2013年全国统一高考数学试卷(理科)(大纲版)(含解析版)
2013全国高考大纲卷理科(带详解)

2013年普通高等学校招生全国统一考试数学(理科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中的元素个数为 ( )A.3B.4C.5D.6 【测量目标】集合的含义.【考查方式】给出两个集合,利用集合中元素的互异性求个数. 【难易程度】容易 【参考答案】B【试题解析】因为集合A ={1,2,3},B ={4,5},M={}|x x a b a A b B =+∈∈,,, 所以a+b 的值可能为:1+4=5、1+5=6、2+4=6、2+5=7、3+4=7、3+5=8, 所以M 中元素只有:5,6,7,8.共4个.故选B . 2.()31+3i= ( )A.8-B.8C.8i -D.8i 【测量目标】复数代数形式的四则运算.【考查方式】给出复数的幂运算,利用复数的乘法运算求值. 【难易程度】容易 【参考答案】A 【试题解析】()()()()()3221+3i1+3i 1+3i 1+3i 2+23i 26i8==-=-+=-.3.已知向量()()1,1,2,2λλ=+=+m n ,若()()+⊥-m n m n ,则=λ ( ) A.4- B.3- C.2- D.1- 【测量目标】向量的坐标运算.【考查方式】给出两个向量,利用向量的坐标运算,再根据向量的垂直的性质求值. 【难易程度】容易 【参考答案】B【试题解析】∵()1,1λ=+m , ()2,2λ=+n . ∴()23,3λ+=+m n ,()1,1-=--m n .(步骤1) ∵()()+⊥-m n m n , ∴()()+- m n m n =0,∴()2330λ-+-=,解得λ=−3.(步骤2)4.已知函数()f x 的定义域为()1,0-,则函数()21f x +的定义域为 ( )A.()1,1-B.11,2⎛⎫-- ⎪⎝⎭ C.()1,0- D.1,12⎛⎫ ⎪⎝⎭【测量目标】函数的定义域.【考查方式】给出函数的定义域求复合函数的定义域. 【难易程度】中等 【参考答案】B【试题解析】∵原函数的定义域为()1,0-,∴1-<2x +1<0,解得1-<x <12-. ∴则函数()21f x -的定义域为11,2⎛⎫-- ⎪⎝⎭.故选B . 5.函数()()21=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x - ( )A.()1021x x >- B.()1021xx ≠- C.()21x x -∈R D.()210x x -> 【测量目标】反函数,函数的值域.【考查方式】给出函数的解析式,求它的反函数. 【难易程度】中等 【参考答案】A【试题解析】由21log 1y x ⎛⎫=+ ⎪⎝⎭得112,yx ⎛⎫+= ⎪⎝⎭故1.21yx =-(步骤1) 把x 和y 互换,即得()11.21xf x -=-(步骤2) 由0,x >得111,x+>可得0.y > 故所求反函数为()11(0).21x fx x -=>-(步骤3) 6.已知数列{}n a 满足12430,3n n a a a ++==-,则{}n a 的前10项和等于 ( ) A.()10613--- B.()101139-- C.()10313-- D.()1031+3- 【测量目标】等比数列的定义,等比数列前n 项和.【考查方式】给出关于数列的等式,利用等比数列的定义判断数列,进而求数列前n 项和. 【难易程度】中等 【参考答案】C【试题解析】由130,n n a a ++=得11,3n n a a +=-故数列{}n a 是公比13q =-的等比数列. (步骤1)又24,3a =-可得1 4.a =所以()1010101413313.113S -⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦==-⎛⎫-- ⎪⎝⎭(步骤2) 7.()()8411+x y +的展开式中22x y 的系数是 ( )A.56B.84C.112D.168 【测量目标】二项式定理.【考查方式】利用二项展开式的通项公式求值. 【难易程度】中等 【参考答案】D【试题解析】因为()81x +的展开式中2x 的系数为28C ,()41y +的展开式中2y 的系数为24C ,所以22x y 的系数为2284C C 168=.故选D.8.椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是 ( )A.1324⎡⎤⎢⎥⎣⎦,B.3384⎡⎤⎢⎥⎣⎦, C.112⎡⎤⎢⎥⎣⎦, D.314⎡⎤⎢⎥⎣⎦,【测量目标】斜率公式,直线与椭圆的位置关系. 【考查方式】给出椭圆及斜率范围,利用斜率公式求值. 【难易程度】中等 【参考答案】B【试题解析】设P 点坐标为(x 0,y 0),则2200=143x y +,2002PA y k x =-,1002PA y k x =+, 于是122200222003334244PA PA x y k k x x -===--- .故12314PA PA k k =-.(步骤1) ∵[]22,1PA k ∈--,∴133,84PA k ⎡⎤∈⎢⎥⎣⎦.故选B. (步骤2)9.若函数()21=f x x ax x ++在1,+2⎛⎫∞ ⎪⎝⎭是增函数,则a 的取值范围是 ( )A.[-1,0]B.[1,)-+∞C.[0,3]D.[3,)+∞【测量目标】利用导数判断函数的单调性,不等式恒成立问题. 【考查方式】结合导数解决不等式恒成立问题,求未知量. 【难易程度】中等 【参考答案】D【试题解析】由条件知()f x '=2x +a -21x …0在1,2⎛⎫+∞ ⎪⎝⎭上恒成立,即212a x x -…在1,2⎛⎫+∞ ⎪⎝⎭上恒成立. ∵函数212y x x =-在1,2⎛⎫+∞ ⎪⎝⎭上为减函数,∴max 211<23212y -⨯=⎛⎫⎪⎝⎭.∴a …3.故选D. 10.已知正四棱柱1111ABCD A BC D -中12AA AB =,则CD 与平面1BDC 所成角的正弦值等于 ( ) A.23C.3D.13 【测量目标】线面角,线面垂直的判定.【考查方式】已知正四棱柱,利用其性质和几何体中的垂直关系求线面角的正弦值. 【难易程度】较难 【参考答案】A【试题解析】如图,连结AC ,交BD 于点O ,由正四棱柱的性质,有.AC BD ⊥ 因为1CC ⊥平面ABCD ,所以 BD ⊥(步骤1)又1,CC AC C = 所以BD ⊥平面 O (步骤2) 在平面1CC O 内作1,CH C O ⊥垂足为H ,则.BD CH ⊥又1,BD C O O = 所以CH ⊥平面1,BDC (步骤3)连结DH ,则DH 为CD 在平面1BDC 上的射影,所以CDH ∠为CD 与平面1BDC 所成的角.(步骤4) 设12 2.AA AB ==在1Rt COC △中,由等面积变换易求得2,3CH =在Rt CDH △中,2sin .3CH CDH CD ∠==(步骤5)11.已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k = ( )A.12B.2D.2 【测量目标】直线与抛物线的位置关系,平面向量的坐标运算.【考查方式】已知抛物线标准方程,利用抛物线性质及直线与抛物线的位置关系求解过焦点的直线的斜率. 【难易程度】较难 【参考答案】D【试题解析】抛物线C 的焦点为()2,0,F 则直线方程为()2,y k x =-与抛物线方程联立,消去y 化简得()22224840.k x k x k -++=(步骤1)设点()()1122,,,,A x y B x y 则1212284, 4.x x x x k +=+= 所以()121284,y y k x x k k+=+-=()21212122416.y y k x x x x =-++=-⎡⎤⎣⎦(步骤2) ()()()()()()112212122,22,22222MA MB x y x y x x y y =+-+-=+++--()()121212122280,x x x x y y y y =+++-++=(步骤3)将上面各个量代入,化简得2440,k k -+=所以 2.k =(步骤4)12.已知函数()=cos sin 2f x x x ,下列结论中错误的是 ( )A.()y f x =的图象关于()π,0中心对称B.()y f x =的图象关于直线π2x =对称C.()f x 的最大值为2D.()f x 既奇函数,又是周期函数 【测量目标】三角函数的周期性、最值,对称性.【考查方式】利用三角函数的性质判断周期性、对称性,结合导数的应用判断最值. 【难易程度】中等 【参考答案】C【试题解析】A 项,因为(2π)cos(2π)sin(4π2)cos()sin(2)cos sin 2()f x x x x x x x f x -=--=--=-=-()f x 的图象关于点(,0)π中心对称,故正确.(步骤1)B 项,因为(π)cos(π)sin(2π2)cos sin 2(),f x x x x x f x -=--==所以()y f x =的图象关于直线2x π=对称,故正确,(步骤2)C 项,由题意知()()22=2cos sin 21sin sin f x x x x x =-. 令sin t x =,[]1,1t ∈-,则()()232122g t t t t t=-=-.(步骤3)令()2260g t t '=-=,得=3t ±.当1t =±时,函数值为0;当3t =-时,函数值为9-;当3t =时,函数值为9.∴()max g t = 9,即()f x 的最大值为9.故选C.(步骤4)D 项,由()cos()sin(2)cos sin 2()f x x x x x f x -=--=-=-知其为奇函数,综合选项A 、B 知()f x 为周期函数,故正确.(步骤5)二、填空题:本大题共4小题,每小题5分. 13.已知α是第三象限角,1sin 3α=-,则cot α= . 【测量目标】同角三角函数的基本关系,反三角函数. 【考查方式】给出角的范围及正弦值求余切值. 【难易程度】容易【参考答案】【试题解析】由题意知cos 3α==-.故cos cot sin ααα=14.6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答).【测量目标】排列组合及其应用.【考查方式】利用插空法解决排列组合中不相邻问题. 【难易程度】容易【参考答案】480【试题解析】先把排除甲、乙外的4人全排列,方法有44A 种,再将甲、乙插入这4人形成的5个间隔中,有25A 种排法,因此甲、乙不相邻的不同排法有4245A A 480= (种).15.记不等式组0,34,34,x x y x y ⎧⎪+⎨⎪+⎩………所表示的平面区域为D ,若直线()1y a x =+与D 有公共点,则a 的取值范围是 .【测量目标】判断不等式组表示的平面区域.【考查方式】结合图象利用线性规划的相关知识求未知数范围. 【难易程度】中等 【参考答案】12…a … 4 【试题解析】作出题中不等式组表示的可行域如下图中阴影部分所示.∵直线()1y a x =+过定点P (-1,0),由图并结合题意可知12AP k =,4BP k =, ∴要使直线()1y a x =+与平面区域D 有公共点, 则12…a …4.16.已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,32OK =,且圆O 与圆K 所在的平面所成的一个二面角为60,则球O 的表面积等于 .【测量目标】球的大圆、小圆及球的截面性质,二面角的平面角,球的表面积公式.【考查方式】已知二面角的平面角,根据球的截面性质,直角三角形的性质,求出球的半径,并由球的表面积公式求球的表面积. 【难易程度】较难【参考答案】16π【试题解析】如图所示,公共弦为AB ,设球的半径为R ,则,AB R =取AB 为中点M ,连接OM 、,KM 由圆的性质知,,OM AB KM AB ⊥⊥所以KMO ∠为圆O 与圆K 所在平面所成的一个二面角的平面角,则60.RMO ∠=(步骤1)Rt KOM △中,3,2OK =所以sin 60OK OM ==(步骤2) 在Rt OMA △中,因为222,OA OM AM =+所以2213,4R R =+解得24,R =(步骤3)所以球O 的表面积为24π16π.R =(步骤4)三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)等差数列{}n a 的前n 项和为n S ,已知232=S a ,且124,,S S S 成等比数列,求{}n a 的通项式.【测量目标】等差数列的通项及性质,等比数列的性质.【考查方式】给出数列及部分条件,利用等差中项及等比中项的性质求值. 【难易程度】中等【试题解析】设{}n a 的公差为d ,由232S a =得2223a a =,故2a =0或2a =3.(步骤1) 由124,,S S S 成等比数列得2214S S S =.又1222,2S a d S a d =-=-,4242S a d =+, 故()()()2222242a d a d a d -=-+.(步骤2)若2a =0,则222d d =- ,所以0d =,此时0n S =,不合题意;若2a =3,则()26d -=(3-d )(12+2d ),解得0d =或2d =. 因此{}n a 的通项公式为3n a =或21n a n =-.(步骤3)18.(本小题满分12分)设ABC △的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.(I )求B ;(II )若sin sin A C =C . 【测量目标】余弦定理,两角和与差的余弦.【考查方式】已知三角形及部分条件,利用余弦定理,两角和与差的余弦公式求值. 【难易程度】中等【试题解析】(Ⅰ)因为()(),a b c a b c ac ++-+=所以222.a c b ac +-=-(步骤1)由余弦定理得2221cos ,22a c b B ac +-==-因此120.B =(步骤2)(Ⅱ)由(Ⅰ)知60,A C +=所以()cos cos cos sin sin A C A C A C -=+cos cos sin sin 2sin sin A C A C A C =-+()1cos 2sin sin 22A C A C =++=+=(步骤3) 故30A C -= 或30,A C -=-因此15C = 或45.C = (步骤4) 19.(本小题满分12分)如图,四棱锥P ABCD -中,902,ABC BAD BC AD PAB ∠=∠==,△与PAD △都是等边三角形.(I )证明:;PB CD ⊥(II )求二面角A PD C --的大小.【测量目标】平行于垂直关系的综合问题,二面角,空间直角坐标系,空间向量及其运算.【考查方式】(1)借助线线、线面垂直证线线垂直.(2)通过做辅助线将点面距离转化为图形中的线段求解;也可借助空间坐标的运算求值. 【难易程度】中等【试题解析】(1)证明:取BC 的中点E ,连接DE ,则四边形ABED 为正方形.过点P 作PO ABCD ⊥平面,垂足为O .连接OA ,OB,OD ,OE . 由PAB △和PAD △都是等边三角形知,PA PB PD ==(步骤1)所以,OA OB OD ==即O 为正方形ABED 对角线的交点,故 ,OE BD ⊥又,,OE OP BD OP O ⊥= 所以OE ⊥平面PDB ,从而.PB OE ⊥(步骤2) 因为O 是BD 的中点,E 是BC 的中点,所以OE //CD .因此.PB CD ⊥(步骤3)(2)解法一:(图1)由(1)知CD ⊥PB ,CD ⊥PO ,PB PO =P , 故CD ⊥平面PBD .又PD ⊂平面PBD ,所以CD ⊥PD .取PD 的中点F ,PC 的中点G ,连结FG , 则FG ∥CD ,FG ⊥PD .(步骤4)连结AF ,由△APD 为等边三角形可得AF ⊥PD . 所以∠AFG 为二面角A -PD -C 的平面角.(步骤5) 连结AG ,EG ,则EG ∥PB . 又PB ⊥AE ,所以EG ⊥AE .设AB =2,则CD =AE =22EG =12PB =1, 故AG 22AE EG + 3.(步骤6)在△AFG 中,FG =122CD =3AF =,AG =3,所以cos ∠AFG =222623FG AF AG FG AF +-=-⨯⨯因此二面角A -PD -C 的大小为6πarccos 3-(步骤7)解法二:(图2)由(1)知,OE ,OB ,OP 两两垂直.以O 为坐标原点,OE的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz . 设|AB|=2,则A (2-0,0),D (0,2-0),C (222-0),P (0, 02. PC =(222-2-,PD=(0,2-2-. AP =202,AD=(22-,0).(步骤8)设平面PCD 的法向量为n 1=(x ,y ,z ),则n 1PC=(x ,y ,z ) (222-2-=0, n 1PD=(x ,y ,z ) (0,2-2-=0,可得2x -y -z =0,y +z =0.取y =-1,得x =0,z =1,故n 1=(0,-1,1).(步骤9)设平面P AD 的法向量为n=(m ,p,q ),则n 2AP=(m ,p ,q ) 0=0,n 2 AD=(m ,p ,q )0)=0,可得m +q =0,m -p =0.取m =1,得p =1,q =-1,故n2=(1,1,-1).(步骤10) 于是cos〈n 1,n 2〉=1212||||= n n n n . 由于〈n 1,n 2〉等于二面角A -PD -C 的平面角,所以二面角A -PD -C 的大小为π-(步骤11)20.(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果相互独立,第1局甲当裁判. (I )求第4局甲当裁判的概率;(II )X 表示前4局中乙当裁判的次数,求X 的数学期望.【测量目标】相互独立事件的概率,离散型随机变量的期望.【考查方式】利用相互独立事件的概率公式求概率,进而求离散型随机变量的分布列. 【难易程度】中等【试题解析】(Ⅰ)记1A 表示事件“第2局结果为甲胜”,2A 表示“第3局甲参加比赛时,结果为甲负”, A 表示事件“第4局甲当裁判”. 则12.A A A =()()()()12121.4P A P A A P A P A === (步骤1)(Ⅱ)X 的可能取值为0,1,2.记3A 表示事件“第3局乙和丙比赛时,结果为乙胜丙”,1B 表示事件“第1局结果为乙胜丙”,2B 表示事件“第2局乙和甲比赛时,结果为乙胜甲”,3B 表示事件“第3局乙参加比赛时,结果为乙负”.(步骤2)则P (X =0)=()()()()123123P B B A P B P B P A = =18,P (X =2)=()()()1313P B B P B P B == 14,P (X =1)=1-P (X =0)-P (X =2)=1151848--=,EX =0 P (X =0)+1 P (X =1)+2 P (X =2)=98.(步骤3)21.(本小题满分12分)已知双曲线()2222:10,0x y C a b b-=>>的左、右焦点分别为12F F ,,离心率为3,直线2y =与C(I )求,a b ;(II )设过2F 的直线l 与C 的左、右两支分别相交于,A B 两点,且11AF BF =,证明:22AF AB BF 、、成等比数列.【测量目标】双曲线的标准方程及简单几何性质,直线与双曲线的位置关系,直接证明.【考查方式】利用直线与双曲线的位置关系及双曲线简单几何性质求双曲线方程,联立方程利用韦达定理求解线段,证明线段是否满足等比中项的性质. 【难易程度】较难【试题解析】(Ⅰ)由题设知3,c a =即2229,a b a+=故228.b a = 所以C 的方程为22288.x y a -=(步骤1)将y=2代入上式,求得x =(步骤2)由题设知,=解得2 1.a =所以1,a b ==(步骤3) (Ⅱ)证明:由(1)知,()()123,0,3,0,F F -C 的方程为2288.x y -=① (步骤4)由题设可设l 的方程为()3,y k x k =-<将其代入○1并化简,得 ()222286980.kx k x k --++=(步骤5)设()1122,,(,),A x y B x y 则22121212226981,1,,.88k k x x x x x x k k +-+==--剠(步骤6)于是()1131,AF x ===-+123 1.BF x ===+(步骤7)由11,AF BF =得()123131,x x -+=+(步骤8) 即2122262,,383k x x k +=-=--故 解得212419,.59k x x ==-从而(步骤9)由于2113,AF x ===-2231,BF x ===-故()2212234,AB AF BF x x =-=-+=(步骤10) ()221212=39116,AF BF x x x x +--=因而222,AF BF AB = 所以22AF AB BF 、、成等比数列(步骤11). 22.(本小题满分12分)已知函数()()()1=ln 1.1x x f x x xλ++-+(I )若0x …时,()0f x …,求λ的最小值; (II )设数列的{}n a 通项1111,23n a n =+++⋅⋅⋅+证明:21ln 2.4n n a a n-+> 【测量目标】利用导数求函数的最值,解决不等式问题【考查方式】结合导数的应用求参数范围,利用放缩法求和,证明不等式.【难易程度】较难【试题解析】(Ⅰ)解:由已知f (0)=0,()f x '=22121x x x λλ(-)-(+),()0f '=0.(步骤1) 若12λ<,则当0<x <2(1-2λ)时,()f x '>0,所以f (x )>0, 若12λ…,则当x >0时,()f x '<0,所以当x >0时,f (x )<0. 综上,λ的最小值是12.(步骤2) (Ⅱ)证明:令12λ=,(步骤3) 由(Ⅰ)知,当x >0时,f (x )<0,即2ln(1)22x x x x(+)>++.(步骤4) 取1x k =,则211>ln 21k k k k k++(+). 于是212111 422(1)n n n k n a a n k k -=⎡⎤-+=+⎢⎥+⎣⎦∑ =2121211ln 21n n k n k nk k k k k --==++>(+)∑∑ =ln 2n -ln n =ln 2. 所以21ln 24n n a a n-+>.(步骤5)。
2013年全国统一高考数学试卷(理科)(大纲版)教师版

2013 年全国一致高考数学试卷(理科)(纲领版)一、选择题:本大题共12 小题,每题 5 分 .在每题给出的四个选项中,只有一项为哪一项切合题目要求的 .1.( 5 分)( 2013?纲领版)设会合 A={ 1,2,3} ,B={ 4,5} ,M={ x| x=a+b,a∈ A,b∈B} ,则 M 中元素的个数为()A.3B.4C.5D.6【剖析】利用已知条件,直接求出a+b,利用会合元素互异求出M 中元素的个数即可.【解答】解:因为会合 A={ 1, 2, 3} ,B={ 4, 5} ,M={ x| x=a+b, a∈ A, b∈B} ,所以 a+b 的值可能为: 1+4=5、1+5=6、2+4=6、2+5=7、3+4=7、 3+5=8,所以 M 中元素只有: 5, 6,7,8.共 4 个.应选: B.2.(5 分)(2013?纲领版)=()A.﹣ 8B.8C.﹣ 8i D.8i【剖析】复数分子、分母同乘﹣ 8,利用 1 的立方虚根的性质(),化简即可.【解答】解:应选: A.3.(5 分)(2013?纲领版)已知向量(λ ,),(λ ,),若(+ )⊥= +11= +22(﹣),则λ=()A.﹣ 4B.﹣ 3C.﹣ 2D.﹣ 1【剖析】利用向量的运算法例、向量垂直与数目积的关系即可得出.【解答】解:∵,,,.∴=(2λ+3,3),,.∵,∴=0,∴﹣( 2λ+3)﹣ 3=0,解得λ=﹣3.应选: B.4.( 5 分)( 2013?纲领版)已知函数 f( x)的定义域为(﹣ 1,0),则函数 f(2x+1)的定义域为()A.(﹣ 1,1)B.,.(﹣,).,C1 0D【剖析】原函数的定义域,即为2x+1 的范围,解不等式组即可得解.【解答】解:∵原函数的定义域为(﹣1, 0),∴﹣ 1<2x+1< 0,解得﹣ 1< x<﹣.∴则函数 f( 2x+1)的定义域为,.应选: B.5.(5 分)(2013?纲领版)函数f( x) =log2( 1+ )( x> 0)的反函数 f ﹣1(x)=()A.>B.C.2x﹣1(x∈R)D.2x﹣ 1( x> 0)【剖析】把 y 看作常数,求出x: x=,x,y交换,获得y=log2(1+)的反函数.注意反函数的定义域.【解答】解:设 y=log2(1+ ),把 y 看作常数,求出 x:1+ =2y,x=,此中 y>0,x,y 交换,获得 y=log2( 1+ )的反函数: y=>,应选: A..(分)(纲领版)已知数列{ a n } 知足 3a n+1+a n, 2﹣,则{ a n } 的前 106 52013?=0 a =项和等于()A.﹣ 6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)【剖析】由已知可知,数列 { a n} 是以﹣为公比的等比数列,联合已知可求 a1,而后辈入等比数列的乞降公式可求【解答】解:∵ 3a n+1+a n=0∴∴数列 { a n} 是以﹣为公比的等比数列∵∴ a1=4由等比数列的乞降公式可得, S10==3(1﹣3﹣ 10)应选: C.7.(5 分)(2013?纲领版)(1+x)3(1+y)4的睁开式中 x2y2的系数是()A.5B.8C.12D.18【剖析】由题意知利用二项睁开式的通项公式写出睁开式的通项,令 x 的指数为2,写出出睁开式中x2的系数,第二个因式y2的系数,即可获得结果.【解答】解:(x+1)3的睁开式的通项为T r+1=C3r x r令 r=2 获得睁开式中 x2的系数是 C32 =3,( 1+y)4的睁开式的通项为T r+1=C4r y r令 r=2 获得睁开式中 y2的系数是 C42=6,(1+x)3( 1+y)4的睁开式中 x2y2的系数是:3×6=18,应选: D.8.(5 分)(2013?纲领版)椭圆C:的左、右极点分别为1、A2,A点 P 在 C 上且直线 PA2斜率的取值范围是 [ ﹣2,﹣1] ,那么直线 PA1斜率的取值范围是()A.,.,.,D.,B C【剖析】由椭圆 C:可知其左极点1(﹣2,0),右极点 A2(2,0).设AP (x 0 ,y 0)(x 0≠± 2),代入椭圆方程可得 .利用斜率计算公式可得,再利用已知给出的的范围即可解出.【解答】解:由椭圆 C :可知其左极点 A 1(﹣ 2,0),右极点 A 2( 2,0).设 P (x 0,y 0)(x 0≠± 2),则 ,得.∵=,=,∴= = ,∵,∴,解得 .应选: B .2+ax+ 在,是增函数,则 a.(分)(2013?纲领版)若函数f (x )=x 9 5的取值范围是()A .[ ﹣1,0]B .[ ﹣1,+∞)C .[ 0,3]D .[ 3,+∞)【剖析】由函数在( ,+∞)上是增函数,可得≥ 0 在( ,+∞)上恒成立,从而可转变为 a ≥ ﹣2x 在( , +∞)上恒成立,结构函数求出 ﹣ 2x 在( , +∞)上的最值,可得 a 的取值范围.【解答】 解:∵在( ,+∞)上是增函数,故≥0 在( , +∞)上恒成立,即 a ≥ ﹣ 2x 在( ,+∞)上恒成立,令 h (x ) = ﹣2x ,则 h ′(x )=﹣ ﹣2,当 x∈(,+∞)时, h′(x)< 0,则 h(x)为减函数.∴h( x)< h()=3∴a≥ 3.应选: D.10.( 5 分)(2013?纲领版)已知正四棱柱1 1 1 1中, AA1,则ABCD﹣A B C D=2ABCD与平面 BDC1所成角的正弦值等于()A.B.C.D.【剖析】设 AB=1,则 AA1=2,分别以、、的方向为 x 轴、 y 轴、 z 轴的正方向成立空间直角坐标系,设=( x, y, z)为平面 BDC1的一个法向量, CD与平面 BDC 所成角为θ,1则 sin θ=|| ,在空间坐标系下求出向量坐标,代入计算即可.【解答】解:设 AB=1,则 AA1,分别以、、的方向为 x 轴、y 轴、=2z轴的正方向成立空间直角坐标系,以以下图所示:则D(0,0,2),C1(1,0,0),B(1,1,2),C(1,0,2),=(1,1,0), =(1,0,﹣ 2), =(1,0,0),设 =(x,y,z)为平面 BDC1的一个法向量,则,即,取=(2,﹣ 2,1),设 CD与平面BDC 所成角为θ,则1sin θ=|| =,应选: A.11.( 5 分)(2013?纲领版)已知抛物线C: y2=8x 的焦点为 F,点 M(﹣ 2, 2),过点 F 且斜率为 k 的直线与 C 交于 A,B 两点,若,则 k=()A.B.C.D.2【剖析】斜率 k 存在,设直线 AB 为 y=k(x﹣2),代入抛物线方程,利用=(x1+2,y1﹣2)?(x2+2,y2﹣2)=0,即可求出 k 的值.【解答】解:由抛物线 C: y2=8x 得焦点( 2,0),由题意可知:斜率 k 存在,设直线 AB 为 y=k(x﹣ 2),代入抛物线方程,获得k2x2﹣(4k2+8)x+4k2=0,△>0,设 A(x1,y1),B(x2, y2).∴x1+x2=4+ ,x1x2=4.∴y1+y2= ,y1y2=﹣16,又=0,∴=(x1+2,y1﹣2)?(x2+2,y2﹣2)==0∴k=2.应选: D.12.( 5 分)(2013?纲领版)已知函数f( x)=cosxsin2x,以下结论中不正确的选项是()A.y=f(x)的图象对于(π,0)中心对称B.的图象对于对称C.的最大值为D.f (x)既是奇函数,又是周期函数【剖析】依据函数图象对于某点中心对称或对于某条直线对称的公式,对A、B 两项加以考证,可得它们都正确.依据二倍角的正弦公式和同角三角函数的关系化简,得 f(x)=2sinx( 1﹣ sin2),再换元:令,获得对于t 的三x t=sinx次函数,利用导数研究此函数的单一性可得f( x)的最大值为,故 C不正确;依据函数周期性和奇偶性的定义加以考证,可得 D 项正确.由此可得本题的答案.【解答】解:对于 A,因为 f (π+x)=cos(π+x)sin(2π+2x)=﹣cosxsin2x,f(π﹣x)=cos(π﹣ x) sin(2π﹣2x) =cosxsin2x,所以 f(π+x) +f (π﹣x) =0,可得 y=f(x)的图象对于(π,0)中心对称,故 A 正确;对于 B,因为 f (+x)=cos(+x)sin(π+2x)=﹣sinx(﹣ sin2x)=sinxsin2x,f(﹣x)=cos(﹣x)sin(π﹣2x)=sinxsin2x,所以f(+x)=f(﹣x),可得 y=f(x)的图象对于直线x= 对称,故 B 正确;2(﹣2),对于 C,化简得 f(x)=cosxsin2x=2cosxsinx=2sinx 1sin x令 t=sinx,f (x)=g( t)=2t(1﹣t 2),﹣ 1≤ t≤1,∵ g( t)=2t(1﹣t2)的导数 g'(t ) =2﹣6t2(t )=2 1+ t )( 1﹣∴当 t ∈(﹣ 1,﹣)时或 t ∈(,1)时 g'( t )<0,函数 g(t )为减函数;当 t∈(﹣,)时 g'(t)> 0,函数 g( t)为增函数.所以函数 g( t )的最大值为 t=﹣1 时或 t=时的函数值,联合 g(﹣ 1)=0<g()=,可得 g(t)的最大值为.由此可得 f( x)的最大值为而不是,故 C 不正确;对于 D,因为 f(﹣ x)=cos(﹣ x)sin(﹣ 2x)=﹣cosxsin2x=﹣f( x),所以 f( x)是奇函数.因为 f (2π+x)=cos( 2π+x)sin(4π+2x)=cosxsin2x=f(x),所以 2π为函数的一个周期,得 f (x)为周期函数.可得f( x)既是奇函数,又是周期函数,得 D 正确.综上所述,只有 C 项不正确.应选: C.二、填空题:本大题共 4 小题,每题 5 分.13.(5 分)(2013?纲领版)已知α是第三象限角, sin α=﹣,则 cotα=2 .【剖析】依据α是第三象限的角,获得 cosα小于 0,而后由 sin α的值,利用同角三角函数间的基本关系求出cosα的值,从而求出cot α的值.【解答】解:由α是第三象限的角,获得cosα<0,又 sin α=﹣,所以 cosα=﹣=﹣则 cot α==2故答案为: 214.(5 分)( 2013?纲领版) 6 个人排成一行,此中甲、乙两人不相邻的不一样排法共有480种.(用数字作答)【剖析】摆列好甲、乙两人外的 4 人,而后把甲、乙两人插入 4 个人的 5 个空位中即可.【解答】解: 6 个人排成一行,此中甲、乙两人不相邻的不一样排法:摆列好甲、乙两人外的 4 人,有中方法,而后把甲、乙两人插入 4 个人的 5 个空位,有种方法,所以共有:=480.故答案为:480.15.( 5 分)(2013?纲领版)记不等式组所表示的平面地区为D.若直线 y=a(x+1)与 D 有公共点,则 a 的取值范围是[,4] .【剖析】此题考察的知识点是简单线性规划的应用,我们要先画出知足拘束条件的平面地区,而后剖析平面地区里各个角点,而后将其代入y=a (x+1)中,求出 y=a(x+1)对应的 a 的端点值即可.【解答】解:知足拘束条件的平面地区如图示:因为 y=a(x+1)过定点(﹣ 1,0).所以当 y=a( x+1)过点 B(0,4)时,获得 a=4,当 y=a(x+1)过点 A(1,1)时,对应 a= .又因为直线 y=a(x+1)与平面地区 D 有公共点.所以≤a≤4.故答案为: [ , 4]16.( 5 分)(2013?纲领版)已知圆O 和圆 K 是球 O 的大圆和小圆,其公共弦长等于球 O 的半径,,且圆与圆所在的平面所成角为,则球 O 的表面积等于16π .【剖析】正确作出图形,利用勾股定理,成立方程,即可求得结论.【解答】解:以下图,设球 O 的半径为 r,AB 是公共弦,∠ OCK是面面角依据题意得 OC=,CK=在△ OCK中, OC2=OK2+CK2,即∴r2=42∴球 O 的表面积等于4πr=16π故答案为 16π三、解答题:解答应写出文字说明、证明过程或演算步骤..(10分)(纲领版)等差数列{ a n} 的前 n 项和为 S .已知 S2,且S,172013?n3=a21 S2,S4成等比数列,求 { a n } 的通项式.【剖析】由,联合等差数列的乞降公式可求a2,而后由,结合等差数列的乞降公式从而可求公差d,即可求解通项公式【解答】解:设数列的公差为d由得, 3∴a2=0 或 a2=3由题意可得,∴若 a2=0,则可得 d2=﹣2d2即 d=0 不切合题意若a2=3,则可得( 6﹣d)2=(3﹣d)(12+2d)解可得 d=0 或 d=2∴a n=3 或 a n=2n﹣118.(12 分)(2013?纲领版)设△ ABC的内角 A,B,C 的内角对边分别为a,b,c,知足( a+b+c)(a﹣b+c)=ac.(Ⅰ)求B.(Ⅱ)若 sinAsinC=,求C.【剖析】(I)已知等式左侧利用多项式乘多项式法例计算,整理后获得关系式,利用余弦定理表示出cosB,将关系式代入求出cosB的值,由B 为三角形的内角,利用特别角的三角函数值即可求出 B 的度数;(II)由(I)获得A+C 的度数,利用两角和与差的余弦函数公式化简cos(A﹣C),变形后将 cos( A+C)及 2sinAsinC的值代入求出 cos(A﹣C)的值,利用特别角的三角函数值求出 A﹣C 的值,与 A+C 的值联立刻可求出 C 的度数.【解答】解:(I)∵( a+b+c)(a﹣b+c)=(a+c)2﹣b2=ac,∴a2+c2﹣ b2=﹣ ac,∴ cosB==﹣,又 B 为三角形的内角,则 B=120°;( II)由( I)得: A+C=60°,∵ sinAsinC=,cos(A+C)=,∴cos( A ﹣ C) =cosAcosC+sinAsinC=cosAcosC﹣ sinAsinC+2sinAsinC=cos( A+C)+2sinAsinC= +2×=,∴A﹣ C=30°或 A﹣ C=﹣30°,则 C=15°或 C=45°.19.(12 分)(2013?纲领版)如图,四棱锥 P﹣ ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△ PAD都是等边三角形.(Ⅰ)证明: PB⊥CD;(Ⅱ)求二面角A﹣ PD﹣ C 的大小.【剖析】( I)取 BC的中点 E,连结 DE,过点 P 作 PO⊥平面 ABCD于 O,连结 OA、OB、OD、OE.可证出四边形ABED是正方形,且O 为正方形ABED的中心.所以OE⊥OB,联合三垂线定理,证出 OE⊥PB,而 OE是△ BCD的中位线,可得OE∥CD,所以 PB⊥CD;( II)由( I)的结论,证出CD⊥平面 PBD,从而获得 CD⊥PD.取 PD 的中点 F,PC的中点 G,连结 FG,可得 FG∥CD,所以 FG⊥PD.连结 AF,可得 AF⊥PD,所以∠ AFG 为二面角 A﹣PD﹣C 的平面角,连结 AG、EG,则 EG∥PB,可得EG⊥ OE.设 AB=2,可求出 AE、EG、AG、AF 和 FG 的长,最后在△ AFG中利用余弦定理,算出∠ AFG=π﹣arccos ,即得二面角 A﹣ PD﹣C 的平面角大小.【解答】解:(I)取 BC的中点 E,连结 DE,可得四边形 ABED是正方形过点 P 作 PO⊥平面 ABCD,垂足为 O,连结 OA、OB、OD、OE ∵△PAB与△ PAD都是等边三角形,∴ PA=PB=PD,可得 OA=OB=OD 所以, O 是正方形 ABED的对角线的交点,可得 OE⊥OB∵ PO⊥平面 ABCD,得直线 OB 是直线 PB 在内的射影,∴ OE⊥PB∵△ BCD中, E、O 分别为 BC、BD 的中点,∴ OE∥CD,可得 PB⊥CD;(II)由( I)知 CD⊥PO,CD⊥PB∵PO、PB是平面 PBD内的订交直线,∴ CD⊥平面 PBD∵PD? 平面 PBD,∴ CD⊥PD取 PD 的中点 F,PC的中点 G,连结 FG,则 FG为△ PCD有中位线,∴ FG∥CD,可得 FG⊥PD连结 AF,由△ PAD是等边三角形可得AF⊥ PD,∴∠ AFG为二面角 A﹣PD﹣C 的平面角连结 AG、EG,则 EG∥PB∵PB⊥OE,∴ EG⊥OE,设 AB=2,则 AE=2,EG=,故PB=1AG==3在△ AFG中, FG= CD=,AF=,AG=3∴ cos∠ AFG==﹣,得∠ AFG=π﹣arccos,即二面角 A﹣PD﹣ C 的平面角大小是π﹣arccos.20.(12 分)(2013?纲领版)甲、乙、丙三人进行羽毛球练习赛,此中两人竞赛,另一人当裁判,每局竞赛结束时,负的一方在下一局当裁判,设各局中两方获胜的概率均为,各局竞赛的结果都互相独立,第 1 局甲当裁判.(Ⅰ)求第 4 局甲当裁判的概率;(Ⅱ) X 表示前 4 局中乙当裁判的次数,求X 的数学希望.【剖析】(I)令 A1表示第 2 局结果为甲获胜, A2表示第 3 局甲参加竞赛时,结果为甲负, A 表示第 4 局甲当裁判,剖析其可能状况,每局竞赛的结果互相独立且互斥,利用独立事件、互斥事件的概率求解即可.(II)X 的全部可能值为 0,1,2.分别求出 X 取每一个值的概率,列出散布列后求出希望值即可.【解答】解:(I)令 A1表示第 2 局结果为甲获胜. A2表示第 3 局甲参加竞赛时,结果为甲负. A 表示第 4 局甲当裁判.则 A=A1?A2,P( A) =P(A1?A2)=P(A1)P(A2)= ;(Ⅱ)X 的全部可能值为 0,1,2.令 A3表示第 3 局乙和丙竞赛时,结果为乙胜. B1表示第 1 局结果为乙获胜, B2表示第 2 局乙和甲竞赛时,结果为乙胜, B3表示第 3 局乙参加竞赛时,结果为乙负,则 P(X=0)=P(B1B2)=P( B1)P(B2)P()= .P(X=2)=P(B3)=P()P(B3)=.P(X=1) =1﹣P(X=0)﹣ P(X=2)=.从而EX=0×+1×+2×= .21.( 12 分)( 2013?纲领版)已知双曲线C:=1(a> 0, b> 0)的左、右焦点分别为 F1, F2,离心率为 3,直线 y=2 与 C 的两个交点间的距离为.(I)求 a, b;(II)设过 F2的直线 l 与 C 的左、右两支分别订交于 A、B 两点,且 | AF1| =| BF1| ,证明: | AF2| 、| AB| 、| BF2| 成等比数列.【剖析】(I)由题设,可由离心率为 3 获得参数 a,b 的关系,将双曲线的方程用参数 a 表示出来,再由直线与的两个交点间的距离为成立方程求出参数 a 即可获得双曲线的方程;( II)由( I)的方程求出两焦点坐标,设出直线l 的方程设 A( x1,y1),B(x2,y2),将其与双曲线 C 的方程联立,得出x1+x2=,,再利用| AF1| =| BF1| 成立对于A,B坐标的方程,得出两点横坐标的关系,由此方程求出k 的值,得出直线的方程,从而可求得:| AF2|、| AB|、| BF2| ,再利用等比数列的性质进行判断即可证明出结论.【解答】 解:(I )由题设知,即 =9,故 22=3b =8a所以 C 的方程为 8x 2 ﹣y 2=8a 2将 y=2 代入上式,并求得x=±,由题设知,2=,解得a 2=1所以 a=1, b=2( II )由( I )知, F 1(﹣ 3,0), F 2(3,0),C 的方程为 8x 2﹣y 2=8 ①由题意,可设l 的方程为y=k ( x ﹣3),| k| <2代入①并化简得(k 2﹣8)x 2﹣6k 2x+9k 2+8=0设 A (x 1,y 1),B (x 2, y 2 ),则 x 1≤﹣ 1, x 2≥1,x 1+x 2=, ,于是| AF 1| ==﹣( 3x 1+1), | BF 1| ==3x 2+1,| AF 1| =| BF 1| 得﹣( 3x 1 +1)=3x 2 +1,即故=,解得 ,从而 =﹣因为 | AF 2| = =1﹣ 3x 1,| BF 2| =2﹣1,=3x故 | AB| =| AF 2 | ﹣ | BF 2| =2﹣3(x 1+x 2)=4, | AF 2|| BF 2| =3( x 1+x 2)﹣ 9x 1x 2 ﹣1=16因此 | AF 2|| BF 2| =| AB| 2,所以 | AF 2| 、| AB| 、| BF 2| 成等比数列 22.( 12 分)( 2013?纲领版)已知函数.( I )若 x ≥ 0 时, f (x )≤ 0,求 λ的最小值;( II )设数列 { a n } 的通项 a n =1+,证明: > .【剖析】(I )因为已知函数的最大值是 0,故可先求出函数的导数,研究其单一性,确立出函数的最大值,利用最大值小于等于0 求出参数 λ的取值范围,即可求得其最小值;( II)依据(I)的明,可取λ=,因为 x>0 ,(fx)< 0 得出>,考察,若取 x= ,可得出>,以此依照,利用放法,即可获得【解答】解:(I)由已知, f(0)=0,f ′(x)==,∴f ′( 0) =0欲使 x≥0 ,f(x)≤0 恒成立,f(x)在(0,+∞)上必减函数,即在( 0,+∞)上 f ′(x)< 0 恒成立,当λ≤0 , f ′( x)> 0 在( 0,+∞)上恒成立,增函数,故不合意,若 0<λ<,由 f (′ x)> 0 解得 x<,当0<x<,f′(x)>0,所以当 0<x<,f(x)>0,此不合意,若λ≥,当 x>0 , f ′(x)< 0 恒成立,此 f( x)在( 0,+∞)上必减函数,所以当 x>0 , f(x)< 0恒成立,上,切合意的λ的取范是λ≥ ,即λ的最小( II)令λ=,由( I)知,当 x> 0 , f(x)< 0,即>取 x= ,>于是 a2n a n+ =++⋯+ +====>=ln2n lnn=ln2所以>。
2013年全国统一高考数学试卷(理科)(大纲版)最新修正版

2013年全国统一高考数学试卷(理科)(大纲版)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M 中元素的个数为()A.3 B.4 C.5 D.62.(5分)=()A.﹣8 B.8 C.﹣8i D.8i3.(5分)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4 B.﹣3 C.﹣2 D.﹣14.(5分)已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为()A.(﹣1,1)B.C.(﹣1,0)D.5.(5分)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A.B.C.2x﹣1(x∈R)D.2x﹣1(x>0)6.(5分)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)7.(5分)(1+x)3(1+y)4的展开式中x2y2的系数是()A.5 B.8 C.12 D.188.(5分)椭圆C:的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是()A.B.C. D.9.(5分)若函数f(x)=x2+ax+是增函数,则a的取值范围是()A.[﹣1,0]B.[﹣1,+∞)C.[0,3]D.[3,+∞)10.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.B.C.D.11.(5分)已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F且斜率为k的直线与C交于A,B两点,若,则k=()A.B.C.D.212.(5分)已知函数f(x)=cosxsin2x,下列结论中不正确的是()A.y=f(x)的图象关于(π,0)中心对称B.C.D.f(x)既是奇函数,又是周期函数二、填空题:本大题共4小题,每小题5分.13.(5分)已知α是第三象限角,sinα=﹣,则cotα=.14.(5分)6个人排成一行,其中甲、乙两人不相邻的不同排法共有种.(用数字作答)15.(5分)记不等式组所表示的平面区域为D.若直线y=a(x+1)与D有公共点,则a的取值范围是.16.(5分)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,,则球O的表面积等于.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)等差数列{a n}的前n项和为S n.已知S3=a22,且S1,S2,S4成等比数列,求{a n}的通项式.18.(12分)设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a﹣b+c)=ac.(Ⅰ)求B.(Ⅱ)若sinAsinC=,求C.19.(12分)如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求二面角A﹣PD﹣C的大小.20.(12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)X表示前4局中乙当裁判的次数,求X的数学期望.21.(12分)已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为.(I)求a,b;(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.22.(12分)已知函数.(I)若x≥0时,f(x)≤0,求λ的最小值;(II)设数列{a n}的通项a n=1+.2013年全国统一高考数学试卷(理科)(大纲版)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M 中元素的个数为()A.3 B.4 C.5 D.6【分析】利用已知条件,直接求出a+b,利用集合元素互异求出M中元素的个数即可.【解答】解:因为集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},所以a+b的值可能为:1+4=5、1+5=6、2+4=6、2+5=7、3+4=7、3+5=8,所以M中元素只有:5,6,7,8.共4个.故选:B.【点评】本题考查集合中元素个数的最值,集合中元素的互异性的应用,考查计算能力.2.(5分)=()A.﹣8 B.8 C.﹣8i D.8i【分析】复数分子、分母同乘﹣8,利用1的立方虚根的性质(),化简即可.【解答】解:故选:A.【点评】复数代数形式的运算,是基础题.3.(5分)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4 B.﹣3 C.﹣2 D.﹣1【分析】利用向量的运算法则、向量垂直与数量积的关系即可得出.【解答】解:∵,.∴=(2λ+3,3),.∵,∴=0,∴﹣(2λ+3)﹣3=0,解得λ=﹣3.故选:B.【点评】熟练掌握向量的运算法则、向量垂直与数量积的关系是解题的关键.4.(5分)已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为()A.(﹣1,1)B.C.(﹣1,0)D.【分析】原函数的定义域,即为2x+1的范围,解不等式组即可得解.【解答】解:∵原函数的定义域为(﹣1,0),∴﹣1<2x+1<0,解得﹣1<x<﹣.∴则函数f(2x+1)的定义域为.故选:B.【点评】考查复合函数的定义域的求法,注意变量范围的转化,属简单题.5.(5分)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A.B.C.2x﹣1(x∈R)D.2x﹣1(x>0)【分析】把y看作常数,求出x:x=,x,y互换,得到y=log2(1+)的反函数.注意反函数的定义域.【解答】解:设y=log2(1+),把y看作常数,求出x:1+=2y,x=,其中y>0,x,y互换,得到y=log2(1+)的反函数:y=,故选:A.【点评】本题考查对数函数的反函数的求法,解题时要认真审题,注意对数式和指数式的相互转化.6.(5分)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)【分析】由已知可知,数列{a n}是以﹣为公比的等比数列,结合已知可求a1,然后代入等比数列的求和公式可求+a n=0【解答】解:∵3a n+1∴∴数列{a n}是以﹣为公比的等比数列∵∴a1=4由等比数列的求和公式可得,S10==3(1﹣3﹣10)故选:C.【点评】本题主要考查了等比数列的通项公式及求和公式的简单应用,属于基础试题7.(5分)(1+x)3(1+y)4的展开式中x2y2的系数是()A.5 B.8 C.12 D.18【分析】由题意知利用二项展开式的通项公式写出展开式的通项,令x的指数为2,写出出展开式中x2的系数,第二个因式y2的系数,即可得到结果.=C3r x r【解答】解:(x+1)3的展开式的通项为T r+1令r=2得到展开式中x2的系数是C32=3,=C4r y r(1+y)4的展开式的通项为T r+1令r=2得到展开式中y2的系数是C42=6,(1+x)3(1+y)4的展开式中x2y2的系数是:3×6=18,故选:D.【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题,本题解题的关键是写出二项式的展开式,所有的这类问题都是利用通项来解决的.8.(5分)椭圆C:的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是()A.B.C. D.【分析】由椭圆C:可知其左顶点A1(﹣2,0),右顶点A2(2,0).设P(x0,y0)(x0≠±2),代入椭圆方程可得.利用斜率计算公式可得,再利用已知给出的的范围即可解出.【解答】解:由椭圆C:可知其左顶点A1(﹣2,0),右顶点A2(2,0).设P(x0,y0)(x0≠±2),则,得.∵=,=,∴==,∵,∴,解得.故选:B.【点评】熟练掌握椭圆的标准方程及其性质、斜率的计算公式、不等式的性质等是解题的关键.9.(5分)若函数f(x)=x2+ax+是增函数,则a的取值范围是()A.[﹣1,0]B.[﹣1,+∞)C.[0,3]D.[3,+∞)【分析】由函数在(,+∞)上是增函数,可得≥0在(,+∞)上恒成立,进而可转化为a≥﹣2x在(,+∞)上恒成立,构造函数求出﹣2x在(,+∞)上的最值,可得a的取值范围.【解答】解:∵在(,+∞)上是增函数,故≥0在(,+∞)上恒成立,即a≥﹣2x在(,+∞)上恒成立,令h(x)=﹣2x,则h′(x)=﹣﹣2,当x∈(,+∞)时,h′(x)<0,则h(x)为减函数.∴h(x)<h()=3∴a≥3.故选:D.【点评】本题考查的知识点是利用导数研究函数的单调性,恒成立问题,是导数的综合应用,难度中档.10.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()【分析】设AB=1,则AA1=2,分别以的方向为x轴、y轴、z 轴的正方向建立空间直角坐标系,设=(x,y,z)为平面BDC1的一个法向量,CD与平面BDC1所成角为θ,则sinθ=||,在空间坐标系下求出向量坐标,代入计算即可.【解答】解:设AB=1,则AA1=2,分别以的方向为x轴、y 轴、z轴的正方向建立空间直角坐标系,如下图所示:则D(0,0,2),C1(1,0,0),B(1,1,2),C(1,0,2),=(1,1,0),=(1,0,﹣2),=(1,0,0),设=(x,y,z)为平面BDC1的一个法向量,则,即,取=(2,﹣2,1),设CD与平面BDC1所成角为θ,则sinθ=||=,故选:A.【点评】本题考查直线与平面所成的角,考查空间向量的运算及应用,准确理解线面角与直线方向向量、平面法向量夹角关系是解决问题的关键.11.(5分)已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F且斜率为k的直线与C交于A,B两点,若,则k=()【分析】斜率k存在,设直线AB为y=k(x﹣2),代入抛物线方程,利用=(x1+2,y1﹣2)•(x2+2,y2﹣2)=0,即可求出k的值.【解答】解:由抛物线C:y2=8x得焦点(2,0),由题意可知:斜率k存在,设直线AB为y=k(x﹣2),代入抛物线方程,得到k2x2﹣(4k2+8)x+4k2=0,△>0,设A(x1,y1),B(x2,y2).∴x1+x2=4+,x1x2=4.∴y1+y2=,y1y2=﹣16,又=0,∴=(x1+2,y1﹣2)•(x2+2,y2﹣2)==0∴k=2.故选:D.【点评】本题考查直线与抛物线的位置关系,考查向量的数量积公式,考查学生的计算能力,属于中档题.12.(5分)已知函数f(x)=cosxsin2x,下列结论中不正确的是()A.y=f(x)的图象关于(π,0)中心对称B.C.D.f(x)既是奇函数,又是周期函数【分析】根据函数图象关于某点中心对称或关于某条直线对称的公式,对A、B 两项加以验证,可得它们都正确.根据二倍角的正弦公式和同角三角函数的关系化简,得f(x)=2sinx(1﹣sin2x),再换元:令t=sinx,得到关于t的三次函数,利用导数研究此函数的单调性可得f(x)的最大值为,故C不正确;根据函数周期性和奇偶性的定义加以验证,可得D项正确.由此可得本题的答案.【解答】解:对于A,因为f(π+x)=cos(π+x)sin(2π+2x)=﹣cosxsin2x,f(π﹣x)=cos(π﹣x)sin(2π﹣2x)=cosxsin2x,所以f(π+x)+f(π﹣x)=0,可得y=f(x)的图象关于(π,0)中心对称,故A正确;对于B,因为f(+x)=cos(+x)sin(π+2x)=﹣sinx(﹣sin2x)=sinxsin2x,f(﹣x)=cos(﹣x)sin(π﹣2x)=sinxsin2x,所以f(+x)=f(﹣x),可得y=f(x)的图象关于直线x=对称,故B正确;对于C,化简得f(x)=cosxsin2x=2cos2xsinx=2sinx(1﹣sin2x),令t=sinx,f(x)=g(t)=2t(1﹣t2),﹣1≤t≤1,∵g(t)=2t(1﹣t2)的导数g'(t)=2﹣6t2=2(1+t)(1﹣t)∴当t∈(﹣1,﹣)时或t∈(,1)时g'(t)<0,函数g(t)为减函数;当t∈(﹣,)时g'(t)>0,函数g(t)为增函数.因此函数g(t)的最大值为t=﹣1时或t=时的函数值,结合g(﹣1)=0<g()=,可得g(t)的最大值为.由此可得f(x)的最大值为而不是,故C不正确;对于D,因为f(﹣x)=cos(﹣x)sin(﹣2x)=﹣cosxsin2x=﹣f(x),所以f(x)是奇函数.因为f(2π+x)=cos(2π+x)sin(4π+2x)=cosxsin2x=f(x),所以2π为函数的一个周期,得f(x)为周期函数.可得f(x)既是奇函数,又是周期函数,得D正确.综上所述,只有C项不正确.故选:C.【点评】本题给出三角函数式,研究函数的奇偶性、单调性和周期性.着重考查了三角恒等变换公式、利用导数研究函数的单调性和函数图象的对称性等知识,属于中档题.二、填空题:本大题共4小题,每小题5分.13.(5分)已知α是第三象限角,sinα=﹣,则cotα=2.【分析】根据α是第三象限的角,得到cosα小于0,然后由sinα的值,利用同角三角函数间的基本关系求出cosα的值,进而求出cotα的值.【解答】解:由α是第三象限的角,得到cosα<0,又sinα=﹣,所以cosα=﹣=﹣则cotα==2故答案为:2【点评】此题考查学生灵活运用同角三角函数间的基本关系化简求值,是一道基础题.学生做题时注意α的范围.14.(5分)6个人排成一行,其中甲、乙两人不相邻的不同排法共有480种.(用数字作答)【分析】排列好甲、乙两人外的4人,然后把甲、乙两人插入4个人的5个空位中即可.【解答】解:6个人排成一行,其中甲、乙两人不相邻的不同排法:排列好甲、乙两人外的4人,有中方法,然后把甲、乙两人插入4个人的5个空位,有种方法,所以共有:=480.故答案为:480.【点评】本题考查了乘法原理,以及排列的简单应用,插空法解答不相邻问题.15.(5分)记不等式组所表示的平面区域为D.若直线y=a(x+1)与D有公共点,则a的取值范围是[,4] .【分析】本题考查的知识点是简单线性规划的应用,我们要先画出满足约束条件的平面区域,然后分析平面区域里各个角点,然后将其代入y=a(x+1)中,求出y=a(x+1)对应的a的端点值即可.【解答】解:满足约束条件的平面区域如图示:因为y=a(x+1)过定点(﹣1,0).所以当y=a(x+1)过点B(0,4)时,得到a=4,当y=a(x+1)过点A(1,1)时,对应a=.又因为直线y=a(x+1)与平面区域D有公共点.所以≤a≤4.故答案为:[,4]【点评】在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.16.(5分)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,,则球O的表面积等于16π.【分析】正确作出图形,利用勾股定理,建立方程,即可求得结论.【解答】解:如图所示,设球O的半径为r,AB是公共弦,∠OCK是面面角根据题意得OC=,CK=在△OCK中,OC2=OK2+CK2,即∴r2=4∴球O的表面积等于4πr2=16π故答案为16π【点评】本题考查球的表面积,考查学生分析解决问题的能力,属于中档题.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)等差数列{a n}的前n项和为S n.已知S3=a22,且S1,S2,S4成等比数列,求{a n}的通项式.【分析】由,结合等差数列的求和公式可求a2,然后由,结合等差数列的求和公式进而可求公差d,即可求解通项公式【解答】解:设数列的公差为d由得,3∴a2=0或a2=3由题意可得,∴若a2=0,则可得d2=﹣2d2即d=0不符合题意若a2=3,则可得(6﹣d)2=(3﹣d)(12+2d)解可得d=0或d=2∴a n=3或a n=2n﹣1【点评】本题主要考查了等差数列的通项公式及求和公式的应用,等比数列的性质的简单应用,属于基础试题18.(12分)设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a﹣b+c)=ac.(Ⅰ)求B.(Ⅱ)若sinAsinC=,求C.【分析】(I)已知等式左边利用多项式乘多项式法则计算,整理后得到关系式,利用余弦定理表示出cosB,将关系式代入求出cosB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(II)由(I)得到A+C的度数,利用两角和与差的余弦函数公式化简cos(A﹣C),变形后将cos(A+C)及2sinAsinC的值代入求出cos(A﹣C)的值,利用特殊角的三角函数值求出A﹣C的值,与A+C的值联立即可求出C的度数.【解答】解:(I)∵(a+b+c)(a﹣b+c)=(a+c)2﹣b2=ac,∴a2+c2﹣b2=﹣ac,∴cosB==﹣,又B为三角形的内角,则B=120°;(II)由(I)得:A+C=60°,∵sinAsinC=,cos(A+C)=,∴cos(A﹣C)=cosAcosC+sinAsinC=cosAcosC﹣sinAsinC+2sinAsinC=cos(A+C)+2sinAsinC=+2×=,∴A﹣C=30°或A﹣C=﹣30°,则C=15°或C=45°.【点评】此题考查了余弦定理,两角和与差的余弦函数公式,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.19.(12分)如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求二面角A﹣PD﹣C的大小.【分析】(I)取BC的中点E,连接DE,过点P作PO⊥平面ABCD于O,连接OA、OB、OD、OE.可证出四边形ABED是正方形,且O为正方形ABED的中心.因此OE⊥OB,结合三垂线定理,证出OE⊥PB,而OE是△BCD的中位线,可得OE ∥CD,因此PB⊥CD;(II)由(I)的结论,证出CD⊥平面PBD,从而得到CD⊥PD.取PD的中点F,PC的中点G,连接FG,可得FG∥CD,所以FG⊥PD.连接AF,可得AF⊥PD,因此∠AFG为二面角A﹣PD﹣C的平面角,连接AG、EG,则EG∥PB,可得EG ⊥OE.设AB=2,可求出AE、EG、AG、AF和FG的长,最后在△AFG中利用余弦定理,算出∠AFG=π﹣arccos,即得二面角A﹣PD﹣C的平面角大小.【解答】解:(I)取BC的中点E,连接DE,可得四边形ABED是正方形过点P作PO⊥平面ABCD,垂足为O,连接OA、OB、OD、OE∵△PAB与△PAD都是等边三角形,∴PA=PB=PD,可得OA=OB=OD因此,O是正方形ABED的对角线的交点,可得OE⊥OB∵PO⊥平面ABCD,得直线OB是直线PB在内的射影,∴OE⊥PB∵△BCD中,E、O分别为BC、BD的中点,∴OE∥CD,可得PB⊥CD;(II)由(I)知CD⊥PO,CD⊥PB∵PO、PB是平面PBD内的相交直线,∴CD⊥平面PBD∵PD⊂平面PBD,∴CD⊥PD取PD的中点F,PC的中点G,连接FG,则FG为△PCD有中位线,∴FG∥CD,可得FG⊥PD连接AF,由△PAD是等边三角形可得AF⊥PD,∴∠AFG为二面角A﹣PD﹣C的平面角连接AG、EG,则EG∥PB∵PB⊥OE,∴EG⊥OE,设AB=2,则AE=2,EG=PB=1,故AG==3在△AFG中,FG=CD=,AF=,AG=3∴cos∠AFG==﹣,得∠AFG=π﹣arccos,即二面角A﹣PD﹣C的平面角大小是π﹣arccos.【点评】本题给出特殊的四棱锥,求证直线与直线垂直并求二面角平面角的大小,着重考查了线面垂直的判定与性质、三垂线定理和运用余弦定理求二面的大小等知识,属于中档题.20.(12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)X表示前4局中乙当裁判的次数,求X的数学期望.【分析】(I)令A1表示第2局结果为甲获胜,A2表示第3局甲参加比赛时,结果为甲负,A表示第4局甲当裁判,分析其可能情况,每局比赛的结果相互独立且互斥,利用独立事件、互斥事件的概率求解即可.(II)X的所有可能值为0,1,2.分别求出X取每一个值的概率,列出分布列后求出期望值即可.【解答】解:(I)令A1表示第2局结果为甲获胜.A2表示第3局甲参加比赛时,结果为甲负.A表示第4局甲当裁判.则A=A1•A2,P(A)=P(A1•A2)=P(A1)P(A2)=;(Ⅱ)X的所有可能值为0,1,2.令A3表示第3局乙和丙比赛时,结果为乙胜.B1表示第1局结果为乙获胜,B2表示第2局乙和甲比赛时,结果为乙胜,B3表示第3局乙参加比赛时,结果为乙负,则P(X=0)=P(B 1B2)=P(B1)P(B2)P()=.P(X=2)=P(B 3)=P()P(B3)=.P(X=1)=1﹣P(X=0)﹣P(X=2)=.从而EX=0×+1×+2×=.【点评】本题考查互斥、独立事件的概率,离散型随机变量的分布列和期望等知识,同时考查利用概率知识解决问题的能力.21.(12分)已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为.(I)求a,b;(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.【分析】(I)由题设,可由离心率为3得到参数a,b的关系,将双曲线的方程用参数a表示出来,再由直线建立方程求出参数a即可得到双曲线的方程;(II)由(I)的方程求出两焦点坐标,设出直线l的方程设A(x1,y1),B(x2,y2),将其与双曲线C的方程联立,得出x1+x2=,,再利用|AF1|=|BF1|建立关于A,B坐标的方程,得出两点横坐标的关系,由此方程求出k的值,得出直线的方程,从而可求得:|AF2|、|AB|、|BF2|,再利用等比数列的性质进行判断即可证明出结论.【解答】解:(I)由题设知=3,即=9,故b2=8a2所以C的方程为8x2﹣y2=8a2将y=2代入上式,并求得x=±,由题设知,2=,解得a2=1所以a=1,b=2(II)由(I)知,F1(﹣3,0),F2(3,0),C的方程为8x2﹣y2=8 ①由题意,可设l的方程为y=k(x﹣3),|k|<2代入①并化简得(k2﹣8)x2﹣6k2x+9k2+8=0设A(x1,y1),B(x2,y2),则x1≤﹣1,x2≥1,x1+x2=,,于是|AF1|==﹣(3x1+1),|BF1|==3x2+1,|AF1|=|BF1|得﹣(3x1+1)=3x2+1,即故=,解得,从而=﹣由于|AF2|==1﹣3x1,|BF2|==3x2﹣1,故|AB|=|AF2|﹣|BF2|=2﹣3(x1+x2)=4,|AF2||BF2|=3(x1+x2)﹣9x1x2﹣1=16因而|AF2||BF2|=|AB|2,所以|AF2|、|AB|、|BF2|成等比数列【点评】本题考查直线与圆锥曲线的综合关系,考查了运算能力,题设条件的转化能力,方程的思想运用,此类题综合性强,但解答过程有其固有规律,一般需要把直线与曲线联立利用根系关系,解答中要注意提炼此类题解答过程中的共性,给以后解答此类题提供借鉴.22.(12分)已知函数.(I)若x≥0时,f(x)≤0,求λ的最小值;(II)设数列{a n}的通项a n=1+.【分析】(I)由于已知函数的最大值是0,故可先求出函数的导数,研究其单调性,确定出函数的最大值,利用最大值小于等于0求出参数λ的取值范围,即可求得其最小值;(II)根据(I)的证明,可取λ=,由于x>0时,f(x)<0得出,考察发现,若取x=,则可得出,以此为依据,利用放缩法,即可得到结论【解答】解:(I)由已知,f(0)=0,f′(x)==,∴f′(0)=0欲使x≥0时,f(x)≤0恒成立,则f(x)在(0,+∞)上必为减函数,即在(0,+∞)上f′(x)<0恒成立,当λ≤0时,f′(x)>0在(0,+∞)上恒成立,为增函数,故不合题意,若0<λ<时,由f′(x)>0解得x<,则当0<x<,f′(x)>0,所以当0<x<时,f(x)>0,此时不合题意,若λ≥,则当x>0时,f′(x)<0恒成立,此时f(x)在(0,+∞)上必为减函数,所以当x>0时,f(x)<0恒成立,综上,符合题意的λ的取值范围是λ≥,即λ的最小值为(II)令λ=,由(I)知,当x>0时,f(x)<0,即取x=,则于是a2n﹣a n+=++…++====>=ln2n﹣lnn=ln2最新修正版所以【点评】本题考查了数列中证明不等式的方法及导数求最值的普通方法,解题的关键是充分利用已有的结论再结合放缩法,本题考查了推理判断的能力及转化化归的思想,有一定的难度。
2013年全国统一高考数学试卷(理科)(大纲版)学生版

2013 年全国一致高考数学试卷(理科)(纲领版)一、选择题:本大题共12 小题,每题 5 分 .在每题给出的四个选项中,只有一项为哪一项切合题目要求的 .1.( 5 分)( 2013?纲领版)设会合 A={ 1,2,3} ,B={ 4,5} ,M={ x| x=a+b,a∈ A,b∈B} ,则 M 中元素的个数为()A.3B.4C.5D.62.(5 分)(2013?纲领版)=()A.﹣ 8B.8C.﹣ 8i D.8i3.(5 分)(2013?纲领版)已知向量(λ ,),(λ ,),若(+ )⊥=+1 1= +22(﹣),则λ=()A.﹣ 4B.﹣ 3C.﹣ 2D.﹣ 14.( 5 分)( 2013?纲领版)已知函数 f( x)的定义域为(﹣ 1,0),则函数 f(2x+1)的定义域为()A.(﹣ 1,1)B.,C.(﹣1,0)D.,.(分)(纲领版)函数f ()=log2( 1+ )( x> 0)的反函数 f ﹣1(x)=5 52013?x()A.>B.C.2x﹣1(x∈R)D.2x﹣ 1( x> 0)6.( 5 分)(2013?纲领版)已知数列 { a n} 知足 3a n+1+a n=0,a2=﹣,则{ a n } 的前 10项和等于()A.﹣6(1﹣3﹣ 10B.)﹣10﹣ 10C.3(1﹣3)D.3(1+3)7.(5 分)(2013?纲领版)(1+x)3(1+y)4的睁开式中 x2y2的系数是()A.5B.8C.12D.188.(5 分)(2013?纲领版)椭圆 C:的左、右极点分别为1、A2,A点 P 在 C 上且直线 PA 2 斜率的取值范围是 [ ﹣2,﹣1] ,那么直线 PA 1 斜率的取值范围是(). , . , . , D .,ABC2+ax+ 在 ,是增函数,则 a.(分)(2013?纲领版)若函数f (x )=x 9 5的取值范围是()A .[ ﹣1,0]B .[ ﹣1,+∞)C .[ 0,3]D .[ 3,+∞)10.( 5 分)(2013?纲领版)已知正四棱柱 1 1 1 1 中, AA 1,则 ABCD ﹣A B C D =2ABCD与平面 BDC 1 所成角的正弦值等于( )A .B .C .D .11.( 5 分)(2013?纲领版)已知抛物线 C : y 2=8x 的焦点为 F ,点 M (﹣ 2, 2),过点 F 且斜率为 k 的直线与 C 交于 A ,B 两点,若 ,则 k=( )A .B .C .D .212.( 5 分)(2013?纲领版)已知函数f ( x )=cosxsin2x ,以下结论中不正确的选项是()A .y=f (x )的图象对于( π,0)中心对称B . 的图象对于对称C .的最大值为D .f (x )既是奇函数,又是周期函数二、填空题:本大题共 4 小题,每题 5 分.13.(5 分)( 2013?纲领版)已知 α是第三象限角, sin α=﹣ ,则 cot α=.14.(5 分)( 2013?纲领版) 6 个人排成一行,此中甲、乙两人不相邻的不一样排法共有种.(用数字作答)15.( 5 分)(纲领版)记不等式组所表示的平面地区为 D .若2013?直线 y=a (x+1)与 D 有公共点,则 a 的取值范围是.16.( 5 分)(2013?纲领版)已知圆 O 和圆 K 是球 O 的大圆和小圆,其公共弦长等于球 O 的半径,,且圆与圆所在的平面所成角为,则球 O的表面积等于.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10 分)(2013?纲领版)等差数列 { a n} 的前 n 项和为 S n.已知 S3=a22,且 S1,S2,S4成等比数列,求 { a n } 的通项式.18.(12 分)(2013?纲领版)设△ ABC的内角 A,B,C 的内角对边分别为a,b,c,知足( a+b+c)(a﹣b+c)=ac.(Ⅰ)求 B.(Ⅱ)若 sinAsinC=,求C.19.(12 分)(2013?纲领版)如图,四棱锥 P﹣ ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△ PAD都是等边三角形.(Ⅰ)证明: PB⊥CD;(Ⅱ)求二面角A﹣ PD﹣ C 的大小.20.(12 分)(2013?纲领版)甲、乙、丙三人进行羽毛球练习赛,此中两人竞赛,另一人当裁判,每局竞赛结束时,负的一方在下一局当裁判,设各局中两方获胜的概率均为,各局竞赛的结果都互相独立,第 1 局甲当裁判.(Ⅰ)求第 4 局甲当裁判的概率;(Ⅱ) X 表示前 4 局中乙当裁判的次数,求X 的数学希望.21.( 12 分)( 2013?纲领版)已知双曲线C:=1(a> 0, b> 0)的左、右焦点分别为 F1, F2,离心率为 3,直线 y=2 与 C 的两个交点间的距离为.(I)求 a, b;(II)设过 F2的直线 l 与 C 的左、右两支分别订交于 A、B 两点,且 | AF1| =| BF1| ,证明: | AF2| 、| AB| 、| BF2| 成等比数列.22.( 12 分)( 2013?纲领版)已知函数.( I)若 x≥ 0 时, f (x)≤ 0,求λ的最小值;( II)设数列 { a n} 的通项 a n=1+,证明:>.。
2013年高考真题—理科数学(大纲卷)精校精析

2013年高考真题精校精析2013·全国卷(理科数学)1.设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中元素的个数为( )A .3B .4C .5D .61.B [解析] 1,2,3与4,5分别相加可得5,6,6,7,7,8,根据集合中元素的互异性可得集合M 中有4个元素.2. (1+3i)3=( )A .-8B .8C .-8iD .8i2.A [解析] (1+3i)3=13+3×12(3i)+3×1×(3i)2+(3i)3=1+33i -9-33i =-8.3. 已知向量m =(λ+1,1),n=(λ+2,2),若(m +n )⊥(m -n ),则λ=( )A .-4B .-3C .-2D .-13.B [解析] (m +n )⊥(m -n )⇔(m +n )·(m -n )=0⇔m 2=n 2,所以(λ+1)2+12=(λ+2)2+22,解得λ=-3.4. 已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( )A .(-1,1)B .⎝⎛⎭⎫-1,-12C .(-1,0)D .⎝⎛⎭⎫12,1 4.B [解析] 对于f (2x +1),-1<2x +1<0,解得-1<x <-12,即函数f (2x +1)的定义域为⎝⎛⎭⎫-1,-12.5. 函数f (x )=log 2⎝⎛⎭⎫1+1x (x >0)的反函数f -1(x )=( ) A .12x -1(x >0) B .12x -1(x ≠0) C .2x -1(x ∈) D .2x -1(x >0)5.A [解析] 令y =log 2⎝⎛⎭⎫1+1x ,则y >0,且1+1x =2y ,解得x =12y -1,交换x ,y 得f -1(x )=12x -1(x >0).6. 已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10) B .19(1-310) C .3(1-3-10) D .3(1+3-10)6.C [解析] 由3a n +1+a n =0,得a n ≠0(否则a 2=0)且a n +1a n =-13,所以数列{a n }是公比为-13的等比数列,代入a 2可得a 1=4,故S 10=4×⎣⎡⎦⎤1-⎝⎛⎭⎫-13101+13=3×⎣⎡⎦⎤1-⎝⎛⎭⎫1310=3(1-3-10).7. (1+x )8(1+y )4的展开式中x 2y 2的系数是( )A .56B .84C .112D .1687.D [解析] (1+x )8展开式中x 2的系数是C 28,(1+y )4的展开式中y 2的系数是C 24,根据多项式乘法法则可得(1+x )8(1+y )4展开式中x 2y 2的系数为C 28C 24=28×6=168.8.椭圆C :x 24+y 23=1的左、右顶点分别为A 1,A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是( )A .⎣⎡⎦⎤12,34B .⎣⎡⎦⎤38,34C .⎣⎡⎦⎤12,1D .⎣⎡⎦⎤34,1 8.B [解析] 椭圆的左、右顶点分别为(-2,0),(2,0),设P (x 0,y 0),则kP A 1kP A 2=y 0x 0+2·y 0x 0-2=y 20x 20-4,而x 204+y 203=1,即y 20=34(4-x 20),所以kP A 1kP A 2=-34,所以kP A 1=-34kP A 2∈⎣⎡⎦⎤38,34. 9.若函数f (x )=x 2+ax +1x 在⎝⎛⎭⎫12,+∞是增函数,则a 的取值范围是( ) A .[-1,0] B .[-1,+∞) C .[0,3] D .[3,+∞)9.D [解析] f ′(x )=2x +a -1x 2≥0在⎝⎛⎭⎫12,+∞上恒成立,即a ≥1x 2-2x 在⎝⎛⎭⎫12 ,+∞上恒成立,由于y =1x2-2x 在⎝⎛⎭⎫12,+∞上单调递减,所以y <3,故只要a ≥3. 10. 已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A .23B .33C .23D .1310.A [解析] 如图,联结AC ,交BD 于点O .由于BO ⊥OC ,BO ⊥CC 1,可得BO ⊥平面OCC 1,从而平面OCC 1⊥平面BDC 1,过点C 作OC 1的垂线交OC 1于点E ,根据面面垂直的性质定理可得CE ⊥平面BDC 1,∠CDE 即为所求的线面角.设AB =2,则OC =2,OC 1=18=3 2,所以CE =CC 1·OC OC 1=4 23 2=43, 所以sin ∠CDE =CE CD =23.11.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若MA →·MB =0,则k =( )A .12B .22C . 2D .211.D [解析] 抛物线的焦点坐标为(2,0),设直线l 的方程为x =ty +2,与抛物线方程联立得y 2-8ty -16=0.设A (x 1,y 1),B (x 2,y 2),则y 1y 2=-16,y 1+y 2=8t ,x 1+x 2=t (y 1+y 2)+4=8t 2+4,x 1x 2=t 2y 1y 2+2t (y 1+y 2)+4=-16t 2+16t 2+4=4.MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=x 1x 2+2(x 1+x 2)+4+y 1y 2-2(y 1+y 2)+4 =4+16t 2+8+4-16-16t +4=16t 2-16t +4=4(2t -1)2=0,解得t =12,所以k =1t=2.12.已知函数f (x )=cos x sin 2x ,下列结论中错误的是( )A .y =f (x )的图像关于点(π,0)中心对称B .y =f (x )的图像关于直线x =π2对称C .f (x )的最大值为32D .f (x )既是奇函数,又是周期函数 12.C [解析] 因为对任意x ,f (π-x )+f (π+x )=cos x sin 2x -cos x sin 2x =0,故函数f (x )图像关于点(π,0)中心对称;因为对任意x 恒有f (π-x )=cos x sin 2x =f (x ),故函数f (x )图像关于直线x =π2对称;f (-x )=-f (x ),f (x +2π)=f (x ),故f (x )既是奇函数也是周期函数;对选项C 中,f (x )=2cos 2x sin x =2(1-sin 2x )sin x ,令t =sin x ∈[-1,1],设y =(1-t 2)t =-t 3+t ,y ′=-3t 2+1,可得函数y 的极大值点为t =13,所以y 在[]-1,1上的极大值为-1313+13=2 39,函数的端点值为0,故函数y 在区间[]-1,1的最大值为2 39,函数f (x )的最大值为439,所以选项C 中的结论错误.13. 已知α是第三象限角,sin α=-13,则cot α=________.13.2 2 [解析] cos α=-1-sin 2α=-2 23,所以cot α=cos αsin α=2 2.14.6个人排成一行,其中甲、乙两人不相邻的不同排法共有________种.(用数字作答) 14.480 [解析] 先排另外四人,方法数是A 44,再在隔出的五个位置安插甲乙,方法数是A 25,根据乘法原理得不同排法共有A 44A 25=24×20=480种. 15. 记不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域为D .若直线y =a (x +1)与D 有公共点,则a 的取值范围是________.15.⎣⎡⎦⎤12,4 [解析] 已知不等式组表示的平面区域如图1-2中的三角形ABC 及其内部,直线y =a (x +1)是过点(-1,0)斜率为a 的直线,该直线与区域D 有公共点时,a 的最小值为MA 的斜率,最大值为MB 的斜率,其中点A (1,1),B (0,4),故MA 的斜率等于1-01-(-1)=12,MB 的斜率等于4-00-(-1)=4,故实数a 的取值范围是⎣⎡⎦⎤12,4.16.已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,OK =32,且圆O 与圆K所在的平面所成的一个二面角为60°,则球O 的表面积等于________.16.16π [解析] 设两圆的公共弦AB 的中点为D ,则KD ⊥DA ,OD ⊥DA ,∠ODK 即为圆O和和圆K 所在平面所成二面角的平面角,所以∠ODK =60°.由于O 为球心,故OK 垂直圆K 所在平面,所以OK ⊥KD .在直角三角形ODK 中,OK OD =sin60°,即OD =32×23= 3,设球的半径为r ,则DO =32r ,所以32r =3,所以r =2,所以球的表面积为4πr 2=16π.17.等差数列{a n }前n 项和为S n .已知S 3=a 22,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.17.解:设{a n }的公差为d .由S 3=a 22,得3a 2=a 22,故a 2=0或a 2=3.由S 1,S 2,S 4成等比数列得S 22=S 1S 4.又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d )2=(a 2-d )(4a 2+2d ).若a 2=0,则d 2=-2d 2,所以d =0, 此时S n =0,不合题意;若a 2=3,则(6-d )2=(3-d )(12+2d ), 解得d =0或d =2.因此{a n }的通项公式为a n =3或a n =2n -1.18.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c )(a -b +c )=ac .(1)求B ;(2)若sin A sin C =3-14,求C . 18.解:(1)因为(a +b +c )(a -b +c )=ac ,所以a 2+c 2-b 2=-ac . 由余弦定理得cos B =a 2+c 2-b 22ac =-12,因此B =120°.(2)由(1)知A +C =60°,所以cos(A -C )=cos A cos C +sin A sin C =cos A cos C -sin A sin C +2sin A sin C =cos(A +C )+2sin A sin C =12+2×3-14=32,故A -C =30°或A -C =-30°,因此C =15°或C =45°.19.如图,四棱锥P -ABCD 中,∠ABC =∠BAD =90°,BC =2AD ,△P AB 和△P AD 都是等边三角形.(1)证明:PB ⊥CD ;(2)求二面角A -PD -C 的大小.19.解:(1)取BC 的中点E ,联结DE ,则四边形ABED 为正方形. 过P 作PO ⊥平面ABCD ,垂足为O .联结OA ,OB ,OD ,OE .由△P AB 和△P AD 都是等边三角形知P A =PB =PD ,所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点,所以OE ∥CD .因此PB ⊥CD .(2)解法一:由(1)知CD ⊥PB ,CD ⊥PO ,PB ∩PO =P , 故CD ⊥平面PBD .又PD ⊂平面PBD ,所以CD ⊥PD . 取PD 的中点F ,PC 的中点G ,连FG . 则FG ∥CD ,FG ⊥PD .联结AF ,由△APD 为等边三角形可得AF ⊥PD . 所以∠AFG 为二面角A -PD -C 的平面角. 联结AG ,EG ,则EG ∥PB . 又PB ⊥AE ,所以EG ⊥AE .设AB =2,则AE =2 2,EG =12PB =1,故AG =AE 2+EG 2=3,在△AFG 中,FG =12CD =2,AF =3,AG =3.所以cos ∠AFG =FG 2+AF 2-AG 22·FG ·AF =-63.因此二面角A -PD -C 的大小为π-arccos63. 解法二:由(1)知,OE ,OB ,OP 两两垂直.以O 为坐标原点,OE →的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz .设|AB →|=2,则 A (-2,0,0),D (0,-2,0),C (2 2,-2,0),P (0,0,2), PC →=(2 2,-2,-2),PD →=(0,-2,-2), AP →=(2,0,2),AD →=(2,-2,0). 设平面PCD 的法向量为1=(x ,y ,z ),则 1·PC →=(x ,y ,z )·(2 2,-2,-2)=0,1·PD →=(x ,y ,z )·(0,-2,-2)=0,可得2x -y -z =0,y +z =0.取y =-1,得x =0,z =1,故1=(0,-1,1). 设平面P AD 的法向量为2=(m ,p ,q ),则 2·AP →=(m ,p ,q )·(2,0,2)=0, 2·AD →=(m ,p ,q )·(2,-2,0)=0,可得m +q =0,m -p =0.取m =1,得p =1,q =-1,故2=(1,1,-1). 于是cos 〈,2〉=n 1·n 2|n 1||n 2|=-63. 由于〈,2〉等于二面角A -PD -C 的平面角,所以二面角A -PD -C 的大小为π-arccos63. 20.甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)X 表示前4局中乙当裁判的次数,求X 的数学期望. 20.解:(1)记A 1表示事件“第2局结果为甲胜”, A 2表示事件“第3局甲参加比赛,结果为甲负”, A 表示事件“第4局甲当裁判”. 则A =A 1·A 2. P (A )=P (A 1·A 2)=P (A 1)P (A 2)=14.(2)X 的可能取值为0,1,2.记A 3表示事件“第3局乙和丙比赛时,结果为乙胜丙”, B 1表示事件“第1局结果为乙胜丙”,B 2表示事件“第2局乙和甲比赛时,结果为乙胜甲”, B 3表示事件“第3局乙参加比赛时,结果为乙负”. 则P (X =0)=P (B 1·B 2·A 3)=P (B 1)P (B 2)P (A 3)=18,P (X =2)=P (B 1·B 3)=P (B 1)P (B 3)=14,P (X =1)=1-P (X =0)-P (X =2)=1-18-14=58,E (X )=0·P (X =0)+1·P (X =1)+2·P (X =2)=98.21.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为3,直线y =2与C 的两个交点间的距离为 6.(1)求a ,b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A ,B 两点,且|AF 1|=|BF 1|,证明:|AF 2|,|AB |,|BF 2|成等比数列.21.解:(1)由题设知ca =3,即a 2+b 2a 2=9,故b 2=8a 2.所以C 的方程为8x 2-y 2=8a 2. 将y =2代入上式,求得x =±a 2+12.由题设知,2a 2+12=6,解得a 2=1.所以a =1,b =2 2.(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.① 由题意可设l 的方程为y =k (x -3),|k |<2 2,代入①并化简得 (k 2-8)x 2-6k 2x +9k 2+8=0. 设A (x 1,y 1),B (x 2,y 2),则 x 1≤-1,x 2≥1,x 1+x 2=6k 2k 2-8,x 1x 2=9k 2+8k 2-8.于是|AF 1|=(x 1+3)2+y 21=(x 1+3)2+8x 21-8=-(3x 1+1),|BF 1|=(x 2+3)2+y 22=(x 2+3)2+8x 22-8=3x 2+1.由|AF 1|=|BF 1|得-(3x 1+1)=3x 2+1,即x 1+x 2=-23.故6k 2k 2-8=-23,解得k 2=45,从而x 1x 2=-199.由于|AF 2|=(x 1-3)2+y 21=(x 1-3)2+8x 21-8=1-3x 1,|BF 2|=(x 2-3)2+y 22=(x 2-3)2+8x 22-8=3x 2-1, 故|AB |=|AF 2|-|BF 2|=2-3(x 1+x 2)=4, |AF 2|·|BF 2|=3(x 1+x 2)-9x 1x 2-1=16. 因而|AF 2|·|BF 2|=|AB |2,所以|AF 2|,|AB |,|BF 2|成等比数列.22. 已知函数f (x )=ln(1+x )-x (1+λx )1+x.(1)若x ≥0时f (x )≤0,求λ的最小值;(2)设数列{a n }的通项a n =1+12+13+…+1n ,证明:a 2n -a n +14n >ln 2.22.解:(1)由已知f (0)=0,f ′(x )=(1-2λ)x -λx 2(1+x )2,f ′(0)=0.若λ<12,则当0<x <2(1-2λ)时,f ′(x )>0,所以f (x )>0.若λ≥12,则当x >0时,f ′(x )<0,所以当x >0时,f (x )<0.综上,λ的最小值是12.(2)令λ=12.由(1)知,当x >0时,f (x )<0,即x (2+x )2+2x >ln (1+x ).取x =1k ,则2k +12k (k +1)>ln k +1k .于是a 2n -a n +14n =∑k =n 2n -1 ⎣⎡⎦⎤12k +12(k +1)=∑k =n 2n -1 2k +12k (k +1)>k =n 2n -1lnk +1k =ln 2n -ln n =ln 2.所以a 2n -a n +14n >ln 2.。
2013年全国高考数学(理科)试题及答案-全国大纲卷(解析版)

2021年普通高等学校招生全国统一考试〔全国大纲卷〕数学〔理科〕一、选择题:本大题共12小题,每题5分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈那么M 中的元素个数为〔A 〕3 〔B 〕4 〔C 〕5 〔D 〕6 2.()31+3i=〔A 〕8- 〔B 〕8 〔C 〕8i - 〔D 〕8i 3.向量()()1,1,2,2m n λλ=+=+,假设()()m n m n +⊥-,那么=λ〔A 〕4- 〔B 〕3- 〔C 〕2- 〔D 〕-1 4.函数()f x 的定义域为()1,0-,那么函数()21f x -的定义域为〔A 〕()1,1- 〔B 〕11,2⎛⎫- ⎪⎝⎭ 〔C 〕()-1,0 〔D 〕1,12⎛⎫ ⎪⎝⎭5.函数()()21=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x - 〔A 〕()1021x x >- 〔B 〕()1021xx ≠- 〔C 〕()21x x R -∈ 〔D 〕()210xx -> 6.数列{}n a 满足12430,3n n a a a ++==-,那么{}n a 的前10项和等于 〔A 〕()10613---〔B 〕()101139--〔C 〕()10313-- 〔D 〕()1031+3- 7. ()()8411+x y +的展开式中22x y 的系数是〔A 〕56 〔B 〕84 〔C 〕112 〔D 〕1688.椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是〔A 〕1324⎡⎤⎢⎥⎣⎦, 〔B 〕3384⎡⎤⎢⎥⎣⎦, 〔C 〕112⎡⎤⎢⎥⎣⎦,〔D 〕314⎡⎤⎢⎥⎣⎦, 9.假设函数()21=f x x ax x ++在1,+2⎛⎫∞ ⎪⎝⎭是增函数,那么a 的取值范围是 〔A 〕[-1,0] 〔B 〕[1,)-+∞ 〔C 〕[0,3] 〔D 〕[3,)+∞10.正四棱柱1111ABCD A B C D -中12AA AB =,那么CD 与平面1BDC 所成角的正弦值等于〔A 〕23 〔B 〕33 〔C 〕23 〔D 〕1311.抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,假设0MA MB =,那么k =〔A 〕12〔B 〕22 〔C 〕2 〔D 〕212.函数()=cos sin 2f x x x ,以下结论中错误的选项是〔A 〕()y f x =的图像关于(),0π中心对称 〔B 〕()y f x =的图像关于直线2x π=对称〔C 〕()f x 的最大值为32〔D 〕()f x 既奇函数,又是周期函数 二、填空题:本大题共4小题,每题5分.13.α是第三象限角,1sin 3a =-,那么cot a = .14.6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.〔用数字作答〕15.记不等式组0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为D ,假设直线()1y a x =+与D 公共点,那么a 的取值范围是 .16.圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,32OK =,且圆O 与圆K 所在的平面所成的一个二面角为60,那么球O 的外表积等于 .三、解答题:解容许写出文字说明、证明过程或演算步骤.17.〔本小题总分值10分〕等差数列{}n a 的前n 项和为n S ,232=S a ,且124,,S S S 成等比数列,求{}n a 的通项式。
2013全国高考1卷理科数学试题及答案解析

切点
直线
坐标原点到 距离的比值为 。
(21)【解析】(1)
例:瓶子里的水渐渐升高了。令 得:
得:
六、看图写话
在 上单调递增
红火——红红火火许多——许许多多来往——来来往往
9、区分以下形近字或音近字:得: 的解析式为
三、词语。且单调递增区间为 ,单调递减区间为
金黄的秋天大大的公园绿色的小伞(2) 得
(8)等轴双曲线 的中心在原点,焦点在 轴上, 与抛物线 的准线交于 两点, ,则 的
实轴长为
(A) (B) (C)4(D)8
(9)已知 ,函数 在 单调递减,则 的取值范围
(A) (B) (C) (D)
(10)已知函数 ,则 的图像大致为
(11)已知三棱锥 的所有顶点都在球 的球面上, 是边长为 的正三角形, 为 的直径,且 ,则此棱锥的体积为
(1)【解析】选
, , , 共10个
(2)【解析】选
甲地由 名教师和 名学生: 种
(3)【解析】选
, , 的共轭复数为 , 的虚部为
(4)【解析】选
是底角为 的等腰三角形
(5)【解析】选
, 或
(6)【解析】选
(7)【解析】选
该几何体是三棱锥,底面是俯视图,高为
此几何体的体积为
(8)【解析】选
设 交 的准线 于
(14)设 满足约束条件 则 的取值范围为__________.
(15)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件正常工作,则部件正常工作。设三个电子元件的使用寿命(单位:小时)均服从正态分布 ,且各个元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为_________________.
2013年高考全国卷理科数学高清解析版

2013年普通高等学校招生全国统一考试理科数学注意事项:1. 本试卷分为两部分, 第一部分为选择题,第二部分为非选择题.。
2. 考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息.。
3. 所有解答必须填写在答题卡上指定区域内。
考试结束后,将本试卷和答题卡一并交回。
第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)1. 设全集为R ,函数()f x M , 则C M R 为(A) [-1,1](B) (-1,1)(C) ,1][1,)(∞-⋃+∞-(D) ,1)(1,)(∞-⋃+∞-【答案】D【解析】()f x 的定义域为M=[-1,1],故2. 根据下列算法语句, 当输入x 为60输出y 的值为 (A) 25 (B) 30 (C) 31 (D) 61【答案】C【解析】故选择C3. 设a , b 为向量, 则“||||||=a a b b ·”是“a //b ”的 (A) 充分不必要条件(B) 必要不充分条件(C) 充分必要条件(D) 既不充分也不必要条件【答案】A 【解析】4. 某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, …, 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为 (A) 11 (B) 12 (C) 13 (D) 14 【答案】B【解析】由题设可知区间[481,720]长度为240,落在区间内的人数为12人。
5. 如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是(A)14π-(B)12π-(C) 22π-(D) 4π【答案】A【解析】由题设可知矩形ABCD 面积为2,曲边形DEBF 的面积为22124ππ-=-,选A.6. 设z 1, z 2是复数, 则下列命题中的假命题是 (A) 若12||0z z -=, 则12z z = 2z =(C) 若12||z z =, 则2112··z z z z =(D) 若12||||z z =, 则2122z z =【答案】D【解析】设12,,z a bi z c di =+=+若12||0z z -=,则12||()()z z a c b d i -=-+-,12z z =,则,a c b d ==-,所以12z z =,故22c d =+,所以1122..z z z z =,故C 项正确;a ,b ,c , 若cos cos sin b C c B a A +=, 则△ABC 的形 (A) 锐角三角形 (B) 直角三角形(C) 钝角三角形(D) 不确定【答案】B【解析】因为cos cos sin b C c B a A +=,所以由正弦定理得2sin cos sin cos sin B C C B A +=,所以2sin()sin B C A +=,所以2sin sin A A =,所以sin 1A =,所以△ABC 是直角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年全国统一高考数学试卷(理科)(大纲版)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.62.(5分)=()A.﹣8B.8C.﹣8i D.8i3.(5分)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4B.﹣3C.﹣2D.﹣14.(5分)已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为()A.(﹣1,1)B.C.(﹣1,0)D.5.(5分)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A.B.C.2x﹣1(x∈R)D.2x﹣1(x>0)6.(5分)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)7.(5分)(1+x)3(1+y)4的展开式中x2y2的系数是()A.5B.8C.12D.188.(5分)椭圆C:的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是()A.B.C.D.9.(5分)若函数f(x)=x2+ax+是增函数,则a的取值范围是()A.[﹣1,0]B.[﹣1,+∞)C.[0,3]D.[3,+∞)10.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.B.C.D.11.(5分)已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F且斜率为k的直线与C交于A,B两点,若,则k=()A.B.C.D.212.(5分)已知函数f(x)=cosxsin2x,下列结论中不正确的是()A.y=f(x)的图象关于(π,0)中心对称B.C.D.f(x)既是奇函数,又是周期函数二、填空题:本大题共4小题,每小题5分.13.(5分)已知α是第三象限角,sinα=﹣,则co tα=.14.(5分)6个人排成一行,其中甲、乙两人不相邻的不同排法共有种.(用数字作答)15.(5分)记不等式组所表示的平面区域为D.若直线y=a(x+1)与D有公共点,则a的取值范围是.16.(5分)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,,则球O的表面积等于.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)等差数列{a n}的前n项和为S n.已知S3=a22,且S1,S2,S4成等比数列,求{a n}的通项式.18.(12分)设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a ﹣b+c)=ac.(Ⅰ)求B.(Ⅱ)若sinAsinC=,求C.19.(12分)如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD 都是等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求二面角A﹣PD﹣C的大小.20.(12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)X表示前4局中乙当裁判的次数,求X的数学期望.21.(12分)已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为.(I)求a,b;(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.22.(12分)已知函数.(I)若x≥0时,f(x)≤0,求λ的最小值;(II)设数列{a n}的通项a n=1+.2013年全国统一高考数学试卷(理科)(大纲版)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.6【考点】13:集合的确定性、互异性、无序性;1A:集合中元素个数的最值.【专题】11:计算题.【分析】利用已知条件,直接求出a+b,利用集合元素互异求出M中元素的个数即可.【解答】解:因为集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},所以a+b的值可能为:1+4=5、1+5=6、2+4=6、2+5=7、3+4=7、3+5=8,所以M中元素只有:5,6,7,8.共4个.故选:B.【点评】本题考查集合中元素个数的最值,集合中元素的互异性的应用,考查计算能力.2.(5分)=()A.﹣8B.8C.﹣8i D.8i【考点】A5:复数的运算.【分析】复数分子、分母同乘﹣8,利用1的立方虚根的性质(),化简即可.【解答】解:故选:A.【点评】复数代数形式的运算,是基础题.3.(5分)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4B.﹣3C.﹣2D.﹣1【考点】9T:数量积判断两个平面向量的垂直关系.【专题】5A:平面向量及应用.【分析】利用向量的运算法则、向量垂直与数量积的关系即可得出.【解答】解:∵,.∴=(2λ+3,3),.∵,∴=0,∴﹣(2λ+3)﹣3=0,解得λ=﹣3.故选:B.【点评】熟练掌握向量的运算法则、向量垂直与数量积的关系是解题的关键.4.(5分)已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为()A.(﹣1,1)B.C.(﹣1,0)D.【考点】33:函数的定义域及其求法.【专题】51:函数的性质及应用.【分析】原函数的定义域,即为2x+1的范围,解不等式组即可得解.【解答】解:∵原函数的定义域为(﹣1,0),∴﹣1<2x+1<0,解得﹣1<x<﹣.∴则函数f(2x+1)的定义域为.故选:B.【点评】考查复合函数的定义域的求法,注意变量范围的转化,属简单题.5.(5分)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A.B.C.2x﹣1(x∈R)D.2x﹣1(x>0)【考点】4R:反函数.【专题】51:函数的性质及应用.【分析】把y看作常数,求出x:x=,x,y互换,得到y=log2(1+)的反函数.注意反函数的定义域.【解答】解:设y=log2(1+),把y看作常数,求出x:1+=2y,x=,其中y>0,x,y互换,得到y=log2(1+)的反函数:y=,故选:A.【点评】本题考查对数函数的反函数的求法,解题时要认真审题,注意对数式和指数式的相互转化.6.(5分)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)【考点】89:等比数列的前n项和.【专题】11:计算题;54:等差数列与等比数列.【分析】由已知可知,数列{a n}是以﹣为公比的等比数列,结合已知可求a1,然后代入等比数列的求和公式可求+a n=0【解答】解:∵3a n+1∴∴数列{a n}是以﹣为公比的等比数列∵∴a1=4由等比数列的求和公式可得,S10==3(1﹣3﹣10)故选:C.【点评】本题主要考查了等比数列的通项公式及求和公式的简单应用,属于基础试题7.(5分)(1+x)3(1+y)4的展开式中x2y2的系数是()A.5B.8C.12D.18【考点】DA:二项式定理.【专题】11:计算题.【分析】由题意知利用二项展开式的通项公式写出展开式的通项,令x的指数为2,写出出展开式中x2的系数,第二个因式y2的系数,即可得到结果.=C3r x r【解答】解:(x+1)3的展开式的通项为T r+1令r=2得到展开式中x2的系数是C32=3,=C4r y r(1+y)4的展开式的通项为T r+1令r=2得到展开式中y2的系数是C42=6,(1+x)3(1+y)4的展开式中x2y2的系数是:3×6=18,故选:D.【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题,本题解题的关键是写出二项式的展开式,所有的这类问题都是利用通项来解决的.8.(5分)椭圆C:的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是()A.B.C.D.【考点】I3:直线的斜率;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由椭圆C:可知其左顶点A1(﹣2,0),右顶点A2(2,0).设P(x0,y 0)(x0≠±2),代入椭圆方程可得.利用斜率计算公式可得,再利用已知给出的的范围即可解出.【解答】解:由椭圆C:可知其左顶点A1(﹣2,0),右顶点A2(2,0).设P(x0,y0)(x0≠±2),则,得.∵=,=,∴==,∵,∴,解得.故选:B.【点评】熟练掌握椭圆的标准方程及其性质、斜率的计算公式、不等式的性质等是解题的关键.9.(5分)若函数f(x)=x2+ax+是增函数,则a的取值范围是()A.[﹣1,0]B.[﹣1,+∞)C.[0,3]D.[3,+∞)【考点】6B:利用导数研究函数的单调性.【专题】53:导数的综合应用.【分析】由函数在(,+∞)上是增函数,可得≥0在(,+∞)上恒成立,进而可转化为a≥﹣2x在(,+∞)上恒成立,构造函数求出﹣2x在(,+∞)上的最值,可得a的取值范围.【解答】解:∵在(,+∞)上是增函数,故≥0在(,+∞)上恒成立,即a≥﹣2x在(,+∞)上恒成立,令h(x)=﹣2x,则h′(x)=﹣﹣2,当x∈(,+∞)时,h′(x)<0,则h(x)为减函数.∴h(x)<h()=3∴a≥3.故选:D.【点评】本题考查的知识点是利用导数研究函数的单调性,恒成立问题,是导数的综合应用,难度中档.10.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.B.C.D.【考点】MI:直线与平面所成的角.【专题】15:综合题;16:压轴题;5G:空间角;5H:空间向量及应用.【分析】设AB=1,则AA1=2,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,设=(x,y,z)为平面BDC1的一个法向量,CD与平面BDC1所成角为θ,则sinθ=||,在空间坐标系下求出向量坐标,代入计算即可.【解答】解:设AB=1,则AA1=2,分别以的方向为x轴、y轴、z 轴的正方向建立空间直角坐标系,如下图所示:则D(0,0,2),C1(1,0,0),B(1,1,2),C(1,0,2),=(1,1,0),=(1,0,﹣2),=(1,0,0),设=(x,y,z)为平面BDC1的一个法向量,则,即,取=(2,﹣2,1),设CD与平面BDC1所成角为θ,则sinθ=||=,故选:A.【点评】本题考查直线与平面所成的角,考查空间向量的运算及应用,准确理解线面角与直线方向向量、平面法向量夹角关系是解决问题的关键.11.(5分)已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F且斜率为k的直线与C交于A,B两点,若,则k=()A.B.C.D.2【考点】9O:平面向量数量积的性质及其运算;K8:抛物线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】斜率k存在,设直线AB为y=k(x﹣2),代入抛物线方程,利用=(x1+2,y1﹣2)•(x2+2,y2﹣2)=0,即可求出k的值.【解答】解:由抛物线C:y2=8x得焦点(2,0),由题意可知:斜率k存在,设直线AB为y=k(x﹣2),代入抛物线方程,得到k2x2﹣(4k2+8)x+4k2=0,△>0,设A(x1,y1),B(x2,y2).∴x1+x2=4+,x1x2=4.∴y1+y2=,y1y2=﹣16,又=0,∴=(x1+2,y1﹣2)•(x2+2,y2﹣2)==0∴k=2.故选:D.【点评】本题考查直线与抛物线的位置关系,考查向量的数量积公式,考查学生的计算能力,属于中档题.12.(5分)已知函数f(x)=cosxsin2x,下列结论中不正确的是()A.y=f(x)的图象关于(π,0)中心对称B.C.D.f(x)既是奇函数,又是周期函数【考点】H1:三角函数的周期性;HW:三角函数的最值.【专题】11:计算题;57:三角函数的图像与性质.【分析】根据函数图象关于某点中心对称或关于某条直线对称的公式,对A、B两项加以验证,可得它们都正确.根据二倍角的正弦公式和同角三角函数的关系化简,得f(x)=2sinx(1﹣sin2x),再换元:令t=sinx,得到关于t的三次函数,利用导数研究此函数的单调性可得f(x)的最大值为,故C不正确;根据函数周期性和奇偶性的定义加以验证,可得D项正确.由此可得本题的答案.【解答】解:对于A,因为f(π+x)=cos(π+x)sin(2π+2x)=﹣cosxsin2x,f(π﹣x)=cos(π﹣x)sin(2π﹣2x)=cosxsin2x,所以f(π+x)+f(π﹣x)=0,可得y=f(x)的图象关于(π,0)中心对称,故A正确;对于B,因为f(+x)=cos(+x)sin(π+2x)=﹣sinx(﹣sin2x)=sinxsin2x,f(﹣x)=cos(﹣x)sin(π﹣2x)=sinxsin2x,所以f(+x)=f(﹣x),可得y=f(x)的图象关于直线x=对称,故B正确;对于C,化简得f(x)=cosxsin2x=2cos2xsinx=2sinx(1﹣sin2x),令t=sinx,f(x)=g(t)=2t(1﹣t2),﹣1≤t≤1,∵g(t)=2t(1﹣t2)的导数g'(t)=2﹣6t2=2(1+t)(1﹣t)∴当t∈(﹣1,﹣)时或t∈(,1)时g'(t)<0,函数g(t)为减函数;当t∈(﹣,)时g'(t)>0,函数g(t)为增函数.因此函数g(t)的最大值为t=﹣1时或t=时的函数值,结合g(﹣1)=0<g()=,可得g(t)的最大值为.由此可得f(x)的最大值为而不是,故C不正确;对于D,因为f(﹣x)=cos(﹣x)sin(﹣2x)=﹣cosxsin2x=﹣f(x),所以f(x)是奇函数.因为f(2π+x)=cos(2π+x)sin(4π+2x)=cosxsin2x=f(x),所以2π为函数的一个周期,得f(x)为周期函数.可得f(x)既是奇函数,又是周期函数,得D正确.综上所述,只有C项不正确.故选:C.【点评】本题给出三角函数式,研究函数的奇偶性、单调性和周期性.着重考查了三角恒等变换公式、利用导数研究函数的单调性和函数图象的对称性等知识,属于中档题.二、填空题:本大题共4小题,每小题5分.13.(5分)已知α是第三象限角,sinα=﹣,则cotα=2.【考点】GG:同角三角函数间的基本关系.【专题】56:三角函数的求值.【分析】根据α是第三象限的角,得到cosα小于0,然后由sinα的值,利用同角三角函数间的基本关系求出cosα的值,进而求出cotα的值.【解答】解:由α是第三象限的角,得到cosα<0,又sinα=﹣,所以cosα=﹣=﹣则cotα==2故答案为:2【点评】此题考查学生灵活运用同角三角函数间的基本关系化简求值,是一道基础题.学生做题时注意α的范围.14.(5分)6个人排成一行,其中甲、乙两人不相邻的不同排法共有480种.(用数字作答)【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】排列好甲、乙两人外的4人,然后把甲、乙两人插入4个人的5个空位中即可.【解答】解:6个人排成一行,其中甲、乙两人不相邻的不同排法:排列好甲、乙两人外的4人,有中方法,然后把甲、乙两人插入4个人的5个空位,有种方法,所以共有:=480.故答案为:480.【点评】本题考查了乘法原理,以及排列的简单应用,插空法解答不相邻问题.15.(5分)记不等式组所表示的平面区域为D.若直线y=a(x+1)与D有公共点,则a的取值范围是[,4] .【考点】7C:简单线性规划.【专题】16:压轴题;59:不等式的解法及应用.【分析】本题考查的知识点是简单线性规划的应用,我们要先画出满足约束条件的平面区域,然后分析平面区域里各个角点,然后将其代入y=a(x+1)中,求出y=a(x+1)对应的a的端点值即可.【解答】解:满足约束条件的平面区域如图示:因为y=a(x+1)过定点(﹣1,0).所以当y=a(x+1)过点B(0,4)时,得到a=4,当y=a(x+1)过点A(1,1)时,对应a=.又因为直线y=a(x+1)与平面区域D有公共点.所以≤a≤4.故答案为:[,4]【点评】在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.16.(5分)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,,则球O的表面积等于16π.【考点】LG:球的体积和表面积.【专题】16:压轴题;5F:空间位置关系与距离.【分析】正确作出图形,利用勾股定理,建立方程,即可求得结论.【解答】解:如图所示,设球O的半径为r,AB是公共弦,∠OCK是面面角根据题意得OC=,CK=在△OCK中,OC2=OK2+CK2,即∴r2=4∴球O的表面积等于4πr2=16π故答案为16π【点评】本题考查球的表面积,考查学生分析解决问题的能力,属于中档题.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)等差数列{a n}的前n项和为S n.已知S3=a22,且S1,S2,S4成等比数列,求{a n}的通项式.【考点】85:等差数列的前n项和;88:等比数列的通项公式.【专题】11:计算题;54:等差数列与等比数列.【分析】由,结合等差数列的求和公式可求a2,然后由,结合等差数列的求和公式进而可求公差d,即可求解通项公式【解答】解:设数列的公差为d由得,3∴a2=0或a2=3由题意可得,∴若a2=0,则可得d2=﹣2d2即d=0不符合题意若a2=3,则可得(6﹣d)2=(3﹣d)(12+2d)解可得d=0或d=2∴a n=3或a n=2n﹣1【点评】本题主要考查了等差数列的通项公式及求和公式的应用,等比数列的性质的简单应用,属于基础试题18.(12分)设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a ﹣b+c)=ac.(Ⅰ)求B.(Ⅱ)若sinAsinC=,求C.【考点】GP:两角和与差的三角函数;HR:余弦定理.【专题】58:解三角形.【分析】(I)已知等式左边利用多项式乘多项式法则计算,整理后得到关系式,利用余弦定理表示出cosB,将关系式代入求出cosB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(II)由(I)得到A+C的度数,利用两角和与差的余弦函数公式化简cos(A﹣C),变形后将cos(A+C)及2sinAsinC的值代入求出cos(A﹣C)的值,利用特殊角的三角函数值求出A﹣C的值,与A+C的值联立即可求出C的度数.【解答】解:(I)∵(a+b+c)(a﹣b+c)=(a+c)2﹣b2=ac,∴a2+c2﹣b2=﹣ac,∴cosB==﹣,又B为三角形的内角,则B=120°;(II)由(I)得:A+C=60°,∵sinAsinC=,cos(A+C)=,∴cos(A﹣C)=cosAcosC+sinAsinC=cosAcosC﹣sinAsinC+2sinAsinC=cos(A+C)+2sinAsinC=+2×=,∴A﹣C=30°或A﹣C=﹣30°,则C=15°或C=45°.【点评】此题考查了余弦定理,两角和与差的余弦函数公式,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.19.(12分)如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求二面角A﹣PD﹣C的大小.【考点】LW:直线与平面垂直;M5:共线向量与共面向量.【专题】11:计算题;5G:空间角.【分析】(I)取BC的中点E,连接DE,过点P作PO⊥平面ABCD于O,连接OA、OB、OD、OE.可证出四边形ABED是正方形,且O为正方形ABED的中心.因此OE⊥OB,结合三垂线定理,证出OE⊥PB,而OE是△BCD的中位线,可得OE∥CD,因此PB⊥CD;(II)由(I)的结论,证出CD⊥平面PBD,从而得到CD⊥PD.取PD的中点F,PC的中点G,连接FG,可得FG∥CD,所以FG⊥PD.连接AF,可得AF⊥PD,因此∠AFG 为二面角A﹣PD﹣C的平面角,连接AG、EG,则EG∥PB,可得EG⊥OE.设AB=2,可求出AE、EG、AG、AF和FG的长,最后在△AFG中利用余弦定理,算出∠AFG=π﹣arccos,即得二面角A﹣PD﹣C的平面角大小.【解答】解:(I)取BC的中点E,连接DE,可得四边形ABED是正方形过点P作PO⊥平面ABCD,垂足为O,连接OA、OB、OD、OE∵△PAB与△PAD都是等边三角形,∴PA=PB=PD,可得OA=OB=OD因此,O是正方形ABED的对角线的交点,可得OE⊥OB∵PO⊥平面ABCD,得直线OB是直线PB在内的射影,∴OE⊥PB∵△BCD中,E、O分别为BC、BD的中点,∴OE∥CD,可得PB⊥CD;(II)由(I)知CD⊥PO,CD⊥PB∵PO、PB是平面PBD内的相交直线,∴CD⊥平面PBD∵PD⊂平面PBD,∴CD⊥PD取PD的中点F,PC的中点G,连接FG,则FG为△PCD有中位线,∴FG∥CD,可得FG⊥PD连接AF,由△PAD是等边三角形可得AF⊥PD,∴∠AFG为二面角A﹣PD﹣C的平面角连接AG、EG,则EG∥PB∵PB⊥OE,∴EG⊥OE,设AB=2,则AE=2,EG=PB=1,故AG==3在△AFG中,FG=CD=,AF=,AG=3∴cos∠AFG==﹣,得∠AFG=π﹣arccos,即二面角A﹣PD﹣C的平面角大小是π﹣arccos.【点评】本题给出特殊的四棱锥,求证直线与直线垂直并求二面角平面角的大小,着重考查了线面垂直的判定与性质、三垂线定理和运用余弦定理求二面的大小等知识,属于中档题.20.(12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)X表示前4局中乙当裁判的次数,求X的数学期望.【考点】CB:古典概型及其概率计算公式;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(I)令A1表示第2局结果为甲获胜,A2表示第3局甲参加比赛时,结果为甲负,A表示第4局甲当裁判,分析其可能情况,每局比赛的结果相互独立且互斥,利用独立事件、互斥事件的概率求解即可.(II)X的所有可能值为0,1,2.分别求出X取每一个值的概率,列出分布列后求出期望值即可.【解答】解:(I)令A1表示第2局结果为甲获胜.A2表示第3局甲参加比赛时,结果为甲负.A表示第4局甲当裁判.则A=A1•A2,P(A)=P(A1•A2)=P(A1)P(A2)=;(Ⅱ)X的所有可能值为0,1,2.令A3表示第3局乙和丙比赛时,结果为乙胜.B1表示第1局结果为乙获胜,B2表示第2局乙和甲比赛时,结果为乙胜,B3表示第3局乙参加比赛时,结果为乙负,则P(X=0)=P(B 1B2)=P(B1)P(B2)P()=.P(X=2)=P(B 3)=P()P(B3)=.P(X=1)=1﹣P(X=0)﹣P(X=2)=.从而EX=0×+1×+2×=.【点评】本题考查互斥、独立事件的概率,离散型随机变量的分布列和期望等知识,同时考查利用概率知识解决问题的能力.21.(12分)已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为.(I)求a,b;(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.【考点】K4:椭圆的性质;KH:直线与圆锥曲线的综合.【专题】14:证明题;15:综合题;16:压轴题;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】(I)由题设,可由离心率为3得到参数a,b的关系,将双曲线的方程用参数a表示出来,再由直线建立方程求出参数a即可得到双曲线的方程;(II)由(I)的方程求出两焦点坐标,设出直线l的方程设A(x1,y1),B(x2,y2),将其与双曲线C的方程联立,得出x1+x2=,,再利用|AF1|=|BF1|建立关于A,B坐标的方程,得出两点横坐标的关系,由此方程求出k 的值,得出直线的方程,从而可求得:|AF2|、|AB|、|BF2|,再利用等比数列的性质进行判断即可证明出结论.【解答】解:(I)由题设知=3,即=9,故b2=8a2所以C的方程为8x2﹣y2=8a2将y=2代入上式,并求得x=±,由题设知,2=,解得a2=1所以a=1,b=2(II)由(I)知,F1(﹣3,0),F2(3,0),C的方程为8x2﹣y2=8 ①由题意,可设l的方程为y=k(x﹣3),|k|<2代入①并化简得(k2﹣8)x2﹣6k2x+9k2+8=0设A(x1,y1),B(x2,y2),则x1≤﹣1,x2≥1,x1+x2=,,于是|AF1|==﹣(3x1+1),|BF1|==3x2+1,|AF1|=|BF1|得﹣(3x1+1)=3x2+1,即故=,解得,从而=﹣由于|AF2|==1﹣3x1,|BF2|==3x2﹣1,故|AB|=|AF2|﹣|BF2|=2﹣3(x1+x2)=4,|AF2||BF2|=3(x1+x2)﹣9x1x2﹣1=16因而|AF2||BF2|=|AB|2,所以|AF2|、|AB|、|BF2|成等比数列【点评】本题考查直线与圆锥曲线的综合关系,考查了运算能力,题设条件的转化能力,方程的思想运用,此类题综合性强,但解答过程有其固有规律,一般需要把直线与曲线联立利用根系关系,解答中要注意提炼此类题解答过程中的共性,给以后解答此类题提供借鉴.22.(12分)已知函数.(I)若x≥0时,f(x)≤0,求λ的最小值;(II)设数列{a n}的通项a n=1+.【考点】6E:利用导数研究函数的最值;8E:数列的求和;8K:数列与不等式的综合.【专题】16:压轴题;35:转化思想;53:导数的综合应用;54:等差数列与等比数列.【分析】(I)由于已知函数的最大值是0,故可先求出函数的导数,研究其单调性,确定出函数的最大值,利用最大值小于等于0求出参数λ的取值范围,即可求得其最小值;(II)根据(I)的证明,可取λ=,由于x>0时,f(x)<0得出,考察发现,若取x=,则可得出,以此为依据,利用放缩法,即可得到结论【解答】解:(I)由已知,f(0)=0,f′(x)==,∴f′(0)=0欲使x≥0时,f(x)≤0恒成立,则f(x)在(0,+∞)上必为减函数,即在(0,+∞)上f′(x)<0恒成立,当λ≤0时,f′(x)>0在(0,+∞)上恒成立,为增函数,故不合题意,若0<λ<时,由f′(x)>0解得x<,则当0<x<,f′(x)>0,所以当0<x<时,f(x)>0,此时不合题意,若λ≥,则当x>0时,f′(x)<0恒成立,此时f(x)在(0,+∞)上必为减函数,所以当x>0时,f(x)<0恒成立,综上,符合题意的λ的取值范围是λ≥,即λ的最小值为(II)令λ=,由(I)知,当x>0时,f(x)<0,即取x=,则于是a2n﹣a n+=++…++====>=ln2n﹣lnn=ln2所以【点评】本题考查了数列中证明不等式的方法及导数求最值的普通方法,解题的关键是充分利用已有的结论再结合放缩法,本题考查了推理判断的能力及转化化归的思想,有一定的难度。