁移变式 3 设-3<x<3,求 x2-2x+1- x2+6x+9的值.
解:原式= x-12- x+32 = |x-1|-|x+3|, ∵-3<x<3,∴当-3<x<1 时, 原式=-(x-1)-(x+3)=-2x-2; 当 1≤x<3 时, 原式=(x-1)-(x+3)=-4.
-2x-2 ∴原式= - 4
x 2x … -2 -1 0 … 0.25 0.5 1 -2 4 -1 2 0 1 1 2 1 0.5 2 4 2 … … …
x … 1 x ( ) … 2
0.25 …
y
1 x y( ) 2
y=2x
4 3 2 1
-3
-2
-1
-1
0
1
2
3
x
如图2所示的是指数函数:①y=ax;
② y = bx ;③ y = cx ;④ y = dx 的图象,则 a ,
1-2x 1 1 (2)由(1)知 f(x)= =- + x 2 2 +1 2+2x+1 易知 f(x)在(-∞,+∞)上为减函数,又因为 f(x)是奇函数, 从而不等式 f(t2-2t)+f(2t2-k)<0 即 f(t2-2t)<-f(2t2-k)=f(k-2t2) 即 f(t2-2t)<f(k-2t2),而 f(x)是减函数 则 t2-2t>k-2t2 3t2-2t-k>0 对 t∈R 恒成立. 1 ∴Δ=4+12k<0,∴k<- . 3
(4)根据“同增异减”原 则确定函数的单调区间 。
例1. 比较下列各题中两个值的大小:
(1)1.72.5 , 1.73 ; (2)0.8-0.1 ,0.8 -0.2 (3)1.70.3 , 0.93.1.
小结 比较指数幂大小的方法: ①、单调性法:利用函数的单调性,数的特征
是底同指不同(包括可以化为同底的)。 ②、中间值法:找一个 “中间值”如“1”来过渡,
合函数,采用换元法,利用相应函数的性质解题.
(3)求函数 y4
x
2
x
3, 1在 2上的最值。
指数函数的值域是(0,+ ∞ ),利用换元法解题时,要 注意新元的取值范围,即换元要换限,否则极易出错.
2a 1(a 0且a 1)在 1 a= 或 3. 1, 1上有最大值 14,求a的值。 3
(a>1)
图 象 性 质
y=ax
(0<a<1)
y
(0,1)
y=1
(0,1)
y=1 x
0
x
0
定义域: R 值 域: (0,+ ∞ ) 必过 点: ( 0 , 1 ) ,即 x = 0 时, y = 1 .
x>0,y>1; x<0, 0<y<1
在 R 上是 增函数
x<0,y>1; x>0,0<y<1
在 R 上是 减函数
图 4
1 1( x≥- 1); y = ( ) x+ 3
向左平移 1 个单位 → 1( x. y = 3 x( x<0) ―――――――――― y = 3 x+ < - 1)
1 1 已知 f(x)=( x + )x. 2 -1 2 (1)求函数的定义域; (2)判断 f(x)的奇偶性; (3)求证:f(x)>0.
数的特征是底不同指不同。
练习1. 比较大小: (1)3.10.5 , < 3.12.3
2 0.3 2 0.24 (2)( ) >, ( ) 3 3
(3) 2.3-2.5 , < 0.2 -0.1
例2. (1)已知0.3x≥0.37,求实数x的取值范围.
1 (2)已知 5x< , 求实数x的取值范围. 25
指 数 函 数
引例 .比较下列指数式的异同, 能不能把它们看成函数值?
①、 2 , 2 , 2 , 2 , 2 , 2 ;
1 3
1 2
0
1
2
2
y2
2 2
x
1 ②、 2
1 3
1 , 2
1 2
1 , 2
0
1 , 2
1
x 1 1 1 , , ; y 2 2 2
概念剖析
思考3: 指数函数解析式有什么特点? 下列哪些是指数函数?
(1) (2) y=2x (3) y=2-x (4) y=2 ·3x (5) y=23x (6) y=3x+1
y=x2
指数函数的解析式
a
x
ya
x

的系数是1 ;
指数必须是单个x ;
底数a0,且a1.
2.指数函数的图象:
x 1 x 在同一坐标系中画出函数 y 2 与y 2 的图象. 描点 连线 描点法作图 列表
2x x
(4)已知函数 ya
[例 3]
1 |x+1| 已知函数 y=( ) . 3
(1)作出图象; (2)由图象指出其单调区间; (3)由图象指出当 x 取什么值时有最值.
[解 ]
(1) 方法 1 :由函数解析式可得
1 +1 x ≥ - 1 x 3 1 1|= y = ( ) |x+ 3 x+1 3 x< - 1 其图象由两部分组成: 1 x 向左平移 1 个单位 → y ( 一部分是: = 3 ) ( x≥ 0)――――――――― 另一部分是:
解:(1)由 2x-1≠0,得 x≠0. ∴ 函数的定义域为{x|x≠0,x∈R};
(2)在定义域内任取 x,则-x 在定义域内, 1 1 2x 1 f(- x)=( - x + )(- x)=-( x+ )x 2 -1 2 1-2 2 1+2x 2x+1 =- x= x · x, x · 21-2 22 -1 2x+1 1 1 而 f(x)= ( x + )x= x · x, 2 -1 2 22 -1 ∴f(-x)=f(x). ∴函数 f(x)为偶函数.

( 3) 3 1 2 x 当a=0时,a 有些会没有意义,如 0 2 0 x
当a<0时,a x有些会没有意义,如 当a=1时,a 恒等于1,没有研究的必要. 思考2:指数式a x中x∈R都有意义吗 ?
0
1
a
1 2
回顾上一节的内容,我们发现指数式 ab 中b可以是 有理数也可以是无理数,所以指数函数的定义域是R.
练习2. 求满足下列条件的实数x的范围:
(1)2 8 1 x ( 2)( ) 27 3
x
x≤3 X<-3
2 2 3 x 1 2 x 思考: 设y ( ) ,y ( ) , 1 2 3 3 当x为 何 值 时 , 分 别 有 : ( 1)y1 y2 ; ( 2) y1 y2 ; ( 3) y1 y2
b,c,d与1的关系是( )
A.a<b<1<c<d
B.b<a<1<d<c C.1<a<b<c<d D.a<b<1<d<c
[答案]
Байду номын сангаас
B 图2
1x y( ) 1x 观察右边图象,回答下列问题: 3 y( ) 2 问题一:
相关文档
最新文档